首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
T. A. Starich  R. K. Herman    J. E. Shaw 《Genetics》1993,133(3):527-541
Mutations in the Caenorhabditis elegans gene unc-7 confer an uncoordinated phenotype. Wild-type animals trace smooth, sinuous waves as they move; unc-7 mutants make irregular bends or kinks along their bodies, particularly when they move forward. The unc-7 locus has also been implicated in the nematode's response to volatile anesthetics. We have cloned unc-7 by transposon tagging: an unc-7 mutation was correlated with the insertion of the transposon Tc1, and reversion of the mutant phenotype was correlated with loss of the Tc1 element. We have physically mapped the region flanking the sites of Tc1 insertion and identified DNA rearrangements corresponding to eight additional unc-7 alleles. Northern analysis indicates that a 2.7-kb unc-7 message is present in all developmental stages but is most abundant in L1-L3 larvae. The 5' end of the message contains a trans-spliced leader SL1. An 18-kb intron is located upstream of the predicted translational start site of the gene, and DNA breakpoints of four gamma-ray-induced alleles were located within this intron. We determined the sequence of a cDNA corresponding to the unc-7 message. The message may encode a 60-kd protein whose amino acid sequence is unrelated to any other available protein sequence; a transmembrane location for the unc-7 protein is predicted. We predict from our analysis of unc-7 genetic mosaics that the unc-7 gene product is not required in muscle cells for wild-type coordination but is probably required in motor neurons (although a hypodermal role has not been excluded). We speculate that unc-7 may be involved in the function of neuronal ion channels.  相似文献   

3.
A. Y. Sun  E. J. Lambie 《Genetics》1997,147(3):1077-1089
The gonad of the Caenorhabditis elegans hermaphrodite is generated by the postembryonic divisions of two somatic precursors, Z1 and Z4, and two germline precursors, Z2 and Z3. These cells begin division midway through the first larval stage. By the end of the fourth larval stage, Z1 and Z4 produce 143 descendants, while Z2 and Z3 give rise to ~1000 descendants. The divisions of Z2 and Z3 are dependent on signals produced by Z1 and Z4, but not vice versa. We have characterized the properties of five loss-of-function alleles of a newly described gene, which we call gon-2. In gon-2 mutants, gonadogenesis is severely impaired; in some animals, none of the gonad progenitors undergo any postembryonic divisions. Mutations in gon-2 have a partial maternal effect: either maternal or zygotic expression is sufficient to prevent the severe gonadogenesis defects. By cell lineage analysis, we found that the primary defect in gon-2 mutants is a delay (sometimes a complete block) in the onset and continuation of gonadal divisions. The results of upshift experiments using a temperature-sensitive allele suggest that zygotic expression of gon-2 begins early in embryogenesis, before the birth of Z1 and Z4. The results of downshift experiments suggest that Z1 and Z4 can generate the full complement of gonadal tissues even when gon-2 function is inhibited until the end of the second larval stage. Thus, gon-2 activity is probably not required for the specification of gonadal cell fates, but appears to be generally required for gonadal cell divisions.  相似文献   

4.
The nonrandom segregation of organelles to the appropriate compartment during asymmetric cellular division is observed in many developing systems. Caenorhabditis elegans spermatogenesis is an excellent system to address this issue genetically. The proper progression of spermatogenesis requires specialized intracellular organelles, the fibrous body-membranous organelle complexes (FB-MOs). The FB-MOs play a critical role in cytoplasmic partitioning during the asymmetric cellular division associated with sperm meiosis II. Here we show that spe-5 mutants contain defective, vacuolated FB-MOs and usually arrest spermatogenesis at the spermatocyte stage. Occasionally, spe-5 mutants containing defective FB-MOs will form spermatids that are capable of differentiating into functional spermatozoa. These spe-5 spermatids exhibit an incomplete penetrance for tubulin mis-segregation during the second meiotic division. In addition to morphological and FB-MO segregation defects, all six spe-5 mutants are cold-sensitive, exhibiting a more penetrant sterile phenotype at 16° than 25°. This cold sensitivity could be an inherent property of FB-MO morphogenesis.  相似文献   

5.
R. Francis  M. K. Barton  J. Kimble    T. Schedl 《Genetics》1995,139(2):579-606
We have characterized 31 mutations in the gld-1 (defective in germline development) gene of Caenorhabditis elegans. In gld-1(null) hermaphrodites, oogenesis is abolished and a germline tumor forms where oocyte development would normally occur. By contrast, gld-1(null) males are unaffected. The hermaphrodite germline tumor appears to derive from germ cells that enter the meiotic pathway normally but then exit pachytene and return to the mitotic cycle. Certain gld-1 partial loss-of-function mutations also abolish oogenesis, but germ cells arrest in pachytene rather than returning to mitosis. Our results indicate that gld-1 is a tumor suppressor gene required for oocyte development. The tumorous phenotype suggests that gld-1(+) may function to negatively regulate proliferation during meiotic prophase and/or act to direct progression through meiotic prophase. We also show that gld-1(+) has an additional nonessential role in germline sex determination: promotion of hermaphrodite spermatogenesis. This function of gld-1 is inferred from a haplo-insufficient phenotype and from the properties of gain-of-function gld-1 mutations that cause alterations in the sexual identity of germ cells.  相似文献   

6.
Caenorhabditis elegans spermatozoa move by crawling. Their motility requires thin cytoskeletal filaments assembled from a unique cytoskeletal protein, the major sperm protein (MSP). During normal sperm development the MSP is segregated to developing sperm by assembly into filaments that form a paracrystalline array in a transient organelle, the fibrous body-membranous organelle. Mutations in the spe-6 gene cause sterility because they lead to defective primary spermatocytes that do not form spermatids. In these mutant spermatocytes the MSP fails to assemble into fibrous body filaments. Instead, the unassembled MSP distributes throughout the cytoplasm and nucleus. Thus, the spe-6 gene product is necessary for normal MSP localization and assembly during sperm development. In addition to their MSP assembly defect, spe-6 mutant spermatocytes arrest meiosis at diakinesis although their spindle pole bodies still replicate and separate. This results in spermatocytes with four half-spindles surrounding condensed, but unsegregated, chromosomes. All four spe-6 alleles, as well as a chromosome III deficiency that deletes the spe-6 gene, fail to complement two small overlapping chromosome IV deficiencies, eDf18 and eDf19. This non-allele-specific second site non-complementation suggests a concentration-dependent interaction between the spe-6 gene product and products of the gene(s) under eDf18 and eDf19, which include a cluster of sperm-specific genes. Since MSP filament assembly is highly concentration-dependent in vitro, the non-complementation might be expected if the sperm-specific gene products under eDf18 and eDf19 were needed together with the spe-6 gene product to promote MSP assembly.  相似文献   

7.
T. Schedl  J. Kimble 《Genetics》1988,119(1):43-61
This paper describes the isolation and characterization of 16 mutations in the germ-line sex determination gene fog-2 (fog for feminization of the germ line). In the nematode Caenorhabditis elegans there are normally two sexes, self-fertilizing hermaphrodites (XX) and males (XO). Wild-type XX animals are hermaphrodite in the germ line (spermatogenesis followed by oogenesis), and female in the soma. fog-2 loss-of-function mutations transform XX animals into females while XO animals are unaffected. Thus, wild-type fog-2 is necessary for spermatogenesis in hermaphrodites but not males. The fem genes and fog-1 are each essential for specification of spermatogenesis in both XX and XO animals. fog-2 acts as a positive regulator of the fem genes and fog-1. The tra-2 and tra-3 genes act as negative regulators of the fem genes and fog-1 to allow oogenesis. Two models are discussed for how fog-2 might positively regulate the fem genes and fog-1 to permit spermatogenesis; fog-2 may act as a negative regulator of tra-2 and tra-3, or fog-2 may act positively on the fem genes and fog-1 rendering them insensitive to the negative action of tra-2 and tra-3.  相似文献   

8.
The distal tip cell (DTC) regulates the proliferation or differentiation choice in the Caenorhabditis elegans germline by an inductive mechanism. Cell signaling requires a putative receptor in the germline, encoded by the glp-1 gene, and a putative signal from the DTC, encoded by the lag-2 gene. Both glp-1 and lag-2 belong to multigene gene families whose members are essential for cell signaling during development of various tissues in insects and vertebrates as well as C. elegans. Relatively little is known about how these pathways regulate cell fate choice. To identify additional genes involved in the glp-1 signaling pathway, we carried out screens for genetic enhancers of glp-1. We recovered mutations in five new genes, named ego (enhancer of glp-1), and two previously identified genes, lag-1 and glp-4, that strongly enhance a weak glp-1 loss-of-function phenotype in the germline. Ego mutations cause multiple phenotypes consistent with the idea that gene activity is required for more than one aspect of germline and, in some cases, somatic development. Based on genetic experiments, glp-1 appears to act upstream of ego-1 and ego-3. We discuss the possible functional relationships among these genes in light of their phenotypes and interactions with glp-1.  相似文献   

9.
Genetic Analysis of Defecation in Caenorhabditis Elegans   总被引:7,自引:2,他引:7       下载免费PDF全文
J. H. Thomas 《Genetics》1990,124(4):855-872
Defecation in the nematode Caenorhabditis elegans is achieved by a cyclical stereotyped motor program. The first step in each cycle is contraction of a set of posterior body muscles (pBoc), followed by contraction of a set of anterior body muscles (aBoc), and finally contraction of specialized anal muscles that open the anus and expel intestinal contents (Exp). By testing existing behavioral mutants and screening for new mutants that become constipated due to defects in defecation, I have identified 18 genes that are involved in defecation. Mutations in 16 of these genes affect specific parts of the motor program: mutations in two genes specifically affect the pBoc step; mutations in four genes affect the aBoc step; mutations in four genes affect the Exp step; and mutations in six genes affect both aBoc and Exp. Mutations in two other genes affect the defecation cycle period but have a normal motor program. Sensory inputs that regulate the cycle timing in the wild type are also described. On the basis of the phenotypes of the defecation mutants and of double mutants, I suggest a formal genetic pathway for the control of the defecation motor program.  相似文献   

10.
M. K. Barton  J. Kimble 《Genetics》1990,125(1):29-39
In wild-type Caenorhabditis elegans, the XO male germ line makes only sperm and the XX hermaphrodite germ line makes sperm and then oocytes. In contrast, the germ line of either a male or a hermaphrodite carrying a mutation of the fog-1 (feminization of the germ line) locus is sexually transformed: cells that would normally make sperm differentiate as oocytes. However, the somatic tissues of fog-1 mutants remain unaffected. All fog-1 alleles identified confer the same phenotype. The fog-1 mutations appear to reduce fog-1 function, indicating that the wild-type fog-1 product is required for specification of a germ cell as a spermatocyte. Two lines of evidence indicate that a germ cell is determined for sex at about the same time that it enters meiosis. These include the fog-1 temperature sensitive period, which coincides in each sex with first entry into meiosis, and the phenotype of a fog-1; glp-1 double mutant. Experiments with double mutants show that fog-1 is epistatic to mutations in all other sex-determining genes tested. These results lead to the conclusion that fog-1 acts at the same level as the fem genes at the end of the sex determination pathway to specify germ cells as sperm.  相似文献   

11.
The let-23 gene, which encodes a putative tyrosine kinase of the epidermal growth factor (EGF) receptor subfamily, has multiple functions during Caenorhabditis elegans development. We show that let-23 function is required for vulval precursor cells (VPCs) to respond to the signal that induces vulval differentiation: a complete loss of let-23 function results in no induction. However, some let-23 mutations that genetically reduce but do not eliminate let-23 function result in VPCs apparently hypersensitive to inductive signal: as many as five of six VPCs can adopt vulval fates, in contrast to the three that normally do. These results suggest that the let-23 receptor tyrosine kinase controls two opposing pathways, one that stimulates vulval differentiation and another that negatively regulates vulval differentiation. Furthermore, analysis of 16 new let-23 mutations indicates that the let-23 kinase functions in at least five tissues. Since various let-23 mutant phenotypes can be obtained independently, the let-23 gene is likely to have tissue-specific functions.  相似文献   

12.
The Ncl-1 Gene and Genetic Mosaics of Caenorhabditis Elegans   总被引:2,自引:0,他引:2       下载免费PDF全文
A ncl-1 mutation results in enlarged nucleoli, which can be detected in nearly all cells of living animals by Nomarski microscopy. Spontaneous mitotic loss of a ncl-1(+)-containing free duplication in an otherwise homozygous ncl-1 mutant animal results in mosaicism for ncl-1 expression, and the patterns of mosaicism lead us to conclude that ncl-1 acts cell autonomously. The probability of mitotic loss of the duplication sDp3 is approximately constant over many cell divisions. About 60% of the losses of sDp3 at the first embryonic cell division involve nondisjunction. Frequencies of mitotic loss of different ncl-1(+)-bearing free duplications varied over a 200-fold range. The frequencies of mitotic loss were enhanced by a chromosomal him-10 mutation. We have used ncl-1 as a cell autonomous marker in the mosaic analysis of dpy-1 and lin-37. The focus of action of dpy-1 is in hypodermis. A mutation in lin-37 combined with a mutation in another gene results in a synthetic multivulva phenotype. We show that lin-37 acts cell nonautonomously and propose that it plays a role, along with the previously studied gene lin-15, in the generation of an intercellular signal by hyp7 that represses vulval development.  相似文献   

13.
D. G. Morton  J. M. Roos    K. J. Kemphues 《Genetics》1992,130(4):771-790
Specification of some cell fates in the early Caenorhabditis elegans embryo is mediated by cytoplasmic localization under control of the maternal genome. Using nine newly isolated mutations, and two existing mutations, we have analyzed the role of the maternally expressed gene par-4 in cytoplasmic localization. We recovered seven new par-4 alleles in screens for maternal effect lethal mutations that result in failure to differentiate intestinal cells. Two additional par-4 mutations were identified in noncomplementation screens using strains with a high frequency of transposon mobility. All 11 mutations cause defects early in development of embryos produced by homozygous mutant mothers. Analysis with a deficiency in the region indicates that it33 is a strong loss-of-function mutation. par-4(it33) terminal stage embryos contain many cells, but show no morphogenesis, and are lacking intestinal cells. Temperature shifts with the it57ts allele suggest that the critical period for both intestinal differentiation and embryo viability begins during oogenesis, about 1.5 hr before fertilization, and ends before the four-cell stage. We propose that the primary function of the par-4 gene is to act as part of a maternally encoded system for cytoplasmic localization in the first cell cycle, with par-4 playing a particularly important role in the determination of intestine. Analysis of a par-4; par-2 double mutant suggests that par-4 and par-2 gene products interact in this system.  相似文献   

14.
J. Ahnn  A. Fire 《Genetics》1994,137(2):483-498
We have used available chromosomal deficiencies to screen for genetic loci whose zygotic expression is required for formation of body-wall muscle cells during embryogenesis in Caenorhabditis elegans. To test for muscle cell differentiation we have assayed for both contractile function and the expression of muscle-specific structural proteins. Monoclonal antibodies directed against two myosin heavy chain isoforms, the products of the unc-54 and myo-3 genes, were used to detect body-wall muscle differentiation. We have screened 77 deficiencies, covering approximately 72% of the genome. Deficiency homozygotes in most cases stain with antibodies to the body-wall muscle myosins and in many cases muscle contractile function is observed. We have identified two regions showing distinct defects in myosin heavy chain gene expression. Embryos homozygous for deficiencies removing the left tip of chromosome V fail to accumulate the myo-3 and unc-54 products, but express antigens characteristic of hypodermal, pharyngeal and neural development. Embryos lacking a large region on chromosome III accumulate the unc-54 product but not the myo-3 product. We conclude that there exist only a small number of loci whose zygotic expression is uniquely required for adoption of a muscle cell fate.  相似文献   

15.
16.
We describe a general strategy for the genetic mapping in parallel of multiple restriction fragment length polymorphism (RFLP) loci. This approach allows the systematic identification for cloning of physical genetic loci within about 100 kb of any gene in Caenorhabditis elegans. We have used this strategy of parallel RFLP mapping to clone the heterochronic gene lin-14, which controls the timing and sequence of many C. elegans postembryonic developmental events. We found that of about 400 polymorphic loci in the C. elegans genome associated with the Tc1 family of repetitive elements, six are within 0.3 map unit of lin-14. The three closest lin-14-linked Tc1-containing restriction fragments were cloned and used to identify by hybridization an 830-kb region of contiguous cloned DNA fragments assembled from cosmid and yeast artificial chromosome libraries. A lin-14 intragenic recombinant that separated a previously cryptic lin-14 semidominant mutation from a cis-acting lin-14 suppressor mutation was used to map the location of the lin-14 gene to a 25-kb region of this 830-kb contig. DNA probes from this region detected lin-14 allele-specific DNA alterations and a lin-14 mRNA. Two lin-14 semi-dominant alleles, which cause temporally inappropriate lin-14 gene activity and lead to the reiterated expression of specific early developmental events, were shown to delete sequences from the lin-14 gene and mRNA. These deletions may define cis-acting sequences responsible for the temporal regulation of lin-14.  相似文献   

17.
S. E. Baird  S. W. Emmons 《Genetics》1990,126(2):335-344
We have identified eight mutations that define at least five terminal differentiation genes (ram genes) whose products are required during the extension of the male-specific ray sensilla in Caenorhabditis elegans. ram gene mutations result in morphological abnormalities in the sensory rays but do not appear to interfere with ray functions. A similar ray morphology phenotype was observed in males harboring mutations in three previously defined genes, dpy-11, dpy-18 and sqt-1, that also affect body shape. One of these genes, sqt-1, is known to encode a collagen. Mutations in different ram genes failed to complement, from which we infer that their gene products functionally interact. For one ram gene, failure to complement was shown to result from haploinsufficiency. Intergenic noncomplementation did not extend to the body morphology genes. The temperature-sensitive periods of both ram and body morphology mutations corresponded to the period of development in which ray extension occurs. We propose that ram gene products act together in a critical interaction between the rays and the cuticle required for wild-type ray morphology.  相似文献   

18.
E. M. Maine  J. Kimble 《Genetics》1993,135(4):1011-1022
The glp-1 gene is essential for two cell interactions that control cell fate in Caenorhabditis elegans: induction of anterior pharynx in the embryo and induction of mitotic proliferation in the germ line. To identify other genes involved in these cell interactions, we have isolated suppressors of two temperature sensitive alleles of glp-1. Each of 14 recessive suppressors rescues both embryonic and germline glp-1(ts) defects. These suppressors are extragenic and define a set of six genes designated sog, for suppressor of glp-1. Suppression of glp-1 is the only obvious phenotype associated with sog mutations. Mutations in different sog genes show allele-specific intergenic noncomplementation, suggesting that the sog gene products may interact. In addition, we have analyzed a semidominant mutation that suppresses only the glp-1 germline phenotype and has a conditional feminized phenotype of its own. None of the suppressors rescues a glp-1 null mutation and therefore they do not bypass a requirement for glp-1. Distal tip cell function remains necessary for germline proliferation in suppressed animals. These suppressor mutations identify genes that may encode other components of the glp-1 mediated cell-signaling pathway or regulate glp-1 expression.  相似文献   

19.
20.
P. Chanal  M. Labouesse 《Genetics》1997,146(1):207-226
The Caenorhabditis elegans lin-26 gene is expressed in all nonneuronal ectodermal cells. To identify genes required to specify the fates of ectodermal cells, we have conducted screens designed to identify loci whose zygotic function would be required for normal lin-26 expression. First, we examined 90 deficiencies covering 75% of the genome; second, we examined the progeny of 3600 genomes after EMS mutagenesis. We identified six loci that appear to be required for normal lin-26 expression. We argue that the deficiency eDf19 deletes a gene involved in specifying hypodermal cell fates. The genes emb-29 (previously known) and ale-1 (newly found) could be involved in a cell cycle function and/or in specifying the fates of some precursors within different lineages that generate hypodermal cells and nonectodermal cells. We argue that the overlapping deficiencies qDf7, qDf8 and qDf9 delete a gene required to limit the number of nonneuronal ectodermal cells. We suggest that the deficiencies ozDf2, itDf2 and nDf42 delete genes required, directly or indirectly, to repress lin-26 expression in cells that normally do not express lin-26. We discuss the implications of these findings concerning the generation of the ectoderm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号