首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the rate of generation of superoxide radicals and the duration of hypoxia has been studied in isolated heart mitochondria with the use of the spin trap sodium 4,5dihydroxybenzene-1,3-disulfonate. The EPR spectra were recorded from a mitochondrial suspension placed in a gas-permeable capillary under conditions of regulated partial oxygen pressure. Earlier we have shown that the mitochondria isolated from perfused hearts after 30-min ischemia display a higher rate of superoxide generation than those from controls. However, in isolated mitochondria the EPR signal from 4,5-dihydroxybenzene-1,3-disulfonate increased already after 10-min hypoxia, but its intensity remained the same in the mitochondria subjected to 30-, 45-, and 60-min hypoxia. Thus, the isolated mitochondria in the incubation medium are less sensitive to hypoxia than the mitochondria from cardiomyocytes of an ischemic heart.  相似文献   

2.
Sviriaeva IV  Ruuge EK  Shumaev KB 《Biofizika》2007,52(6):1054-1059
The effect of adriamycin (doxorubicin) on superoxide radical formation in isolated rat heart mitochondria was studied by the spin trapping technique. The samples were placed into the cavity of EPR spectrometer in thin - wall gas - permeable capillary tubes, which allowed keeping the mitochondria of suspension in aerobic conditions. TIRON was used as a spin trap. We demonstrated that the rate of superoxide generation by isolated mitochondria depended radically on the presence of 1-150 microM adriamycin in incubation medium and was considerably higher than in control. The effect of adriamycin could be observed in the presence of both complex I (succinate) or complex II (glutamate and malate) substrates. The results obtained let to conclude that isolated cardiac mitochondria modified by adriamycin have a higher rate of production of superoxide radicals, which can react with spin traps not penetrating through the internal membrane.  相似文献   

3.
The effects of grisorixin, a monocarboxylic ionophore, were studied on isolated working rat hearts perfused with a suspension of washed pig erythrocytes (10% hematocrit). Grisorixin (2.5 microM) induced a transient stimulation of heart work, maximal at 5 min, expressed by an increase in heart rate (+21%) and aortic flow (+17%) and by an increase in coronary flow, maximal at 10 min (+47%). Concomitantly, myocardial Vo2 was slightly enhanced and the myocardial creatine phosphate level dropped (2 min). The lactate production increased by 82% (5 min) then dropped to the control value (10 min) and increased again till the 45th min (+211%), indicating a cardiac metabolic drift towards anaerobic glycolysis due to partial inhibition of the oxidative metabolism. Owing to its properties as an ionophore, grisorixin also induced a strong and rapid increase of potassium concentration in the perfusate and a decrease of sodium. Grisorixin was tested on hearts submitted to 20 min of hypoxic conditions. The hypoxia was rather mild and induced only very slight modifications of the ultrastructure. In the control series, heart rate and aortic flow decreased regularly while coronary flow and lactate production increased. Upon reoxygenation, the heart performances were rapidly restored. Grisorixin was administered according to four different protocols. When injected at the onset of hypoxia or 5 min later, it was able to maintain the aortic flow during the first minutes and induce a higher coronary dilation. These beneficial effects were short-lasting and no deleterious effects were found on the ultrastructure of hearts subjected to grisorixin whether after hypoxia or after reoxygenation.  相似文献   

4.
Induction of endothelial nitric oxide synthase (eNOS) contributes to the mechanism of heart protection against ischemia-reperfusion damage. We analyzed the effects of hypoxia and hyperoxia on eNOS expression in isolated working rat hearts after ischemia-reperfusion damage. Adult male Wistar rats were submitted to chronic hypoxia (2 weeks) and hyperoxia (72 h). The hearts were submitted to 15 min of ischemia and reperfused for 60 min, then we evaluated hemodynamic parameters and creatine phosphokinase (CPK) release. eNOS expression was estimated by RT-PCR; enzyme localization was evaluated by immunohistochemistry and the eNOS protein levels were detected by Western blot. All hemodynamic parameters in hypoxic conditions were better with respect to other groups. The CPK release was lower in hypoxic (P<0.01) than in normoxic and hyperoxic conditions. The eNOS deposition was significantly higher in the hypoxic group versus the normoxic or hyperoxic groups. The eNOS protein and mRNA levels were increased by hypoxia versus both other groups. Chronic hypoxic exposure may decrease injury and increase eNOS protein and mRNA levels in heart subjected to ischemia-reperfusion.  相似文献   

5.
Reactive oxygen species (ROS), which may be involved in ischemic or reperfusion heart injury, can be produced by mitochondria. Previous work indicated that coupled mitochondria from ischemic heart tissue incubated in calcium-free medium produced less ROS than normal. The effects of calcium, which may be elevated in hypoxic or ischemic tissue, were not examined. The relative production of ROS by mitochondria from normoxic or hypoxic rat heart tissue was estimated by measuring the oxidation of dichlorofluorescin to the fluorescent compound, dichlorofluorescein. ROS were detectable during succinate-stimulated State 4 respiration. In the absence of calcium, mitochondria from hypoxic (60 min) heart tissue produced less ROS than mitochondria from normoxic heart tissue. In the presence of 0.1, 1 or 10 microM calcium, ROS produced by hypoxic mitochondria were increased to normoxic levels. While function was depressed in mitochondria from hypoxic tissue, the presence of 0.1 and 1 microM calcium had no further effect. Respiration was uncoupled in the presence of 10 microM calcium in mitochondria from both normoxic and hypoxic heart tissue. ROS production was increased in mitochondria from hypoxic tissue with both increasing concentrations of calcium and increasing duration of exposure. ROS production in mitochondria from normoxic heart tissue was only stimulated after 200 or more seconds of exposure to 1 or 10 microM calcium. Production of ROS in mitochondria from hypoxic tissue in the presence of 1 microM calcium was inhibited by rotenone (80%), ruthenium red (69%), and a combination of these agents (96%). In contrast, ruthenium red had no effect on ROS production by mitochondria from normoxic heart tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To examine the role of changes in calcium transport by subcellular particles in the pathogenesis of contractile failure due to oxygen lack, both mitochondrial and microsomal fractions were obtained from the isolated hypoxic rat hearts and their calcium binding and uptake abilities were determined by the Millipore filtration technique. The contractile force decreased by about 40, 60 and 70% of the control within 5, 10 and 30 min respectively, of perfusing the heart with hypoxic medium containing glucose. In hearts perfused for 10 min with hypoxic medium containing glucose, calcium binding and uptake by the microsomal fraction decreased significantly. However, mitochondrial calcium binding, but not uptake, decreased significantly on perfusing the hearts with hypoxic medium containing glucose for 20 to 30 min when the microsomal calcium transport was markedly depressed. Reduction in contractile force, calcium binding and uptake by the microsomal fraction as well as calcium binding by mitochondria of hearts made hypoxic for 30 min recovered towards normal upon reperfusion with control medium for 15 min. On the other hand, omitting glucose from the hypoxic medium significantly decreased calcium binding by mitochondrial and microsomal fractions within 10 min of perfusion in comparison to the control and accelerated the effects of hypoxia upon contractile force and microsomal calcium uptake. In contrast to the hypoxic hearts, the mitochondrial calcium uptake decreased significantly and the magnitude of depression in the microsomal calcium binding was appreciably greater in hearts made to fail to a comparable degree upon perfusion with substrate-free medium. The observed defects in calcium transporting properties of microsomal and mitochondrial membranes appear secondary to the contactile failure in hypoxic hearts.  相似文献   

7.
The effect of perfusion with elevated glucose concentrations on hypoxic myocardium was investigated in isolated Langendorff guinea pig hearts. For that purpose, mechanical (heart rate, systolic peak pressure and coronary flow) and electrophysiological (monophasic action potential duration=MAP, ectopic beats) data were evaluated. At the end of the experiments the hearts were examined histologically after trypan blue vital staining for quantification of irreversible myocardial damage. In the absence of insulin moderate glucose elevation (from 5 to 15 mM) exerted beneficial effects on hypoxic hearts: the depressed contraction was improved, the action potential shortening partly reversed and the percentage of irreversibly damaged myocytes diminished. Glucose did not have any effect on heart rate and arrhythmias under hypoxia or reperfusion. A contribution of cardiac ATP-dependent K+ channels to the effects of glucose could be excluded by further experiments. Thus, blocking these channels with high glibenclamide concentrations did not affect the action of glucose on MAP and contraction. To some degree the glucose effect on MAP, but not on systolic pressure, was also observable under normoxic conditions.  相似文献   

8.
This study was designed to determine whether: (1) hypoxia could directly affect ROS production in isolated mitochondria and mitochondrial complex III from pulmonary artery smooth muscle cells (PASMCs) and (2) Rieske iron-sulfur protein in complex III might mediate hypoxic ROS production, leading to hypoxic pulmonary vasoconstriction (HPV). Our data, for the first time, demonstrate that hypoxia significantly enhances ROS production, measured by the standard ROS indicator dichlorodihydrofluorescein/diacetate, in isolated mitochondria from PASMCs. Studies using the newly developed, specific ROS biosensor pHyPer have found that hypoxia increases mitochondrial ROS generation in isolated PASMCs as well. Hypoxic ROS production has also been observed in isolated complex III. Rieske iron-sulfur protein silencing using siRNA abolishes the hypoxic ROS formation in isolated PASM complex III, mitochondria, and cells, whereas Rieske iron-sulfur protein overexpression produces the opposite effect. Rieske iron-sulfur protein silencing inhibits the hypoxic increase in [Ca(2+)](i) in PASMCs and hypoxic vasoconstriction in isolated PAs. These findings together provide novel evidence that mitochondria are the direct hypoxic targets in PASMCs, in which Rieske iron-sulfur protein in complex III may serve as an essential, primary molecule that mediates the hypoxic ROS generation, leading to an increase in intracellular Ca(2+) in PASMCs and HPV.  相似文献   

9.
There is a sudden release of intracellular constituents upon reoxygenation of isolated perfused hypoxic heart tissue (O2 paradox) or on perfusion with calcium-free medium after a period of hypoxia. Rat hearts were perfused by the method of Langendorff (Pfluegers Arch. 61: 291-332, 1895) with Krebs-Henseleit medium containing 10 mM glucose. Hearts were equilibrated for 30 min, followed by 90 min of hypoxia or 60 min of hypoxia and 30 min of reoxygenation. The massive enzyme release observed upon reoxygenation after 60 min of hypoxia was prevented by infusing 0.5 or 5 mM cyanide 5 min before reoxygenation. Lactate dehydrogenase (LDH) release commenced immediately upon withdrawal of cyanide. Hearts perfused with calcium-free medium throughout hypoxia did not release increased amounts of LDH at reoxygenation. Perfusing heart tissue with medium containing 0 or 25 microM calcium, but not 0.25 or 2.5 mM, after 50 min of hypoxia initiated a release of cardiac LDH, which was not further enhanced by reoxygenation. Enzyme release was significantly inhibited when the calcium-free perfusion medium included 10 mM 2-deoxyglucose (replacing glucose), 0.5 mM dinitrophenol, or 2.5 mM cyanide. Histologically, hearts perfused with calcium-free medium after 50 min of hypoxia showed areas of severe necrosis and contracture without any evidence of the contraction bands that were seen in hearts reoxygenated in the presence of calcium. Cardiac ATP and creatine phosphate (PCr) levels were significantly decreased after 50-60 min of hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We compared the effects of adaptation to intermittent high altitude (IHA) hypoxia of various degree and duration on ischemia-induced ventricular arrhythmias in rats. The animals were exposed to either relatively moderate hypoxia of 5000 m (4 or 8 h/day, 2-3 or 5-6 weeks) or severe hypoxia of 7000 m (8 h/day, 5-6 weeks). Ventricular arrhythmias induced by coronary artery occlusion were assessed in isolated buffer-perfused hearts or open-chest animals. In the isolated hearts, both antiarrhythmic and proarrhythmic effects were demonstrated depending on the degree and duration of hypoxic exposure. Whereas the adaptation to 5000 m for 4 h/day decreased the total number of premature ventricular complexes (PVCs), extending the daily exposure to 8 h and/or increasing the altitude to 7000 m led to opposite effects. On the contrary, the open-chest rats adapted to IHA hypoxia exhibited an increased tolerance to arrhythmias that was even more pronounced at the higher altitude. The distribution of PVCs over the ischemic period was not altered by any protocol of adaptation. It may be concluded that adaptation to IHA hypoxia is associated with enhanced tolerance of the rat heart to ischemic arrhythmias unless its severity exceeds a certain upper limit. The opposite effects of moderate and severe hypoxia on the isolated hearts cannot be explained by differences in the occluded zone size, heart rate or degree of myocardial fibrosis. The proarrhythmic effect of severe hypoxia may be related to a moderate left ventricular hypertrophy (27 %), which was present in rats adapted to 7000 m but not in those adapted to 5000 m. This adverse effect can be overcome by an unknown protective mechanism(s) that is absent in the isolated hearts.  相似文献   

11.
The Effect of Acute Hypoxia on Synaptosomes from Rat Brain   总被引:8,自引:4,他引:4  
Abstract: Synaptosomes have been isolated from the brains of nonanesthetized and nembutal-anesthetized rats subjected to 30 min hypoxia induced by breathing 7% oxygen in nitrogen. The respiratory rate was depressed in synaptosomes from starved hypoxic animals but was not significantly different from the respective control values in preparations from fed hypoxic animals, anesthetized animals, and hypoxic nonanesthetized animals allowed to recover from the hypoxic episode by 60 min of normoxic conditions. Observations are also reported concerning the levels of various metabolites in the synaptosomes isolated from the brains of the same groups of animals. It is suggested that hypoxia results in damage to the synaptosomal and/or mitochondrial membrane, which modifies substrate oxidation in the mitochondria and decreases availability of reducing equivalents for the respiratory chain. Results obtained on afflicted and recovered animals indicate that synaptosomal preparations provide a useful model for the study of hypoxic damage.  相似文献   

12.
The effect of acute hypoxia on adenine nucleotides, glutamate, aspartate, alanine and respiration of heart mitochondria was studied in rats. The losses of intramitochondrial adenine nucleotides (ATP+ADP+AMP) during hypoxia were related to depression of state 3 respiration supported by glutamate and malate, as well as decrease in uncoupled respiration. Hypoxia had less prominent effect on succinate-dependent state 3 respiration. Non-phosphorylating (state 4) respiratory rates and ADP/O ratios were slightly affected by oxygen deprivation. Glutamate fall in tissue and mitochondria of hypoxic hearts was concomitant with significant increase in tissue alanine and mitochondrial aspartate. The losses of intramitochondrial ATP and respiratory activity with NAD-dependent substrates during hypoxia were related to a decrease in mitochondrial glutamate. The results suggest that hypoxia-induced impairment of complex I of respiratory chain and a loss of glutamate from the matrix may limit energy-producing capacity of heart mitochondria.  相似文献   

13.
Day 10 rat embryos were exposed to cocaine HCl (10-100 microM) in vitro in 20% (designated normoxic) and 10-12% (designated moderately hypoxic) oxygen and examined the following day. In normoxia, it caused prompt and significant decreases in heart rates and significant reductions in measures of growth and development and diameters of the vitelline arteries. In moderate hypoxia, cocaine exposure resulted in axially asymmetric defects reported previously only in embryos exposed to extreme hypoxia or to hypoxia generated by redox cyclers. Day 10 or 11 embryos or isolated hearts from the latter stage were incubated with cocaine under normoxic conditions. Acute and significant concentration-dependent decreases in heart rates occurred on day 10. The rates in day 11 embryos and in isolated hearts from day 11 embryos were less sensitive than those on day 10. Cocaine also significantly inhibited the activity of the terminal electron transport system of the mitochondria of embryos. Maternal cocaine exposure has been associated with uterine vasoconstriction and decreases in fetal oxygenation. The latter has been shown to stimulate glucose uptake. We hypothesize that placental vasoconstriction limits the ability of embryos to meet the increased glucose demands induced by hypoxia. The developmental toxicity of nutrient and oxygen deprivation is further enhanced by significant decreases of mitochondrial activity. We propose therefore that compromised energy supplies form the basis of the developmental toxicity of cocaine.  相似文献   

14.
The effects of nitrogen (N2) or carbon monoxide (CO) hypoxia on coronary flow were assessed in the isolated nonworking rat heart perfused via the aorta with oxygenated (95% O2-5% CO2) Kreb's Henseleit solution. After 30 min, the hearts were challenged with solutions containing either CO (10% CO-85% O2-5% CO2) or N2 (10% N2-85% O2-5% CO2) for 2 min (Challenge I). After recovery in oxygenated solution, the hearts were challenged with the alternate test solution (Challenge II). There were no significant differences in heart rate or pulse pressure between the hearts challenged with CO or N2. Coronary flow was significantly higher in the hearts challenged with CO regardless of the challenge sequence. Coronary flows (ml X min-1 X g dry wt) in the CO- and N2-treated hearts, respectively, were 61.5 +/- 4.5 and 52.9 +/- 2.3 after Challenge I, and 64.3 +/- 2.6 and 56.4 +/- 3.0 after Challenge II. Because PO2 and oxygen content were the same in both test solutions, the results suggest that CO has a direct effect on coronary artery vascular smooth muscle.  相似文献   

15.
Formation of superoxide radical in isolated rat heart mitochondria under controlled oxygenation has been studied by spin trapping and EPR oxymetry. Lithium phthalocyanine and perdeuterated Tempone-D-15 N 16 were used to determine the oxygen concentration. Tiron was used as a spin trap. By varying the oxygen content in the reaction medium, we have shown that isolated heart mitochondria can produce superoxide even at an oxygen partial pressure of 17.5 mmHg, though at a rate considerably lower than under normal conditions. Raising the oxygen concentration increases the rate of superoxide generation.  相似文献   

16.
EPR spin trapping and EPR oximetry were used to study the superoxide radical generation in heart mitochondria from Wistar rats at various oxygen concentrations. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine the oxygen content in a gas-permeable capillary containing mitochondria. TIRON was used as a spin trap. Several oxygen concentrations in the incubation mixture were tested; heart mitochondria were found to generate superoxide in complex III at various partial pressures of oxygen, including deep hypoxia (<5% O2). Dinitrosyl iron complexes with glutathione (the drug Oxacom) exerted an antioxidant effect regardless of the partial pressure of oxygen; the magnitude and kinetic characteristics of the effect depended on the drug concentration.  相似文献   

17.
Zhang H  Yang CY  Wang YP  Wang X  Cui F  Zhou ZN  Zhang Y 《生理学报》2007,59(5):660-666
本研究旨在探讨两种不同形式的间歇性低压低氧(intermittent hypobaric hypoxia,IHH)对发育大鼠心脏缺血,再灌注损伤的影响。雄性Sprague-Dawley(SD)新生大鼠72只,随机分为三组:对照组、IHH3000in组(IHH3000)、IHH5000m组(IHH5000)。低氧组大鼠出生后立即于低压氧舱分别接受28d、42d和56d(海拔5000m、每天6h:海拔3000m、每天5h)的低压低氧处理。应用Langendorff离体心脏灌流技术,给予心脏缺血(停灌30min)/再灌注(复灌60min)处理,分别在缺血前5min及复灌后l、5、10、20、30、60min记录心功能和冠状动脉流量变化,并测定乳酸脱氢酶(1actate dehydrogenase,LDH)活性。实验结束时测定心脏重量。结果显示:(1)IHH3000组大鼠体重增长与对照组无明显差异;IHH5000组大鼠体重增长明显慢于对照组及IHH3000组大鼠(P〈0.01)。(2)IHH3000组人鼠表现明显的心脏保护效应。与对照组相比较,在心脏停灌,再灌注60min时,心功能(LVDP、±LVdp/drmax)恢复增强(P〈0.05)、LDH活性降低(P〈0.05)、冠状动脉流量增多(P〈0.05);心脏重量与对照组大鼠无差异;IHH42d处理的大鼠心功能恢复明显好于IHH28d处理的大鼠(P〈0.05)。(3)IHH5000组大鼠表现出明显的心脏损伤效应,各项心功能指标(LVDP、±LVdp/dtmax)的恢复均低于对照组(P〈0.05),复灌过程中LDH活性明显高于相应对照组(P〈0.05),右心室重量明显高于对照组大鼠(P〈0.05)。结果表明,适当的IHH增强发育大鼠心脏对缺血,再灌注损伤的抵抗能力;间歇性低氧方式是影响其心脏保护作用的重要因素。  相似文献   

18.
Korkisha OV  Ruuge EK 《Biofizika》2000,45(4):695-699
The generation of superoxide radicals by isolated rat heart mitochondria was studied by the spin trapping technique. The sample was placed into the cavity of an EPR spectrometer in a thin-wall teflon capillary tube, which made it possible to maintain the partial oxygen pressure in the mitochondrial suspension at a constant level. Tiron was used as a spin trap, and the intensity of its EPR signal corresponded to the rate of O2-. formation in the sample. The addition of oxidation substrates (succinate, glutamate, and malate) into the incubation mixture caused the appearance of the Tiron EPR signal. The rate of superoxide radical generation by heart mitochondria strongly increased in the presence of antimycin A, an inhibitor of the Q-cycle in complex III of the respiratory chain, but it was completely depressed by another inhibitor of Q-cycle myxothiazol. The inhibition of the reverse electron transport in complex I of the respiratory chain by rotenone (oxidation substrate--succinate) caused a substantial decrease in the rate of O2-. formation by mitochondria.  相似文献   

19.
The influence of Adriamycin (doxorubicin) on the rate of superoxide radical formation in isolated rat heart mitochondria was studied by EPR with the Tiron spin trap not penetrating the mitochondrial inner membrane. Adriamycin at 10–150 μM considerably enhanced superoxide generation in the presence of succinate (substrate of the respiratory chain complex II) and glutamate/malate (complex I substrate) when electron transfer was blocked in complex III with antimycin A. Such effects may partly account for the known cardiotoxicity of this antitumor drug.  相似文献   

20.
Xie Y  Zhu WZ  Zhu Y  Chen L  Zhou ZN  Yang HT 《Life sciences》2004,76(5):559-572
Adaptation to intermittent high altitude (IHA) hypoxia can protect the heart against ischemia-reperfusion injury. In view of the fact that both Ca2+ paradox and ischemia-reperfusion injury are associated with the intracellular Ca2+ overload, we tested the hypothesis that IHA hypoxia may protect hearts against Ca2+ paradox-induced lethal injury if its cardioprotection bases on preventing the development of intracellular Ca2+ overload. Langendorff-perfused hearts from normoxic and IHA hypoxic rats were subjected to Ca2+ paradox (5 min of Ca2+ depletion followed by 30 min of Ca2+ repletion) and the functional, biochemical and pathological changes were investigated. The Ca2+ paradox incapacitated the contractility of the normoxic hearts, whereas the IHA hypoxic hearts significantly preserved contractile activity. Furthermore, the normoxic hearts subjected to Ca2+ paradox exhibited a marked reduction in coronary flow, increase in lactate dehydrogenase release, and severe myocyte damage. In contrast, these changes were significantly prevented in IHA hypoxic hearts. We, then, tested and confirmed our hypothesis that the protective mechanisms are mediated by mitochondria ATP-sensitive potassium channels (mitoKATP) and Ca2+/calmodulin-dependent protein kinase II (CaMKII), as the protective effect of IHA hypoxia was abolished by 5-hydroxydecanoate, a selective mitoKATP blocker, and significantly attenuated by KN-93, a CaMKII inhibitor. In conclusion, our studies offer for the first time that IHA hypoxia confers cardioprotection against the lethal injury of Ca2+ paradox and give biochemical evidence for the protective mechanism of IHA hypoxia. We propose that researches in this area may lead a preventive regimen against myocardial injury associated with Ca2+ overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号