首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yeast surface display allows heterologously expressed proteins to be targeted to the exterior of the cell wall and thus has a potential as a biotechnology platform. In this study, we report the successful display of functional streptavidin on the yeast surface. Streptavidin binds the small molecule biotin with high affinity (K(d) ≈ 10(-14)M) and is used widely in applications that require stable noncovalent interaction, including immobilization of biotinylated compounds on a solid surface. As such, engineering functional streptavidin on the yeast surface may find novel uses in future biotechnology applications. Although the molecule does not require any post-translational modification, streptavidin is difficult to fold in bacteria. We show that Saccharomyces cerevisiae can fold the protein correctly if induced at 20°C. Contrary to a previous report, coexpression of anchored and soluble streptavidin subunits is not necessary, as expressing the anchored subunit alone is sufficient to form a functional complex. For unstable monomer mutants, however, addition of free biotin during protein induction is necessary to display a functional molecule, suggesting that biotin helps the monomer fold. To show that surface displayed streptavidin can be used to immobilize other biomolecules, we used it to capture biotinylated antibody, which is then used to immunoprecipitate a protein target.  相似文献   

2.
This protocol describes a simple and efficient way to label specific cell surface proteins with biophysical probes on mammalian cells. Cell surface proteins tagged with a 15-amino acid peptide are biotinylated by Escherichia coli biotin ligase (BirA), whereas endogenous proteins are not modified. The biotin group then allows sensitive and stable binding by streptavidin conjugates. This protocol describes the optimal use of BirA and streptavidin for site-specific labeling and also how to produce BirA and monovalent streptavidin. Streptavidin is tetravalent and the cross-linking of biotinylated targets disrupts many of streptavidin's applications. Monovalent streptavidin has only a single functional biotin-binding site, but retains the femtomolar affinity, low off-rate and high thermostability of wild-type streptavidin. Site-specific biotinylation and streptavidin staining take only a few minutes, while expression of BirA takes 4 d and expression of monovalent streptavidin takes 8 d.  相似文献   

3.
Escherichia coli was engineered to intracellularly manufacture streptavidin beads. Variants of streptavidin (monomeric, core and mature full length streptavidin) were C-terminally fused to PhaC, the polyester granule forming enzyme of Cupriavidus necator. All streptavidin fusion proteins mediated formation of the respective granules in E. coli and were overproduced at the granule surface. The monomeric streptavidin showed biotin binding (0.7 ng biotin/microg bead protein) only when fused as single-chain dimer. Core streptavidin and the corresponding single-chain dimer mediated a biotin binding of about 3.9 and 1.5 ng biotin/mug bead protein, respectively. However, biotin binding of about 61 ng biotin/mug bead protein with an equilibrium dissociation constant (KD) of about 4 x 10(-8)M was obtained when mature full length streptavidin was used. Beads displaying mature full length streptavidin were characterized in detail using ELISA, competitive ELISA and FACS. Immobilisation of biotinylated enzymes or antibodies to the beads as well as the purification of biotinylated DNA was used to demonstrate the applicability of these novel streptavidin beads. This study proposes a novel method for the cheap and efficient one-step production of versatile streptavidin beads by using engineered E. coli as cell factory.  相似文献   

4.
5.
Padlock oligonucleotides as a tool for labeling superhelical DNA   总被引:2,自引:1,他引:1       下载免费PDF全文
Labeling of a covalently closed circular double-stranded DNA was achieved using a so-called ‘padlock oligonucleotide’. The oligonucleotide was targeted to a sequence which is present in the replication origin of phage f1 and thus in numerous commonly used plasmids. After winding around the double-stranded target DNA sequence by ligand-induced triple helix formation, a biotinylated oligonucleotide was circularized using T4 DNA ligase and in this way became catenated to the plasmid. A gel shift assay was developed to measure the extent of plasmid modification by the padlock oligonucleotide. A similar assay showed that a modified supercoiled plasmid was capable of binding one streptavidin molecule thanks to the biotinylated oligonucleotide and that this binding was quantitative. The catenated complex was visualized by electron and atomic force microscopies using streptavidin conjugates or single strand-binding proteins as protein tags for the padlock oligonucleotide. This method provides a versatile tool for plasmid functionalization which offers new perspectives in the physical study of supercoiled DNA and in the development of improved vectors for gene therapy.  相似文献   

6.
Biotinylation is a recent addition to the list of reported posttranslational modifications made to histones. Holocarboxylase synthetase (HCS) and biotinidase have been implicated as biotinylating enzymes. However, the details of the mechanism and the regulation of biotin transfer on and off histones remains unclear. Here we report that in a cell culture system low biotin availability reduces biotinylation of carboxylases, yet apparent biotinylation of histones is unaffected. This is despite biotin depletion having detrimental effects on cell viability and proliferation. Further analysis of the widely used method for detecting biotin on histones, streptavidin blotting, revealed that streptavidin interacts with histones independently of biotin binding. Preincubation of streptavidin with free biotin reduced binding to biotinylated carboxylases but did not block binding to histones. To investigate biotinylation of histones using an alternative detection method independent of streptavidin, incorporation of 14C biotin into biotinylated proteins was analyzed. Radiolabeled biotin was readily detectable on carboxylases but not on histones, implying very low levels of biotin in the nucleus attached to histone proteins (< 0.03% biotinylation). In conclusion, we would caution against the use of streptavidin for investigating histone biotinylation.  相似文献   

7.
We have incorporated artificial lipid-anchored streptavidin conjugates with fully saturated or polyunsaturated lipid anchors into the plasma membranes of Jurkat T-lymphocytes to assess previous conclusions that the activation of signaling processes induced in these cells by clustering of endogenous glycosylphosphatidylinositol-anchored proteins or ganglioside GM1 depends specifically on the association of these membrane components with lipid rafts. Lipid-anchored streptavidin conjugates could be incorporated into Jurkat or other mammalian cell surfaces by inserting biotinylated phosphatidylethanolamine-polyethyleneglycols (PE-PEGs) and subsequently binding streptavidin to the cell-incorporated PE-PEGs. Saturated dipalmitoyl-PE-PEG-streptavidin conjugates prepared in this manner partitioned substantially into the detergent-insoluble membrane fraction isolated from Jurkat or fibroblast cells, whereas polyunsaturated dilinoleoyl-PE-PEG-anchored conjugates were wholly excluded from this fraction, consistent with the differences in the affinities of the two types of lipid anchors for liquid-ordered membrane domains. Remarkably, however, antibody-mediated cross-linking of either dipalmitoyl- or dilinoleoyl-PE-PEG-anchored streptavidin conjugates in Jurkat cells induced elevation of cytoplasmic calcium levels and tyrosine phosphorylation of the scaf-folding protein linker of T-cell activation in a manner similar to that observed upon cross-linking of endogenous CD59 or ganglioside GM1. The amplitude of the cross-linking-stimulated elevation of cytoplasmic calcium moreover showed an essentially identical dependence on the level of incorporated streptavidin conjugate for either type of lipid anchor. Confocal fluorescence microscopy revealed that PE-PEG-streptavidin conjugates with saturated versus polyunsaturated anchors showed very similar surface distributions vis à vis GM1 or CD59 under conditions where one or both species were cross-linked. These results indicate that cross-linking of diverse proteins anchored only to the outer leaflet of the plasma membrane can induce activation of Jurkat T-cell-signaling responses, but they appear to contradict previous suggestions that this phenomenon rests specifically on the association of such species with lipid rafts.  相似文献   

8.
The high affinity binding interaction of biotin to avidin or streptavidin has been used widely in biochemistry and molecular biology, often in sensitive protein detection or protein capture applications. However, in vitro chemical techniques for protein biotinylation are not always successful, with some common problems being a lack of reaction specificity, inactivation of amino acid residues critical for protein function and low levels of biotin incorporation. This report describes an improved expression system for the highly specific and quantitative in vivo biotinylation of fusion proteins. A short 'biotinylation peptide', described previously by Schatz, is linked to the N-terminus of Escherichia coli thioredoxin (TrxA) to form a new protein, called BIOTRX. The 'biotinylation peptide' serves as an in vivo substrate mimic for E. coli biotin holoenzyme synthetase (BirA), an enzyme which usually performs highly selective biotinylation of E.coli biotin carboxyl carrier protein (BCCP). A plasmid expression vector carrying the BIOTRX and birA genes arranged as a bacterial operon can be used to obtain high level production of soluble BIOTRX and BirA proteins and, under appropriate culture conditions, BIOTRX protein produced by this system is completely biotinylated. Fusions of BIOTRX to other proteins or peptides, whether these polypeptides are linked to the C-terminus or inserted into the BIOTRX active site loop, are also quantitatively biotinylated. Both types of BIOTRX fusion can be captured efficiently on avidin/streptavidin media for purification purposes or to facilitate interaction assays. We illustrate the utility of the system by measurements of antibody and soluble receptor protein binding to BIOTRX fusions immobilized on streptavidin-conjugated BIAcore chips.  相似文献   

9.
We have investigated the characteristics and utilities of streptavidin-binding to gram-negative and gram-positive bacteria and Candida spp. The pre-treatment of these microbes with chemical reagents such as CHCl3, NaOH, and Tween 20 have allowed colorimetric visualization under light microscopy or quantitation on nitrocellulose membranes, using streptavidin/biotinylated alkaline phosphatase conjugates. Analysis of this binding was confirmed by western blot. These binding reactions were due to the specific interaction of streptavidin with biotinylated proteins present in the microbes. Competition assays with free biotin or inhibition by an antibiotin antibody confirmed binding to these proteins. With knowledge of these strongly specific interactions, we attempted to reveal the biotinylated proteins within these microbes using clinical specimens. Using phagocyte-smears from blood, urine, and ascites, these intracellular microbes were easily detected by light microscopy. One of the septic blood samples stained by our technique revealed semi-digested microbial signals despite the absence of a signal with routine staining. This detection system, which combines streptavidin as a probe and biotinylated proteins as a microbial marker, is useful in staining for intracellular bacteria or fungi (e.g., microbial infections in phagocyte-smears).  相似文献   

10.
We have developed a versatile, potent technique for imaging cells in culture and in vivo by expressing a metabolically biotinylated cell-surface receptor and visualizing it with labeled streptavidin moieties. The recombinant reporter protein, which incorporates a biotin acceptor peptide (BAP) between an N-terminal signal sequence and a transmembrane domain, (BAP-TM) was efficiently biotinylated by endogenous biotin ligase in mammalian cells with the biotin displayed on the cell surface. Tumors expressing the BAP-TM have high sensitivity for magnetic resonance and fluorescence tomographic imaging in vivo after intravascular injection of streptavidin conjugated to magnetic nanoparticles or fluorochromes, respectively. Moreover, streptavidin-horseradish peroxidase conjugates in conjunction with a peroxidase-sensitive gadolinium agent further increased and prolonged the magnetic resonance signal. This BAP-TM allows noninvasive real-time imaging of any cell type transduced to express this reporter protein in culture or in vivo.  相似文献   

11.
A trypsin-streptavidin (TRYPSA) fusion protein was designed and its expression in Escherichia coli was evaluated. The streptavidin gene was PCR modified and cloned into the pET expression vector. The trypsin gene was subsequently inserted into this plasmid, thus generating a colinear fusion of trypsin and streptavidin genes (pTRYPSA). This engineering strategy was verified, and TRYPSA was expressed after IPTG induction using the E. coli strains, BL21(DE3) and BL21(DE3)pLysS. Standard protein fractions of the cell lysate were prepared and trypsin activity was primarily detected in the periplasmic and inclusion body fractions. Immunoblotting showed a single Western-positive band exhibiting a molecular weight of 39,000 Da. A biotinylated porous glass affinity matrix was prepared and selective adsorption resulted in a one-step purification and immobilization of TRYPSA from crude cell lysate. Trypsin activity was verified using a synthetic substrate. This enzyme bioreactor should serve as an excellent prototype for future studies that will examine the effect of limited proteolysis on functional characteristics of milk proteins, including gelling, emulsifying and foaming properties.  相似文献   

12.
We have used biologically active derivatives of beta-nerve growth factor (NGF), modified by biotinylation via carboxyl groups, to target the specific binding of liposomes to cultured rat and human tumor cells bearing NGF receptors. Liposomes, to be used for targeting, were prepared by conjugating streptavidin to phospholipid amino groups on liposomes prepared by reverse-phase evaporation. Approximately 2,000 streptavidin molecules were incorporated per liposome. Addition of biotinylated NGF, but not of unmodified NGF, could mediate the subsequent binding of radiolabeled streptavidin-liposomes to rat pheochromocytoma PC12 cells in suspension at 4 degrees C. In contrast, incubation with biotinylated NGF did not mediate the binding of hemoglobin-conjugated liposomes. Under optimal incubation conditions, approximately 570 streptavidin-liposomes were specifically bound per cell. Biotinylated NGF was also used to obtain specific binding of streptavidin-liposomes containing encapsulated fluorescein isothiocyanate-labeled dextran to PC12 cells or human melanoma HS294 cells. When HS294 cells were incubated at 37 degrees C following targeted liposome binding at 4 degrees C, the cell-associated fluorescence appeared to become internalized, displaying a perinuclear pattern of fluorescence similar to that observed when lysosomes were stained with acridine orange. Trypsin treatment abolished cell-associated fluorescence when cells were held at 4 degrees C but did not alter the fluorescence pattern in cells following incubation at 37 degrees C. When liposomes containing carboxyfluorescein, a dye capable of diffusing out of acidic compartments, were targeted to HS294 cells, subsequent incubation at 37 degrees C resulted in diffuse cytoplasmic fluorescence, suggesting that internalized liposomes encounter lysosomal or prelysosomal organelles.  相似文献   

13.
The design and fabrication of protein biochips requires characterization of blocking agents that minimize nonspecific binding of proteins or organisms. Nonspecific adsorption of Escherichia coli, Listeria innocua, and Listeria monocytogenes is prevented by bovine serum albumin (BSA) or biotinylated BSA adsorbed on SiO(2) surfaces of a biochip that had been modified with a C(18) coating. Biotinylated BSA forms a protein-based surface that in turn binds streptavidin. Because streptavidin has multiple binding sites for biotin, it in turn anchors other biotinylated proteins, including antibodies. Hence, biotinylated BSA simultaneously serves as a blocking agent and a foundation for binding an interfacing protein, avidin or streptavidin, which in turns anchors biotinylated antibody. In our case, the antibody is C11E9, an IgG-type antibody that binds Listeria spp. Nonspecific adsorption of another bacterium, Escherichia coli, is also minimized due to the blocking action of the BSA. The blocking characteristics of BSA adsorbed on C(18)-derivatized SiO(2) surfaces for construction of a protein biochip for electronic detection of pathogenic organisms is investigated.  相似文献   

14.
beta-nerve growth factor (NGF) was modified by biotinylation via carboxyl group substitution (C-bio-NGF) using biotin hydrazide and the coupling reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide, under reaction conditions that yielded an average of 3 biotin additions per NGF subunit. NGF was also biotinylated through amino group substitution, using N-hydroxysuccinimidyl biotin, to produce derivatives with ratios of one, two, and four biotin moieties per NGF subunit (N-bio-NGF). The various biotinylated NGF derivatives were compared with native NGF for their capacity to compete with 125I-NGF for binding to NGF receptors on rat pheochromocytoma (PC12) cells at 4 degrees C. On the basis of such radioreceptor assays, C-bio-NGF was as effective as native NGF in binding to NGF receptors. C-bio-NGF was also as effective as native NGF in promoting neurite outgrowth from PC12 cells. In contrast, N-bio-NGF containing one biotin per NGF subunit was only 28% as active in binding as native NGF. Increasing the biotin:NGF ratio to 2 to 4 further decreased receptor binding to 13% and 6%, respectively, as compared to native NGF. Once bound to cells, C-bio-NGF had the capacity to mediate the specific binding of 125I-streptavidin to PC12 cells. This binding of streptavidin was prevented by excess native NGF and by antiserum to NGF, but not by RNase A, insulin, cytochrome c, or nonimmune serum. In addition, a variant PC12 line lacking functional NGF receptors was not labeled by 125I-streptavidin after prior incubation with C-bio-NGF.  相似文献   

15.
目的 GFP(绿色荧光蛋白)-SA(链亲和素)双功能融合蛋白的制备及其鉴定研究,以展示我们建立的技术平台,即用含链亲和素的双功能融合蛋白对生物素化的细胞表面进行高效的锚定修饰。方法 构建原核表达载体pET24d/GFP-SA转化大肠杆菌BL21(DE3)。用IPTG诱导重组蛋白的表达,用镍金属螯合(Ni-NTA)层析柱进行纯化。用制备的GFP-SA双功能融合蛋白,对B16肿瘤细胞已生物素化的细胞表面进行修饰,经荧光显微镜和流式细胞仪进行修饰效率分析。此外,用MTT法检测细胞表面修饰对肿瘤细胞活力及其生长情况的影响。结果 GFP-SA重组融合蛋白在大肠杆菌实现了高效表达(约占细菌总蛋白的20%),通过纯化和复性制备的GFP-SA双功能融合蛋白具有双重活性,即:链亲和素介导的、对生物素高效特异的结合活性,和GFP发射绿色荧光的活性,并能高效修饰表面已生物素化的肿瘤细胞。此外,GFP-SA双功能融合蛋白的细胞表面修饰对细胞的活力及其生长无显著影响。结论 GFP-SA融合蛋白能高效修饰表面已生物素化的肿瘤细胞,可用作肿瘤疫苗研究的示踪蛋白及实验对照体系。  相似文献   

16.
DNA labeled with the chemically cleavable biotinylated nucleotide Bio-12-SS-dUTP was chromatographed on biotin cellulose affinity columns using either avidin or streptavidin as the affinity reagent. Although both proteins were equally effective in binding the Bio-12-SS-DNA to the affinity resin, two important differences were found. First, nonbiotinylated DNA bound to avidin, but not to streptavidin, in buffers containing 50 mM NaCl. Second, Bio-12-SS-DNA was released much more slowly from the streptavidin affinity column than from the avidin column upon washing with buffer containing dithiothreitol. This difficulty in reducing the disulfide bond of Bio-12-SS-DNA bound to streptavidin is most likely due to steric protection of the disulfide bond by the protein. This conclusion is supported by our finding that DNA labeled with another biotinylated nucleotide analog, Bio-19-SS-dUTP, is rapidly and efficiently recovered from a streptavidin column. In Bio-19-SS-DNA, the distance between the disulfide bond and the biotin group is approximately 10 A greater than that in Bio-12-SS-DNA. Therefore, Bio-19-SS-dUTP and streptavidin form the basis of an efficient affinity system for the isolation and subsequent recovery of biotinylated DNA in the presence of low ionic strength buffers.  相似文献   

17.
The coupling between the quaternary structure, stability and function of streptavidin makes it difficult to engineer a stable, high affinity monomer for biotechnology applications. For example, the binding pocket of streptavidin tetramer is comprised of residues from multiple subunits, which cannot be replicated in a single domain protein. However, rhizavidin from Rhizobium etli was recently shown to bind biotin with high affinity as a dimer without the hydrophobic tryptophan lid donated by an adjacent subunit. In particular, the binding site of rhizavidin uses residues from a single subunit to interact with bound biotin. We therefore postulated that replacing the binding site residues of streptavidin monomer with corresponding rhizavidin residues would lead to the design of a high affinity monomer useful for biotechnology applications. Here, we report the construction and characterization of a structural monomer, mSA, which combines the streptavidin and rhizavidin sequences to achieve optimized biophysical properties. First, the biotin affinity of mSA (Kd = 2.8 nM) is the highest among nontetrameric streptavidin, allowing sensitive monovalent detection of biotinylated ligands. The monomer also has significantly higher stability (Tm = 59.8°C) and solubility than all other previously engineered monomers to ensure the molecule remains folded and functional during its application. Using fluorescence correlation spectroscopy, we show that mSA binds biotinylated targets as a monomer. We also show that the molecule can be used as a genetic tag to introduce biotin binding capability to a heterologous protein. For example, recombinantly fusing the monomer to a cell surface receptor allows direct labeling and imaging of transfected cells using biotinylated fluorophores. A stable and functional streptavidin monomer, such as mSA, should be a useful reagent for designing novel detection systems based on monovalent biotin interaction. Biotechnol. Bioeng. 2013; 110: 57–67. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
To directly assess the binding of exogenous peptides to cell surface-associated MHC class I molecules at the single cell level, we examined the possibility of combining the use of biotinylated peptide derivatives with an immunofluorescence detection system based on flow cytometry. Various biotinylated derivatives of the adenovirus 5 early region 1A peptide 234-243, an antigenic peptide recognized by CTL in the context of H-2Db, were first screened in functional assays for their ability to bind efficiently to Db molecules on living cells. Suitable peptide derivatives were then tested for their ability to generate positive fluorescence signals upon addition of phycoerythrin-labeled streptavidin to peptide derivative-bearing cells. Strong fluorescent staining of Db-expressing cells was achieved after incubation with a peptide derivative containing a biotin group at the C-terminus. Competition experiments using the unmodified parental peptide as well as unrelated peptides known to bind to Kd, Kb, or Db, respectively, established that binding of the biotinylated peptide to living cells was Db-specific. By using Con A blasts derived from different H-2 congenic mouse strains, it could be shown that the biotinylated peptide bound only to Db among > 20 class I alleles tested. Moreover, binding of the biotinylated peptide to cells expressing the Dbm13 and Dbm14 mutant molecules was drastically reduced compared to Db. Binding of the biotinylated peptide to freshly isolated Db+ cells was readily detectable, allowing direct assessment of the relative amount of peptide bound to distinct lymphocyte subpopulations by three-color flow cytometry. While minor differences between peripheral T and B cells could be documented, thymocytes were found to differ widely in their peptide binding activity. In all cases, these differences correlated positively with the differential expression of Db at the cell surface. Finally, kinetic studies at different temperatures strongly suggested that the biotinylated peptide first associated with Db molecules available constitutively at the cell surface and then with newly arrived Db molecules.  相似文献   

19.
The Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein functions in latently infected cells as an essential participant in KSHV genome replication and as a driver of dysregulated cell growth. To identify novel LANA protein-cell protein interactions that could contribute to these activities, we performed a proteomic screen in which purified, adenovirus-expressed Flag-LANA protein was incubated with an array displaying 4,192 nonredundant human proteins. Sixty-one interacting cell proteins were consistently detected. LANA interactions with high-mobility group AT-hook 1 (HMGA1), HMGB1, telomeric repeat binding factor 1 (TRF1), xeroderma pigmentosum complementation group A (XPA), pygopus homolog 2 (PYGO2), protein phosphatase 2A (PP2A)B subunit, Tat-interactive protein 60 (TIP60), replication protein A1 (RPA1), and RPA2 proteins were confirmed in coimmunoprecipitation assays. LANA-associated TIP60 retained acetyltransferase activity and, unlike human papillomavirus E6 and HIV-1 TAT proteins, LANA did not reduce TIP60 stability. The LANA-bound PP2A B subunit was associated with the PP2A A subunit but not the catalytic C subunit, suggesting a disruption of PP2A phosphatase activity. This is reminiscent of the role of simian virus 40 (SV40) small t antigen. Chromatin immunoprecipitation (ChIP) assays showed binding of RPA1 and RPA2 to the KSHV terminal repeats. Interestingly, LANA expression ablated RPA1 and RPA2 binding to the cell telomeric repeats. In U2OS cells that rely on the alternative mechanism for telomere maintenance, LANA expression had minimal effect on telomere length. However, LANA expression in telomerase immortalized endothelial cells resulted in telomere shortening. In KSHV-infected cells, telomere shortening may be one more mechanism by which LANA contributes to the development of malignancy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号