首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Living equivalents of tissues, specifically those produced on the basis of fibroblasts and collagen gel, are widely used for repair of organ and tissues defects. In clinical practice, it is more convenient to use the fibroblasts grown on microcarriers or such a connective tissue equivalent when the fibroblasts on microcarriers are embedded in collagen gel. We studied the properties of a connective tissue equivalent produced by embedding the fibroblasts grown on microcarriers in collagen gel for its prospective use in clinical practice. According to our results, the optimal time of use of the living tissue equivalent amounts to three–four days after embedding of fibroblasts on microcarriers in gel. At that time, contraction only begins, which facilitates manipulations with the gel.  相似文献   

2.
Fibroblasts are responsible for the synthesis, assembly, deposition, and organization of extracellular matrix molecules, and thus determine the morphology of connective tissues. Deposition of matrix molecules occurs in extracellular compartments, where the sequential stages are under cellular control. Cell orientation/polarity is important in determining how the cell orients these extracytoplasmic compartments and therefore how the matrix is assembled and oriented. However, the control of cell orientation is not understood. Fibroblasts from three tissues with different morphologies were studied to determine whether cells maintained their characteristic phenotype. Fibroblasts from cornea, which in vivo are oriented in orthogonal layers along with their matrix; from tendon, a uniaxial connective tissue, where cells orient parallel to each other; and from dermis, a connective tissue with no apparent cellular orientation, were used to study cell morphology and orientation in three-dimensional collagen gels. The different cells were grown for 3 and 7 days in identical three-dimensional collagen gels with a nonoriented matrix. Confocal fluorescence microscopy demonstrated that corneal fibroblasts oriented perpendicular to one another at 3 days, and after 7 days in hydrated gels these cells formed orthogonal sheets. Tendon fibroblasts were shown by the same methods to orient parallel to one another in bundles at both 3 and 7 days, throughout the depth of the gel. Dermal fibroblasts showed no apparent orientation throughout the hydrated gels at either time point examined. The organization of these different cell types was consistent with their tissue of origin as was the cell structure and polarity. These studies imply that cellular and tissue phenotype is innate to differentiated fibroblasts and that these cells will orient in a tissue-specific manner regardless of the extracellular matrix present.  相似文献   

3.
Human fibroblasts contract collagen gel in vitro and produce a connective tissue-like structure termed the living skin equivalent. In this study, the contractile capacity of postnatal dermal fibroblasts, bone marrow mesenchymal cells and mesenchymal cells derived from the fat tissue has been compared to that of fetal dermal fibroblasts in the model of living skin equivalent. The results show that fetal fibroblasts contract the collagen gel approximately six times stronger than do all other fibroblast cell types, with the numbers of all these cells being equal. A deeper insight into the behavior of fibroblasts differing in their origin will help to develop new approaches to the treatment and regulation of wound healing and fibrosis formation.  相似文献   

4.
Summary Human diploid fibroblasts were cultured on microcarriers made from DEAE-dextran, denatured collagen, DEAE-dextran linked to denatured collagen, and glass. Cells grown on these four substrates were examined for the production of proteolytic enzymes and arachidonic acid metabolites. Culture fluids from cells grown on the DEAE-dextran microcarriers contained the highest amounts of proteolytic enzyme activity. Both plasminogen-independent and plasminogen-dependent fibrinolytic activities were present and the plasminogen-dependent activity seemed to result from the presence of both urokinase and tissue plasminogen activator. Culture fluid from the cells grown on the glass microcarriers contained the least amount of protease activity, and nearly all of the plasminogen-activator activity seemed to be of the urokinase type. Protease activity in the culture fluids of cells grown on the other two substrates were intermediate. With regard to arachidonic acid metabolites, cells grown on the DEAE-dextran microcarriers produced the highest amounts of cyclooxygenase products but very low levels of lipoxygenase metabolites. Cells grown on the other three substrates produced comparable amounts of various cyclooxygenase products (lower than that produced by cells on the DEAE-dextrans substrate). Cells grown on the glass microcarriers also produced detectable amounts of two lipoxygenase metabolites—leukotriene B4 and leukotriene C4. Inasmuch as both proteolytic enzymes and arachidonic acid metabolites regulate basic cell properties, the differential amount of these metabolites observed in the culture fluids on the various substrates may contribute to the biological differences that exist on these substrates. This study was supported in part by grants R44 CA 36656 and IK08HL01332-01 from the Public Health Service, U. S. Department of Health and Human Services and by grant BC-512 from the American Cancer Society. JDH is a research fellow of the American Lung Association.  相似文献   

5.
Reconstitution in vitro of human gingiva   总被引:1,自引:0,他引:1  
A model of human gingiva to be used in pharmacological, basic and clinical research was performed in vitro. This model was obtained through a method of low density seeding epithelialization, from a seeding made up of dissociated human gingiva epithelial cells, of a connective tissue equivalent composed of human fibroblasts included in a collagen gel. The histological and ultrastructural data show a multilayered epithelium and the biochemical analysis (two dimensional gel electrophoresis known as NEPHGE) of the cytokeratins used as molecular markers for epithelial differentiation shows the precise differentiation state of the epithelium thus reconstituted. Even though this model has less of a differentiation than that of an in vivo gingival epithelium, it does actually reproduce exactly the structures of the human gingiva namely a multilayered epithelium lying on a connective tissue. It also offers the advantage of cellular elements which are compatible with gingival graftings.  相似文献   

6.
Collagen production by cultured human lung fibroblasts was examined when the cells were made deficient in ascorbate. Cells grown in the absence of ascorbate produced 30% less collagen during a 6-h labeling period than cells incubated with as little as 1 microgram/ml ascorbate during the labeling period. Cells grown without ascorbate produced under-hydroxylated collagen which was subject to increased intracellular degradation from a basal level of 16% to an enhanced level of 49% of all newly synthesized collagen. The likely mechanism for increased intracellular degradation is the inability of under-hydroxylated collagen to assume a triple-helical conformation causing it to be susceptible to intracellular degradation. Measurement of collagen production by enzyme linked immunoassay (ELISA) using antibodies directed against triple-helical determinants of collagen showed that both types I and III collagens were affected. In contrast, another connective tissue component, fibronectin, was not affected. Analysis by ELISA showed a greater decrease in collagen production than did analysis by the collagenase method, suggesting that some non-helical collagen chains (detected by collagenase but not by ELISA) were secreted in the absence of ascorbate. These results provide a mechanism to account, in part, for the deficiency of collagen in connective tissues which occurs in a state of ascorbate deficiency.  相似文献   

7.
Summary In vivo, fibroblasts are distributed in a three-dimensional (3-D) connective tissue matrix. Fibronectin is a major product of fibroblasts in routine cell culture and is thought to regulate many aspects of fibroblast biology. In this context, we sought to determine if the interaction of fibroblasts with a 3-D matrix might affect fibronectin production. To examine this hypothesis, fibronectin production by fibroblasts cultured in a 3-D collagen gel or on plastic dishes was measured by ELISA. Fibroblasts in 3-D gel culture produced more fibronectin than those in monolayer culture. Fibroblasts in 3-D culture produced increasing amounts of fibronectin when the collagen concentration of the gel was increased. The 3-D nature of the matrix appeared to be crucial because plating the fibroblasts on the surface of a plastic dish underneath a collagen gel was not different from plating them on a plastic dish in the absence of collagen. In addition to increased fibronectin production, the distribution of the fibronectin produced in 3-D culture was different from that of monolayer culture. In monolayer culture, more than half of the fibronectin was released into the culture medium. In 3-D culture, however, approximately two-thirds remained in the collagen gel. In summary, the presence of a 3-D collagen matrix increases fibroblast fibronectin production and results in greater retention of fibronectin in the vicinity of the producing cells.  相似文献   

8.
Cultured lung fibroblasts produced and secreted interstitial collagen types I and III. The relative proportion of type III collagen increased as a linear function of cell density, with confluent cultures producing 8.6% type III collagen. When human lung fibroblasts were cultured in the presence of newly harvested lung macrophages, the proportion of type III collagen secreted rose to 15.5%. This high level of type III collagen synthesis was greater than could be induced by withdrawal of serum, a perturbation known to alter the proportion of types I and III collagen synthesized by fibroblasts. This effect on fibroblast phenotype was independent of cell density, as both low and high density cultures of fibroblasts responded similarly when cultured with macrophages. There was no evidence that fibroblasts synthesize new or different collagen types (such as type I trimer) in response to macrophages. Optimal conditions for eliciting an effect on fibroblast connective tissue metabolism required interaction of the two cell types for 5–8 days. These in vitro changes are analogous to the sequence of interactions and changes in connective tissue metabolism seen during recovery from tissue injury.  相似文献   

9.
Human foreskin fibroblasts were cultured for up to 6 weeks in medium supplemented with ascorbic acid. During this time, the cells produced an extensive new connective tissue matrix in which the accumulated collagen (mostly type I) amounted to about 0.25 mg/10(6) cells. The matrix was highly differentiated as shown by complete processing of procollagen to collagen alpha-chains and covalent crosslinking of the collagen. Alignment of collagen fibrils occurred as the fibrils were deposited between cells, and binding of adjacent fibrils to the cell surface appeared to hold the fibrils in register. Groups of aligned fibrils were subdivided into bundles by cell-surface folds. If beta-aminopropionitrile was added to the medium, collagen crosslinking was inhibited, but not collagen synthesis or fibril bundle organization. If ascorbic acid was omitted from the culture medium, the extensive new connective tissue matrix was not produced. Our results indicate that fibroblasts in long-term cultures supplemented with ascorbic acid produce a connective tissue matrix with many in vivo-like properties including supermolecular organization of collagen.  相似文献   

10.
Summary Active fibrous septa are a common feature in liver fibrosis and cirrhosis. Their etiology and formation were studied using cultures of tissue fragments or cells included in collagen gels. Liver fragments obtained from patients with cirrhosis or severe schistosomal fibrosis were able to reorganize the gel and to form discrete, interconnecting fibrous septa composed of parallel arrays of collagen, subsequently colonized by migrating connective tissue cells. The same was obtained in cultures of fibrogranulomatous lesions isolated from schistosome-infected mice livers. However, fragments of normal human and murine liver tissue did not show the capacity to form fibrous septa. Septa formation was also obtained in cultures of cell spheroids formed by liver connective tissue cells isolated from human fibrotic or cirrhotic liver tissues, but not with spheroids of normal skin fibroblasts or smooth muscle cells. This experimental model may represent the fibrous septa formation in vivo, depending on the activity of liver connective tissue cells. The ability of tissue fragments or cell spheroids to form septa in collagen gels might reflect the degree of fibrosis present in the liver tissue in vivo. This research was supported by FINEP and CNPq (Brazil) and CNRS (France).  相似文献   

11.
Three commercially-important types of cell were grown on four different microcarrier substrates. The cells, which included normal human diploid fibroblasts (MRC-5), primary chick embryo cells and Madin-Darby bovine kidney cells (MDBK), were compared with regard to proliferation on the substrates and with regard to recovery of viable cells from the same substrates. The substrates used included glass-coated microcarriers (Biosil), collagen microcarriers (Ventregel), DEAE-dextran microcarriers (Cytodex I) and collagen-linked DEAE-dextran microcarriers (Cytodex III). The established cell line (MDBK) grew well on all of the substrates and a high percentage of viable cells could be harvested from each substrate. The MRC-5 cells also grew well on all four substrates but high recovery rates were achieved only with cells grown on the glass-coated microcarriers or collagen microcarriers. In contrast, the primary chick embryo cells grew well only on the glass microcarriers and the recovery rate of cells harvested from this substrate was high. In some industrial operations, the re-utilization of cells after removal from the substrate is necessary. In these situations the appropriate choice of microcarriers for the cultivation of the cells may be critical.  相似文献   

12.
Extracellular matrix components play an important role in modulating cellular activity. To study such capacities of the matrix, fibroblasts are frequently cultured in a three-dimensional gel and contraction is assessed as a measure of cellular activity. Since a connective tissue contains several types of collagen, we investigated the effect of gels composed of collagen I alone or in combination with 10% collagen III and/or 5% collagen V on contraction by human periodontal ligament fibroblasts. Gels containing collagen V contracted much faster than those without this type of collagen. Blocking of the integrin beta1-subunit with an activity-blocking antibody delayed (gels with collagen V) or almost completely blocked (gels without collagen V) contraction. Use of an antibody directed against integrin alpha2beta1 resulted in delay of gel contraction for gels both with and without collagen V. Anti-integrin alpha v beta3 or RGD peptides partially blocked contraction of gels containing collagen V, but had no effect on gels consisting of collagen I alone. The beta1-containing integrins are involved in the basal contraction by fibroblasts that bind to collagens I and III. The enhanced contraction, stimulated by collagen V, appears to be mediated by integrin alpha v beta3. We conclude that collagen V may play an important modulating role in connective tissue contraction. Such a modulation may occur during the initial stages of wound healing and/or tissue regeneration.  相似文献   

13.
In areolar “loose” connective tissue, fibroblasts remodel their cytoskeleton within minutes in response to static stretch resulting in increased cell body cross‐sectional area that relaxes the tissue to a lower state of resting tension. It remains unknown whether the loosely arranged collagen matrix, characteristic of areolar connective tissue, is required for this cytoskeletal response to occur. The purpose of this study was to evaluate cytoskeletal remodeling of fibroblasts in, and dissociated from, areolar and dense connective tissue in response to 2 h of static stretch in both native tissue and collagen gels of varying crosslinking. Rheometric testing indicated that the areolar connective tissue had a lower dynamic modulus and was more viscous than the dense connective tissue. In response to stretch, cells within the more compliant areolar connective tissue adopted a large “sheet‐like” morphology that was in contrast to the smaller dendritic morphology in the dense connective tissue. By adjusting the in vitro collagen crosslinking, and the resulting dynamic modulus, it was demonstrated that cells dissociated from dense connective tissue are capable of responding when seeded into a compliant matrix, while cells dissociated from areolar connective tissue can lose their ability to respond when their matrix becomes stiffer. This set of experiments indicated stretch‐induced fibroblast expansion was dependent on the distinct matrix material properties of areolar connective tissues as opposed to the cells' tissue of origin. These results also suggest that disease and pathological processes with increased crosslinks, such as diabetes and fibrosis, could impair fibroblast responsiveness in connective tissues. J. Cell. Physiol. 228: 50–57, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Normal diploid human fibroblasts and first passage monkey kidney epithelial cells were examined for growth and metabolic activity on microcarriers made from glass and on microcarriers made from DEAE-dextran. The cells grew to a higher density (cells cm2 of surface area) on the glass microcarriers made from glass and on microcarriers made from DEAE-dextran. The cells grew to a higher density (cells/cm2 of surface area) on the glass microcarriers than they did on the DEAE-dextran microcarriers and morphological differences were observed between the cells growing on the two substrates. On the DEAE-dextran microcarriers, the cells were much more resistant to protease-mediated detachment than were the cells on the glass microcarriers. In these respects, the cells grown on the glass microcarriers were similar to cells grown in conventional monolayer culture. Interestingly, the cells grown on the DEAE-dextran microcarriers expressed higher levels of proteolytic enzyme activity than the cells grown on the glass microcarriers. Substrate-dependent differences in prostaglandin production also occurred--both in unstimulated cells and in cells stimulated with 12-0-tetradecanoyl phorbol acetate. The unstimulated cells on the glass microcarriers produced slightly higher levels of three different prostaglandins than did the cells on the DEAE-dextran microcarriers. However, after stimulation the levels were much higher in the DEAE-dextran microcarrier cultures than in the glass microcarrier cultures. In contrast to these results, there was no significant, substrate-dependent difference in the production of infectious herpes simplex virus. Taken together, these findings suggest that when commercially-useful cells such as normal fibroblasts and epithelial cells are grown in large quantities on microcarriers, the nature of the substrate may have a profound effect on the growth and physiology of the cells. They also suggest that when microcarriers are used, unexpected results based on preliminary work in conventional monolayer culture may be obtained.  相似文献   

15.
Summary In the heart of the adult rat, fibroblasts are mainly responsible for the synthesis and deposition of the collagenous matrix. Because these cells in vitro may serve as an important model system for studies of collagen metabolism in heart tissue, we have cultured and characterized rat-heart fibroblasts from young adult and old animals. Conditions included use of media of different compositions with and without addition of ascorbate. Cell used were either cultured directly from fresh tissues or thawed previously frozen cells. Cultured cells were studied with respect to growth properties, morphology and ultrastructure and patterns of collagen. Heart fibroblasts generally resembled fibroblasts cultured from other tissues, but were more like skeletal muscle fibroblasts in that they deposited, in addition to type I collagen, type IV collagen and laminin. The fibroblasts showed a typical appearance in phase-contrast microscopy and electron microscopy. In the case of cells grown with added ascorbate, aligned collagen fibrils in the extracellular matrix showed a periodicity typical of type I collagen. The deposition of type I collagen occurred only in medium supplemented with ascorbate, and in that circumstance increased as a function of time past confluence; this was independent of the age of the animal from which the cells were obtained or of other changes of medium composition studied. Immunofluorescence studies with specific antibodies revealed that the cells deposited types I and IV collagens, laminin and fibronectin. In contrast to the case of type I collagen, the deposition of type IV collagen occurred in cells grown either with or without ascorbate. Direct observation of type IV collagen is consistent with the previous finding of type IV mRNA in cardiac fibroblasts in situ and in freshly isolated populations of these cells.  相似文献   

16.
The effect of human fetal fibroblasts and adult keratinocytes on collagen contraction was studied. Keratinocytes embedded in collagen lattices did not spread and produced only a slight contraction. When keratinocytes were seeded on the surface of tht gel, the contraction began within 24 h and correlated with the formation of epithelial colonies. Transplantation of multilayered epithelial sheets on the gel significantly accelerated the onset of contraction. Keratinocytes seeded on and fibroblasts grown in collagen lattices cooperatively contracted the gel, and keratinocytes were able to stimulate gel contraction even when they had no contact with the collagen roughly populated with fibroblasts. Swiss 3T3 cells remained spherical in collagen lattices and did not contract the gel but when cultivated with keratinocytes they stimulated gel contraction. In their turn, keratinocytes influenced the behaviour of Swiss 3T3 cells which elongated and produced processes. We suggest that both keratinocytes and mesenchymal cells can affect gel contraction 1) by a direct contact with collagen lattices, and 2) through potentiation of the ability of another cell type to contract the gel.  相似文献   

17.
Mononuclear phagocytes can interact with mesenchymal cells and extracellular matrix components that are crucial for connective tissue rearrangement. We asked whether blood monocytes can alter matrix remodeling mediated by human lung fibroblasts cultured in a three-dimensional collagen gel. Blood monocytes from healthy donors (>95% pure) were cast into type I collagen gels that contained lung fibroblasts. Monocytes in coculture inhibited the fibroblast-mediated gel contractility in a time- and concentration-dependent manner. The concentration of PGE(2), a well-known inhibitor of gel contraction, was higher (P < 0.01) in media from coculture; this media attenuated fibroblast gel contraction, whereas conditioned media from either cell type cultured alone did not. Three-dimensional cultured monocytes responded to conditioned media from cocultures by producing interleukin-1beta and tumor necrosis factor-alpha, whereas fibroblasts increased synthesis of PGE(2). Antibodies to interleukin-1beta and tumor necrosis factor-alpha blocked the monocyte inhibitory effect and reduced the amount of PGE(2) produced. The ability of monocytes to block the fibroblast contraction of matrix may be an important mechanism in regulating tissue remodeling.  相似文献   

18.
19.
To identify the mechanisms responsible for the paucity of recently synthesized collagen in connective tissues during diabetes, in vitro procollagen metabolism was studied in non-diabetic (control) and diabetic rats. Achilles tendons from the two groups were incubated for 1-8 h (35 degrees C) in medium containing [14C]proline and the radiolabeled collagen in the tissue, and that released into the media, were examined by SDS-polyacrylamide gel electrophoresis and fluorography. The bulk of the radiolabeled collagen in tendon from the diabetics was recovered as degradation products; these, but also procollagen and collagen components, were prominent in the control tissues. Moreover, the collagenous components synthesized by the diabetic rat tendons were more readily digested in vitro by trypsin than those produced by control tissues. We conclude that diabetes reduces collagen accretion in connective tissues in part due to increased intracellular degradation of procollagen.  相似文献   

20.
Mechanoregulation of gene expression in fibroblasts   总被引:3,自引:0,他引:3  
Wang JH  Thampatty BP  Lin JS  Im HJ 《Gene》2007,391(1-2):1-15
Mechanical loads placed on connective tissues alter gene expression in fibroblasts through mechanotransduction mechanisms by which cells convert mechanical signals into cellular biological events, such as gene expression of extracellular matrix components (e.g., collagen). This mechanical regulation of ECM gene expression affords maintenance of connective tissue homeostasis. However, mechanical loads can also interfere with homeostatic cellular gene expression and consequently cause the pathogenesis of connective tissue diseases such as tendinopathy and osteoarthritis. Therefore, the regulation of gene expression by mechanical loads is closely related to connective tissue physiology and pathology. This article reviews the effects of various mechanical loading conditions on gene regulation in fibroblasts and discusses several mechanotransduction mechanisms. Future research directions in mechanoregulation of gene expression are also suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号