首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the vertebrate retina, neurites from distinct neuronal cell types are constrained within the plexiform layers, allowing for establishment of retinal lamination. However, the mechanisms by which retinal neurites are segregated within the inner or outer plexiform layers are not known. We find that the transmembrane semaphorins Sema5A and Sema5B constrain neurites from multiple retinal neuron subtypes within the inner plexiform layer (IPL). In Sema5A?/?; Sema5B?/? mice, retinal ganglion cells (RGCs) and amacrine and bipolar cells exhibit severe defects leading to neurite mistargeting into the outer portions of the retina. These targeting abnormalities are more prominent in the outer (OFF) layers of the IPL and result in functional defects in select RGC response properties. Sema5A and Sema5B inhibit retinal neurite outgrowth through PlexinA1 and PlexinA3 receptors both in vitro and in vivo. These findings define a set of ligands and receptors required for the establishment of inner retinal lamination and function.  相似文献   

2.
A noticeable characteristic of nervous systems is the arrangement of synapses into distinct layers. Such laminae are fundamental for the spatial organisation of synaptic connections transmitting different kinds of information. A major example of this is the inner plexiform layer (IPL) of the vertebrate retina, which is subdivided into at least ten sublayers. Another noticeable characteristic of these retina layers is that neurons are displayed in the horizontal plane in a non-random array termed as mosaic patterning. Recent studies of vertebrate and invertebrate systems have identified molecules that mediate these interactions. Here, we review the last mechanisms and molecules mediating retinal layering.  相似文献   

3.
The mes-metencephalic boundary (isthmus) works as an organizer for the tectum, and the organizing molecule may be Fgf8. The region where Otx2, En1, and Pax2 are expressed overlappingly may differentiate into the mesencephalon. The di-mesencephalic and mes-metencephalic boundaries are determined by repressive interaction of Pax6 and En1/Pax2 and of Otx2 and Gbx2, respectively. The optic tectum is a visual center in lower vertebrates. The tectum and the retina should be regionalized and be positionally specialized for the proper retinotopic projection. Gradient of En2 plays a crucial role in rostrocaudal polarity formation of the tectum. En2 confers caudal characteristics of the retina by inducing ephrinA2 and A5, which are the repellant molecules for the growth cones of temporal retinal ganglion cells. Grg4 antagonizes the isthmus-related genes, and is involved in the formation of di-mesencephalic boundary and tectal polarity formation at an early phase of development. Then, Grg4 plays a role in tectal laminar formation by controlling the migration pathway. Migration pathway of tectal postmitotic cells changes after E5. The late migratory cells split the early migratory neurons to form laminae h-j of SGFS. Grg4 is expressed in the ventricular layer after E5, and forces postmitotic cells to follow the late migratory pathway, though retinal fibers terminate at laminae a-f of SGFS. Misexpression of Grg4 disrupts the lamina g, and in such tecta retinal arbors invade deep into the tectal layer, indicating that lamina g is a nonpermissive lamina for the retinal arbors.  相似文献   

4.
For proper function of the retina, the correct proportions of retinal cell types must be generated, they must be organized into cell-specific laminae, and appropriate synaptic connections must be made. To understand the genetic regulation of retinal development, we have analyzed mutations in the mosaic eyes gene that disrupt retinal lamination, the localization of retinal cell divisions to the retinal pigmented epithelial surface and retinal pigmented epithelial development. Although retinal organization is severely disrupted in mosaic eyes mutants, surprisingly, retinal cell differentiation occurs. The positions of dividing cells and neurons in the brain appear normal in mosaic eyes mutants, suggesting that wild-type mosaic eyes function is specifically required for normal retinal development. We demonstrate that mosaic eyes function is required within the retinal pigmented epithelium, rather than in dividing retinal cells. This analysis reveals an interaction between the retinal pigmented epithelium and the retina that is required for retinal patterning. We suggest that wild-type mosaic eyes function is required for the retinal pigmented epithelium to signal properly to the retina.  相似文献   

5.
6.
Embryos from mutagenized zebrafish were screened for disruptions in retinal lamination to identify factors involved in vertebrate retinal cell specification and differentiation. Two alleles of a recessive mutation, young, were isolated in which final differentiation and normal lamination of retinal cells were blocked. Early aspects of retinogenesis including the specification of cells along the inner optic cup as retinal tissue, polarity of the retinal neuroepithelium, and confinement of cell divisions to the apical pigmented epithelial boarder were normal in young mutants. BrdU incorporation experiments showed that the initiation and pattern of cell cycle withdrawal across the retina was comparable to wild-type siblings; however, this process took longer in the mutant. Analysis of early markers for cell type differentiation revealed that each of the major classes of retinal neurons, as well as non-neural Müller glial cells, are specified in young embryos. However, the retinal cells fail to elaborate morphological specializations, and analysis of late cell-type-specific markers suggests that the retinal cells were inhibited from fully differentiating. Other regions of the nervous system showed no obvious defects in young mutants. Mosaic analysis demonstrated that the young mutation acts non-cell-autonomously within the retina, as final morphological and molecular differentiation was rescued when genetically mutant cells were transplanted into wild-type hosts. Conversely, differentiation was prevented in wild-type cells when placed in young mutant retinas. Mosaic experiments also suggest that young functions at or near the cell surface and is not freely diffusible. We conclude that the young mutation disrupts the post-specification development of all retinal neurons and glia cells.  相似文献   

7.
Fibroblast growth factors (FGFs) mediate multiple developmental signals in vertebrates. Several of these factors are expressed in limb bud structures that direct patterning of the limb. FGF4 is produced in the apical ectodermal ridge (AER) where it is hypothesized to provide mitogenic and morphogenic signals to the underlying mesenchyme that regulate normal limb development. Mutation of this gene in the germline of mice results in early embryonic lethality, preventing subsequent evaluation of Fgf4 function in the AER. A conditional mutant of Fgf4, based on site-specific Cre/loxP-mediated excision of the gene, allowed us to bypass embryonic lethality and directly test the role of FGF4 during limb development in living murine embryos. This conditional mutation was designed so that concomitant with inactivation of the Fgf4 gene by excision of all Fgf4-coding sequences, a reporter gene was activated in Fgf4-expressing cells, allowing assessment of the site-specific recombination reaction. Although a large body of evidence led us to predict that ablation of Fgf4 gene function in the AER of developing mice would result in abnormal limb outgrowth and patterning, we found that Fgf4 conditional mutants had normal limbs. Furthermore, expression patterns of Shh, Bmp2, Fgf8 and Fgf10 were normal in the limb buds of the conditional mutants. These findings indicate that the previously proposed FGF4-SHH feedback loop is not essential for coordination of murine limb outgrowth and patterning. We suggest that some of the roles currently attributed to FGF4 during early vertebrate limb development may be performed by other AER factors in vivo.  相似文献   

8.
Retinal ganglion neurons extend axons that grow along astroglial cell surfaces in the developing optic pathway. To identify the molecules that may mediate axon extension in vivo, antibodies to neuronal cell surface proteins were tested for their effects on neurite outgrowth by embryonic chick retinal neurons cultured on astrocyte monolayers. Neurite outgrowth by retinal neurons from embryonic day 7 (E7) and E11 chick embryos depended on the function of a calcium-dependent cell adhesion molecule (N-cadherin) and beta 1-class integrin extracellular matrix receptors. The inhibitory effects of either antibody on process extension could not be accounted for by a reduction in the attachment of neurons to astrocytes. The role of a third cell adhesion molecule, NCAM, changed during development. Anti-NCAM had no detectable inhibitory effects on neurite outgrowth by E7 retinal neurons. In contrast, E11 retinal neurite outgrowth was strongly dependent on NCAM function. Thus, N-cadherin, integrins, and NCAM are likely to regulate axon extension in the optic pathway, and their relative importance varies with developmental age.  相似文献   

9.
Receptor protein tyrosine phosphatases (RPTPs) are implicated as regulators of axon growth and guidance. Genetic deletions in the fly have shown that type III RPTPs are important in axon pathfinding, but nothing is known about their function on a cellular level. Previous experiments in our lab have identified a type III RPTP, CRYP-2/cPTPRO, specifically expressed during the period of axon outgrowth in the chick brain; cPTPRO is expressed in the axons and growth cones of retinal and tectal projection neurons. We constructed a fusion protein containing the extracellular domain of cPTPRO fused to the Fc portion of mouse immunoglobulin G-1, and used it to perform in vitro functional assays. We found that the extracellular domain of cPTPRO is an antiadhesive, neurite inhibitory molecule for retinal neurons. In addition, cPTPRO had potent growth cone collapsing activity in vitro, and locally applied gradients of cPTPRO repelled growing retinal axons. This chemorepulsive effect could be regulated by the level of cGMP in the growth cone. Immunohistochemical examination of the retina indicated that cPTPRO has at least one heterophilic binding partner in the retina. Taken together, our results indicate that cPTPRO may act as a guidance cue for retinal ganglion cells during vertebrate development.  相似文献   

10.
N-cadherin (Ncad) is a classical cadherin that is implicated in several aspects of vertebrate embryonic development, including somitogenesis, heart morphogenesis, neural tube formation and establishment of left-right asymmetry. However, genetic in vivo analyses of its role during neural development have been rather limited. We report the isolation and characterization of the zebrafish parachute (pac) mutations. By mapping and candidate gene analysis, we demonstrate that pac corresponds to a zebrafish n-cadherin (ncad) homolog. Three mutant alleles were sequenced and each is likely to encode a non-functional Ncad protein. All result in a similar neural tube phenotype that is most prominent in the midbrain, hindbrain and the posterior spinal cord. Neuroectodermal cell adhesion is altered, and convergent cell movements during neurulation are severely compromised. In addition, many neurons become progressively displaced along the dorsoventral and the anteroposterior axes. At the cellular level, loss of Ncad affects beta-catenin stabilization/localization and causes mispositioned and increased mitoses in the dorsal midbrain and hindbrain, a phenotype later correlated with enhanced apoptosis and the appearance of ectopic neurons in these areas. Our results thus highlight novel and crucial in vivo roles for Ncad in the control of cell convergence, maintenance of neuronal positioning and dorsal cell proliferation during vertebrate neural tube development.  相似文献   

11.
Formation of the trochlear nerve within the anterior hindbrain provides a model system to study a simple axonal projection within the vertebrate central nervous system. We show that trochlear motor neurons are born within the isthmic organiser and also immediately posterior to it in anterior rhombomere 1. Axons of the most anterior cells follow a dorsal projection, which circumnavigates the isthmus, while those of more posterior trochlear neurons project anterodorsally to enter the isthmus. Once within the isthmus, axons form large fascicles that extend to a dorsal exit point. We investigated the possibility that the projection of trochlear axons towards the isthmus and their subsequent growth within that tissue might depend upon chemoattraction. We demonstrate that both isthmic tissue and Fgf8 protein are attractants for trochlear axons in vitro, while ectopic Fgf8 causes turning of these axons away from their normal routes in vivo. Both inhibition of FGF receptor activation and inhibition of Fgf8 function in vitro affect formation of the trochlear projection within explants in a manner consistent with a guidance function of Fgf8 during trochlear axon navigation.  相似文献   

12.
13.
Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the retina. Most studies have focused on examining functions of classic cadherins (e.g. N‐cadherin) in retinal development. There is little information on the function of protocadherins in the development of the vertebrate visual system. We previously showed that protocadherin‐17 mRNA was expressed in developing zebrafish retina during critical stages of the retinal development. To gain insight into protocadherin‐17 function in the formation of the retina, we analyzed eye development and differentiation of retinal cells in zebrafish embryos injected with protocadherin‐17 specific antisense morpholino oligonucleotides (MOs). Protocadherin‐17 knockdown embryos (pcdh17 morphants) had significantly reduced eyes due mainly to decreased cell proliferation. Differentiation of several retinal cell types (e.g. retinal ganglion cells) was also disrupted in the pcdh17 morphants. Phenotypic rescue was achieved by injection of protocadherin‐17 mRNA. Injection of a vivo‐protocadherin‐17 MO into one eye of embryonic zebrafish resulted in similar eye defects. Our results suggest that protocadherin‐17 plays an important role in the normal formation of the zebrafish retina. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

14.
Receptor protein tyrosine phosphatases (RPTPs) are regulators of axon outgrowth and guidance in a variety of different vertebrate and invertebrate systems. Three RPTPs, CRYP-alpha, PTP-delta, and LAR, are expressed in overlapping but distinct patterns in the developing Xenopus retina, including expression in retinal ganglion cells (RGCs) as they send axons to the tectum (Johnson KG, Holt CE. 2000. Expression of CRYP-alpha, LAR, PTP-delta, and PTP-rho in the developing Xenopus visual system. Mech Dev 92:291-294). In order to examine the role of these RPTPs in visual system development, putative dominant negative RPTP mutants (CS-CRYP-alpha, CS-PTP-delta, and CS-LAR) were expressed either singly or in combination in retinal cells. No effect was found on either retinal cell fate determination or on gross RGC axon guidance to the tectum. However, expression of these CS-RPTP constructs differentially affected the rate of RGC axon outgrowth. In vivo, expression of all three CS-RPTPs or CS-PTP-delta alone inhibited RGC axon outgrowth, while CS-LAR and CS-CRYP-alpha had no significant effect. In vitro, expression of CS-CRYP-alpha enhanced neurite outgrowth, while CS-PTP-delta inhibited neurite outgrowth in a substrate-dependent manner. This study provides the first in vivo evidence that RPTPs regulate retinal axon outgrowth.  相似文献   

15.
The Retinal Homeobox (Rx) gene is essential for vertebrate eye development. Rx function is required for the specification and maintenance of retinal progenitor cells (RPCs). Loss of Rx function leads to a lack of eye development in a variety of species. Here we show that Rx function is also necessary during retinal regeneration. We performed a thorough characterization of retinal regeneration after partial retinal resection in pre-metamorphic Xenopus laevis. We show that after injury the wound is repopulated with retinal progenitor cells (RPCs) that express Rx and other RPC marker genes. We used an shRNA-based approach to specifically silence Rx expression in vivo in tadpoles. We found that loss of Rx function results in impaired retinal regeneration, including defects in the cells that repopulate the wound and the RPE at the wound site. We show that the regeneration defects can be rescued by provision of exogenous Rx. These results demonstrate for the first time that Rx, in addition to being essential during retinal development, also functions during retinal regeneration.  相似文献   

16.
Creatine and phosphocreatine are required to maintain ATP needed for normal retinal function and development. The aim of the present study was to determine the distribution of the creatine transporter (CRT) to gain insight to how creatine is transported into the retina. An affinity-purified antibody raised against the CRT was applied to adult vertebrate retinas and to mouse retina during development. Confocal microscopy was used to identify the localization pattern as well as co-localization patterns with a range of retinal neurochemical markers. Strong labeling of the CRT was seen in the photoreceptor inner segments in all species studied and labeling of a variety of inner neuronal cells (amacrine, bipolar, and ganglion cells), the retinal nerve fibers and sites of creatine transport into the retina (retinal pigment epithelium, inner retinal blood vessels, and perivascular astrocytes). The CRT was not expressed in Müller cells of any of the species studied. The lack of labeling of Müller cells suggests that neurons are independent of this glial cell in accumulating creatine. During mouse retinal development, expression of the CRT progressively increased throughout the retina until approximately postnatal day 10, with a subsequent decrease. Comparison of the distribution patterns of the CRT in vascular and avascular vertebrate retinas and studies of the mouse retina during development indicate that creatine and phosphocreatine are important for ATP homeostasis. photoreceptor; development; glutamine synthetase; neurochemistry  相似文献   

17.
Fibroblast growth factors (Fgf) are secreted signaling molecules that have mitogenic, patterning, neurotrophic and angiogenic properties. Their importance during embryonic development in patterning and morphogenesis of the vertebrate eye is well known, but less is known about the role of Fgfs in the adult vertebrate retina. To address Fgf function in adult retina, we determined the spatial distribution of components of the Fgf signaling pathway in the adult zebrafish retina. We detected differential expression of Fgf receptors, ligands and downstream Fgf targets within specific retinal layers. Furthermore, we blocked Fgf signaling in the retina, by expressing a dominant negative variant of Fgf receptor 1 conditionally in transgenic animals. After blocking Fgf signaling we observe a fast and progressive photoreceptor degeneration and disorganization of retinal tissue, coupled with cell death in the outer nuclear layer. Following the degeneration of photoreceptors, a profound regeneration response is triggered that starts with proliferation in the inner nuclear layer. Ultimately, rod and cone photoreceptors are regenerated completely. Our study reveals the requirement of Fgf signaling to maintain photoreceptors and for proliferation during regeneration in the adult zebrafish retina.  相似文献   

18.
Neurons in both vertebrate and invertebrate eyes are organized in regular arrays. Although much is known about the mechanisms involved in the formation of the regular arrays of neurons found in invertebrate eyes, much less is known about the mechanisms of formation of neuronal mosaics in the vertebrate eye. The purpose of these studies was to determine the cellular mechanisms that pattern the first neurons in vertebrate retina, the retinal ganglion cells. We have found that the ganglion cells in the chick retina develop as a patterned array that spreads from the central to peripheral retina as a wave front of differentiation. The onset of ganglion cell differentiation keeps pace with overall retinal growth; however, there is no clear cell cycle synchronization at the front of differentiation of the first ganglion cells. The differentiation of ganglion cells is not dependent on signals from previously formed ganglion cells, since isolation of the peripheral retina by as much as 400 microm from the front of ganglion cell differentiation does not prevent new ganglion cells from developing. Consistent with previous studies, blocking FGF receptor activation with a specific inhibitor to the FGFRs retards the movement of the front of ganglion cell differentiation, while application of exogenous FGF1 causes the precocious development of ganglion cells in peripheral retina. Our observations, taken together with those of previous studies, support a role for FGFs and FGF receptor activation in the initial development of retinal ganglion cells from the undifferentiated neuroepithelium peripheral to the expanding wave front of differentiation.  相似文献   

19.
Mutations of the oko meduzy (ome) locus cause drastic neuronal patterning defect in the zebrafish retina. The precise, stratified appearance of the wild-type retina is absent in the mutants. Despite the lack of lamination, at least seven retinal cell types differentiate in oko meduzy. The ome phenotype is already expressed in the retinal neuroepithelium affecting morphology of the neuroepithelial cells. Our experiments indicate that previously unknown cell-cell interactions are involved in development of the retinal neuroepithelial sheet. In genetically mosaic animals, cell-cell interactions are sufficient to rescue the phenotype of oko meduzy retinal neuroepithelial cells. These cell-cell interactions may play a critical role in the patterning events that lead to differentiation of distinct neuronal laminae in the vertebrate retina.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号