首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Folding and stability of trp aporepressor from Escherichia coli   总被引:12,自引:0,他引:12  
Equilibrium and kinetic studies of the urea-induced unfolding of trp aporepressor from Escherichia coli were performed to probe the folding mechanism of this intertwined, dimeric protein. The equilibrium unfolding transitions at pH 7.6 and 25 degrees C monitored by difference absorbance, fluorescence, and circular dichroism spectroscopy are coincident within experimental error. All three transitions are well described by a two-state model involving the native dimer and the unfolded monomer; the free energy of folding in the absence of denaturant and under standard-state conditions is estimated to be 23.3 +/- 0.9 kcal/mol of dimer. The midpoint of the equilibrium unfolding transition increases with increasing protein concentration in the manner expected from the law of mass action for the two-state model. We find no evidence for stable folding intermediates. Kinetic studies reveal that unfolding is governed by a single first-order reaction whose relaxation time decreases exponentially with increasing urea concentration and also decreases with increasing protein concentration in the transition zone. Refolding involves at least three phases that depend on both the protein concentration and the final urea concentration in a complex manner. The relaxation time of the slowest of these refolding phases is identical with that for the single phase in unfolding in the transition zone, consistent with the results expected for a reaction that is kinetically reversible. The two faster refolding phases are presumed to arise from slow isomerization reactions in the unfolded form and reflect parallel folding channels.  相似文献   

2.
We have examined the interaction of the trp repressor from Escherichia coli with a 20 base-pair synthetic operator. Nonspecific binding was relatively strong (Kd = 2 microM), but only weakly sensitive to the concentration of added salt [d log Kd)/(d log [Na]) = -1). 1H-NMR studies indicate that the structure of the repressor is not greatly altered on forming the complex, and that few if any of the lysine and arginine residues make direct contact with the DNA. However, the mobility of one of the two tyrosine residues is significantly decreased in the complex. The repressor makes close contact with the major grooves of the operator such that the base protons are broadened much more than expected on the basis of increased correlation time. There are large, differential changes in chemical shifts of the imino protons on forming the complex, as well as changes in the rate constants for exchange. The fraying of the ends is greatly diminished, consistent with a target size of about 20 base-pairs. The effects of the repressor on the NMR spectra and relaxation rate constants can be interpreted as a change in the conformation of the operator, possibly a kinking in the centre of the molecule.  相似文献   

3.
We have employed equilibrium dialysis to help study the mechanism by which the unliganded Escherichia coli trp aporepressor is activated by L-tryptophan to the liganded trp repressor. By measuring the relative affinity of L-tryptophan and various tryptophan analogues for the co-repressor's binding site, we have estimated the extent to which each of the functional groups of L-tryptophan contributes to the liganding process and discuss their role in the context of the crystal structures of the trp repressor and aporepressor. We have found that the indole ring and alpha carboxyl group of L-tryptophan are mainly responsible for its affinity to the aporepressor. The alpha amino group, however, has a small negative contribution to the affinity of L-tryptophan for the aporepressor which may be associated with its essential role in operator-specific binding.  相似文献   

4.
We have examined the interaction of the Escherichia coli trp aporepressor with its ligand, L-tryptophan, using both equilibrium dialysis and flow dialysis methods. Results obtained by the two procedures were equivalent and indicate that the trp aporepressor binds L-tryptophan with an equilibrium dissociation constant (Kd) of 40 microM at 25 degrees C under standard binding assay conditions (10 mM potassium phosphate, pH 7.4, 0.2 M potassium chloride, 0.1 mM EDTA, 5% glycerol). Molecular sizing of the purified trp aporepressor shows that in the absence of ligand the regulatory protein exists as a dimeric species with greater than 99% purity and an apparent molecular weight of 30,000. Under the storage and assay conditions used, the dimer appears quite stable, and essentially no monomer or higher multimeric species are detected. Analysis of binding data by Scatchard and direct linear plot methods shows two identical and independent ligand-binding sites/native trp aporepressor dimer. When examined as a function of temperature, L-tryptophan binding by trp aporepressor varied over 7-fold (Kd = 28 microM at 6.5 degrees C to Kd = 217 microM at 40 degrees C). At the optimal growth temperature for E. coli (37 degrees C), the dissociation constant was 160 microM for the ligand, L-tryptophan. From the relationship between temperature and L-tryptophan binding by trp aporepressor, the apparent enthalpy change delta H = -10.6 +/- 0.6 kcal mol-1 and the apparent entropy change delta S = -17 +/- 2 cal degree-1 mol-1 were determined.  相似文献   

5.
Availability of the three-dimensional structure of the trp repressor of Escherichia coli and a large group of repressor mutants has permitted the identification and analysis of mutants with substitutions of the amino acid residues that form the tryptophan binding pocket. Mutant aporepressors selected for study were overproduced using a multicopy expression plasmid. Equilibrium dialysis with 14C-tryptophan and purified mutant and wild type aporepressors was employed to determine tryptophan binding constants. The results obtained indicate that replacement of threonine 44 by methionine (TM44) or arginine 84 by histidine (RH84) lowers the affinity for tryptophan approximately two- and four-fold, respectively. Replacement of arginine 54 by histidine (RH84) or glycine 85 by arginine (GR85) results in complete loss of tryptophan binding activity. Purified mutant and wild type aporepressors were used in in vitro heterodimer studies. The trp repressor of E. coli functions as a stable dimer. A large number of trp repressor mutants produces defective repressors that are transdominant to the wild type repressor in vivo. The transdominance presumably results from the formation of inactive or slightly active heterodimers between the mutant and wild type polypeptide subunits. An in vitro assay was developed to detect and measure heterodimer formation. Heterodimer formation was thermally induced, and heterodimers were separated on nondenaturing polyacrylamide gels. Aporepressors readily formed heterodimers upon treatment at 65 degrees C for 3 minutes. Heterodimer formation was significantly retarded by the presence of the corepressor, L-tryptophan. Indole-3-propionic acid, 5-methyl tryptophan, and other analogs of tryptophan, as well as indole, also inhibited heterodimer formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Functional inferences from crystals of Escherichia coli trp repressor   总被引:2,自引:0,他引:2  
We have reproducibly grown crystals of L-tryptophan . trp aporepressor and indole-3-propionate . trp aporepressor complexes from Escherichia coli which are suitable for x-ray diffraction analysis. The active repressor, L-tryptophan . aporepressor, crystallizes in both trigonal (P3(1)21 or P3(2)21) and tetragonal (P4(1)22 or P4(3)22) forms which diffract to at least 2.0 and 2.5 A, respectively. The trigonal form has one-half of the functional dimer/asymmetric unit; therefore, the trp repressor molecule has an axis of 2-fold rotational symmetry corresponding to the lattice dyad. The inactive complex, indole-3-propionate . aporepressor, or "pseudorepressor," forms tetragonal crystals that also diffract to at least 2.5 A and are isomorphous to those of the active repressor. Slight differences between their diffraction patterns indicate modest structural differences between active and inactive complexes that are presumably mediated by the alpha-amino group of L-tryptophan and account for operator-specific binding.  相似文献   

7.
Sequence-specific 1H NMR assignments are reported for the active L-tryptophan-bound form of Escherichia coli trp repressor. The repressor is a symmetric dimer of 107 residues per monomer; thus at 25 kDa, this is the largest protein for which such detailed sequence-specific assignments have been made. At this molecular mass the broad line widths of the NMR resonances preclude the use of assignment methods based on 1H-1H scalar coupling. Our assignment strategy centers on two-dimensional nuclear Overhauser spectroscopy (NOESY) of a series of selectively deuterated repressor analogues. A new methodology was developed for analysis of the spectra on the basis of the effects of selective deuteration on cross-peak intensities in the NOESY spectra. A total of 90% of the backbone amide protons have been assigned, and 70% of the alpha and side-chain proton resonances are assigned. The local secondary structure was calculated from sequential and medium-range backbone NOEs with the double-iterated Kalman filter method [Altman, R. B., & Jardetzky, O. (1989) Methods Enzymol. 177, 218-246]. The secondary structure agrees with that of the crystal structure [Schevitz, R., Otwinowski, Z., Joachimiak, A., Lawson, C. L., & Sigler, P. B. (1985) Nature 317, 782], except that the solution state is somewhat more disordered in the DNA binding region and in the N-terminal region of the first alpha-helix. Since the repressor is a symmetric dimer, long-range intersubunit NOEs were distinguished from intrasubunit interactions by formation of heterodimers between two appropriate selectively deuterated proteins and comparison of the resulting NOESY spectrum with that of each selectively deuterated homodimer. Thus, from spectra of three heterodimers, long-range NOEs between eight pairs of residues were identified as intersubunit NOEs, and two additional long-range intrasubunits NOEs were assigned.  相似文献   

8.
The mechanisms of the requirement of glucose for steroidogenesis were investigated by monitoring the uptake of the glucose analogue 2-deoxy-D-glucose by rat testis and tumour Leydig cells. The characteristics of glucose transport in both of these cell types were found to resemble those of the facilitated-diffusion systems for glucose found in most other mammalian cells. The Leydig cells took up 2-deoxy-D-glucose but not L-glucose, and the uptake was inhibited by both cytochalasin B and forskolin. In the presence of luteinizing hormone, the rate of 2-deoxy-D-glucose uptake by both cell types was increased by approx. 50%. In addition to D-glucose, it was shown that the Leydig cells could also utilize 3-hydroxybutyrate or glutamine to maintain steroidogenesis.  相似文献   

9.
The Escherichia coli trp repressor binds to the trp operator in the presence of tryptophan, thereby inhibiting tryptophan biosynthesis. Tryptophan analogues lacking the alpha-amino group act as inducers of trp operon expression. We have used one- and two-dimensional 1H-NMR spectroscopy to compare the binding to the repressor of the corepressors L-tryptophan, D-tryptophan and 5-methyl-DL-tryptophan with that of the inducer indole-3-propionic acid. We have determined the chemical shifts of the indole ring protons of the ligands when bound to the protein, principally by magnetization-transfer experiments. The chemical shifts of the indole NH and C4 protons differ between corepressors and inducer. At the same time, the pattern of intermolecular NOE between protons of the protein and those of the ligand also differ between the two classes of ligand. These two lines of evidence indicate that corepressors and inducers bind differently in the binding site, and the evidence suggests that the orientation of the indole ring in the binding site differs by approximately 180 degrees between the two kinds of ligand. This is in contrast to a previous solution study [Lane, A.N. (1986) Eur. J. Biochem. 157, 405-413], but consistent with recent X-ray crystallographic work [Lawson, C.L. & Sigler, P.B. (1988) Nature 333, 869-871]. D-Tryptophan and 5-methyltryptophan, which are more effective corepressors than L-tryptophan, bind similarly to L-tryptophan. The indole ring of D-tryptophan appears to bind in essentially the same orientation as that of the L isomer. There are, however, some differences in chemical shifts and NOE for 5-methyltryptophan, which indicate that there are significant differences between the two corepressors L-tryptophan and 5-methyltryptophan in the orientation of the indole ring within the binding site.  相似文献   

10.
A subset of the spin systems assigned in the 1H NMR spectrum of the trp repressor in the first paper in this series (our penultimate preceding paper in this journal) can be identified as surface or buried residues on the basis of four independent types of measurement: selective spin-lattice relaxation times; the dependence of line widths on temperature and the concentration of manganous ion; fluorescence quenching; and titration behaviour. Criteria are developed for distinguishing surface and buried residues. The significance for the function of DNA binding proteins is discussed.  相似文献   

11.
The binding of the corepressor, L-tryptophan, and an inducer, indole propanoic acid, to the trp repressor from Escherichia coli was studied by absorbance, fluorescence, circular dichroic and proton NMR spectroscopy. The two ligands bind to the same site on the repressor in the same orientation; they are molecular competitors. The binding site is of relatively low polarity and contains at least one methyl group that lies 0.3 nm over the indole moiety near the C5 proton of the bound ligand, and an aromatic residue, probably tyrosine. The dissociation constant was determined as a function of temperature and pH. At 25 degrees C in 0.1 M phosphate buffer, pH 7.6, the dissociation constant is 18 +/- 2 microM for both ligands. In the same buffer system, the van't Hoff enthalpy for dissociation is 35.5 +/- 1 kJ/mol for tryptophan, and 30.5 +/- 2 kJ/mol for indole propanoic acid. The affinity of the repressor for indole propanoic acid is independent of pH in the range 7 less than 10, but decreases four fold for tryptophan in the same range. The amino group of tryptophan makes a significant contribution to its binding affinity. Difference NMR spectra showed that there are few changes of protein resonances on binding ligands. The NMR signals of the bound resonances were assigned by difference and nuclear Overhauser effect spectroscopy. The properties of the bound resonances are consistent with the ligands being largely immobilised within the binding site. The difference spectra, and the known functional differences of the two ligands, suggest that tryptophan induces a slightly different conformational state in the repressor from that induced by indole propanoic acid. There is no evidence for a global transition. The rate of dissociation of ligands is relatively large, being in the range 400-600 s-1.  相似文献   

12.
The relative mobility of residues in the trp repressor of Escherichia coli has been examined in the absence and presence of the corepressor L-tryptophan by one- and two-dimensional 1H NMR. A comparison of relative intensities of cross peaks in NOESY and COSY spectra allowed a rigid Tyr and a mobile Tyr residue, three mobile Ser residues and three mobile Lys residues to be detected. The two Tyr residues were assigned by selective nitration with tetranitromethane. The singly nitrated molecule (on Tyr7) binds the trp operator with an affinity close to that of the unmodified repressor. Measurements of the intraring cross-relaxation rate constant as a function of temperature for Tyr7 shows the presence of considerable internal motion on the subnanosecond time scale in the flexible N-terminal arm. The order parameter, S2, characterising the motion is 0.35, which increases to about 0.5 in the presence of Trp. Trp decreases both the amplitude of the motion and the rate of the motion. At least three of the six Ser residues of the trp repressor have greater mobility than expected for a rigid body, and two of the Ser residues are sensitive to the presence of Trp. The more mobile Ser residues are probably those on the N-terminal arm and the C-terminal sequence. These results complement the single-crystal X-ray diffraction studies for which the electron density of the first ten and last three amino acid residues is weak. The solution data are consistent with proposals that the flexible N-terminal arm of the trp repressor makes important contacts with the DNA.  相似文献   

13.
Mutants of the dimeric Escherichia coli trp aporepressor are constructed by replacement of the two tryptophan residues in each subunit in order to assess the effects on equilibrium and kinetic fluorescence properties of the folding reaction. The three kinetic phases detected by intrinsic tryptophan fluorescence in refolding of the wild-type aporepressor are also observed in folding of both Trp 19 to Phe and Trp 99 to Phe single mutants, demonstrating that these phases correspond to global rather than local conformational changes. Comparison of equilibrium fluorescence (Royer, C.A., Mann, C.J., & Matthews, C.R., 1993, Protein Sci. 2, 1844-1852) and circular dichroism transition curves induced by urea shows that replacement of either Trp 19 or Trp 99 results in noncoincident behavior. Unlike the wild-type protein (Gittelman, M.S. & Matthews, C.R., 1990, Biochemistry 29, 7011-7020), tertiary and/or quaternary structures are disrupted at lower denaturant concentration than is secondary structure. The equilibrium results can be interpreted in terms of enhancement in the population of a monomeric folding intermediate in which the lone tryptophan residue is highly exposed to solvent, but in which substantial secondary structure is retained. The location of both mutations at the interface between the two subunits (Zhang, R.G., et al., 1987, Nature 327, 591-597) provides a simple explanation for this phenomenon.  相似文献   

14.
The probable secondary structure content of the trp repressor from Escherichia coli has been inferred from NMR and circular dichroic measurements; the results are compared with those of prediction algorithms. 70% of the amide protons have exchange rate constants orders of magnitude smaller than the intrinsic rate constants, identifying them as participating in hydrogen bonds. The exchange rate constants fall into two distinct classes, one having half-lives of 20 min and the other more than 24 h. The latter class, consisting of 50% of all amide protons, indicates a stable core. The exchange data are consistent with circular dichroism and predictions that suggest that about 55% of the peptides from alpha helix, and 20% form beta sheets and turns. The NMR spectrum further indicates that there is little beta sheet, suggesting that the secondary structure class is alpha.  相似文献   

15.
The results of two 30-ps molecular dynamics simulations of the trp repressor and trp aporepressor proteins are presented in this paper. The simulations were obtained using the AMBER molecular mechanical force field and in both simulations a 6-A shell of TIP3P waters surrounded the proteins. The trp repressor protein is a DNA-binding regulatory protein and it utilizes a helix-turn-helix (D helix-turn-E helix) motif to interact with DNA. The trp aporepressor, lacking two molecules of the L-tryptophan corepressor, cannot bind specifically to DNA. Our simulations show that the N- and C-termini and the residues in and near the helix-turn-helix motifs are the most mobile regions of the proteins, in agreement with the X-ray crystallographic studies. Our simulations also find increased mobility of the residues in the turn-D helix-turn regions of the proteins. We find the average distance separating the DNA-binding motifs to be larger in the repressor as compared to the aporepressor. In addition to examining the protein residue fluctuations and deviations with respect to X-ray structures, we have also focused on backbone dihedral angles and corepressor hydrogen-bonding patterns in this paper.  相似文献   

16.
High-resolution proton nuclear magnetic resonance spectra of the trp repressor of Escherichia coli under various conditions are reported and analysed. The spectrum of the denatured state agrees with that predicted from the amino acid composition, with the exception of the two histidine residues, which have different chemical shifts although they titrate normally. The spectrum of the native protein shows the presence of extensive secondary and tertiary structure. Using information from chemical shifts, numbers of protons, titration behaviour, homonuclear chemical-shift-correlated spectroscopy and nuclear Overhauser enhancement correlated spectroscopy, most of the aromatic protons have been assigned to residue type. Further, about 30% of the aliphatic protons have been assigned to residue type by two-dimensional spectroscopy. Nuclear Overhauser enhancements establish that high-field methyl groups belonging to a valine residue lie directly over an aromatic ring.  相似文献   

17.
We have determined the effect of the tryptophan (trp) repressor from Escherichia coli on the structure and dynamics of dA20dT20. The structure was determined using time-dependent nuclear Overhauser effects and spin-lattice relaxation times. The deoxyribose conformation is near C3' endo for the thymine residues, and a mixture of about 30% C3' endo and 70% C2' endo for the adenine residues. The glycosidic torsion angles are -50 degrees for T and -60 degrees for A. The roll is 20 degrees and the propellor twist is about 29 degrees. The conformation is consistent with recent calculations (Rao, K. and Kollman, P.A. (1985) J. Am. Chem. Soc. 107, 1507-1511). The rate constant for exchange of the imino protons is similar to that usually found for AT base-pairs, with an activation energy of 20 +/- 2 kcal/mol, and an activation entropy of 17 +/- 7 cal/mol per K. The repressor greatly retards the exchange of imino protons, and the activation energy increases to 38 kcal/mol. There are small changes in the structure of the DNA on forming the complex, with the adenine and thymidine residues becoming more similar in conformation.  相似文献   

18.
The arginine repressor of Escherichia coli.   总被引:5,自引:0,他引:5       下载免费PDF全文
This review tells the story of the arginine repressor of Escherichia coli from the time of its discovery in the 1950s until the present. It describes how the research progressed through physiological, genetic, and biochemical phases and how the nature of the repressor and its interaction with its target sites were unraveled. The studies of the repression of arginine biosynthesis revealed unique features at every level of the investigations. In the early phase of the work they showed that the genes controlled by the arginine repressor were scattered over the linkage map and were not united, as in other cases, in a single operon. This led to the concept of the regulon as a physiological unit of regulation. It was also shown that different alleles of the arginine repressor could result in either inhibition of enzyme formation, as in E. coli K-12, or in stimulation of enzyme formation, as in E. coli B. Later it was shown that the arginine repressor is a hexamer, whereas other repressors of biosynthetic pathways are dimers. As a consequence the arginine repressor binds to two palindromic sites rather than to one. It was found that the arginine repressor not only acts in the repression of enzyme synthesis but also is required for the resolution of plasmid multimers to monomers, a completely unrelated function. Finally, the arginine repressor does not possess characteristic structural features seen in other prokaryotic repressors, such as a helix-turn-helix motif or an antiparallel beta-sheet motif. The unique features have sustained continuous interest in the arginine repressor and have made it a challenging subject of investigation.  相似文献   

19.
This study represents the first physicochemical analysis of the recently cloned methionine repressor protein (Met aporepressor) from Escherichia coli. Infrared spectrometry was used to investigate the secondary structure and the hydrogen-deuterium exchange behavior of the E. coli Met aporepressor. The secondary structure of the native bacterial protein was derived by analysis of the amide I mode. The amide I band contour was found to consist of five major component bands (at 1625, 1639, 1653, 1665, and 1676 cm-1) which reflect the presence of various substructures. The relative areas of these component bands are consistent with a high alpha-helical content of the peptide chain secondary structure in solution (43%) and a small amount of beta-sheet structure (7%). The remaining substructure is assigned to turns (10%) and to unordered (or less ordered) structures (40%). The temperature dependence of the infrared spectra of native Met aporepressor in D2O medium over the temperature interval 20-80 degrees C indicates that there are two discrete thermal events: the first thermal event, centered at 42 degrees C, is associated with the hydrogen-deuterium exchange of the hard-to-exchange alpha-helical peptide bonds accompanied by a partial denaturation of the protein, while the second event, centered around 50 degrees C, represents the irreversible thermal denaturation of the protein.  相似文献   

20.
The denaturation of the trp repressor from Escherichia coli has been studied by fluorescence, circular dichroism and proton magnetic resonance spectroscopy. The dependences of the fluorescence emission of the two tryptophan residues on the concentration of urea are not identical. The dependence of the quenching of tryptophan fluorescence by iodide as a function of urea concentration also rules out a two-state transition. The circular dichroism at 222 nm decreases in two phases as urea is added. Normalised curves for different residues observed by 1H NMR also do not coincide, and require the presence of at least one stable intermediate. Analysis of the dependence of the denaturation curves on the concentration of protein indicate that the first transition is a partial unfolding of the dimeric repressor, resulting in a loss of about 25% of the helical content. The second transition is the dissociation and unfolding of the partially unfolded dimer. At high concentrations of protein (500 microM) about 73% of the repressor exists as the intermediate in 4 M urea. The apparent dissociation constant is about 10(-4) M; the subunits are probably strongly stabilised by the subunit interaction. The native repressor is stable up to at least 70 degrees C, whereas the intermediate formed at 4 M urea can be denatured reversibly by heating (melting temperature approximately 60 degrees C, delta H approximately 230 kJ/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号