首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The refolding kinetics of guanidine-denatured disulfide-intact bovine pancreatic ribo-nuclease A (RNase A) and its proline-42-to-alanine mutant (Pro42Ala) have been studied by monitoring tyrosine burial and 2-cytidine monophosphate (2CMP) inhibitor binding. The folding rate for wild-type RNase A is faster in the presence of the inhibitor 2CMP than in its absence, indicating that the transition-state structure in the rate-determining step is stabilized by 2CMP. The folding rate monitored by 2CMP binding to the major slow-folding species of Pro42Ala RNase A is faster than the folding rate monitored by tyrosine burial; however, the folding rate monitored by inhibitor binding to the minor slow-folding species is decreased significantly over the folding rate monitored by tyrosine burial, indicating that the major and minor slow-folding species of Pro42Ala fold to the native state with different transition-state conformations in the rate-determining step.  相似文献   

2.
The folding and unfolding kinetics within the transition region were measured for RNase A and for RNase T1. The data were used to evaluate the theoretical models for the influence of prolyl isomerization on the observed folding kinetics. These two proteins were selected, since the folding reaction of RNase A is faster than prolyl isomerization, whereas in RNase T1, folding is slower than isomerization in the transition region. Folding of RNase T1 was investigated for three variants with different numbers of cis prolyl residues. The results indicate that in the transition region the folding rates are indeed strongly dependent on the number of prolyl residues. The variant of RNase T1 that contains only one cis prolyl residue folds about ten times faster than two variants that contain two cis prolyl residues. For both RNase A and RNase T1, the apparent rates of folding and unfolding as well as the corresponding amplitudes depend on the concentration of denaturant in a manner that was predicted by the model calculations. When refolding was started from the fast-folding species, additional kinetic phases could be observed in the transition region for both proteins. The obtained values could be used to calculate the microscopic rate constants of folding and isomerization on the basis of theoretical models.  相似文献   

3.
Acetimidation of bovine pancreatic ribonuclease A   总被引:6,自引:0,他引:6  
J H Reynolds 《Biochemistry》1968,7(9):3131-3135
  相似文献   

4.
Bovine seminal ribonuclease (BS-RNase) contains the MxM (noncovalent dimer) and M=M (free monomer) in constant ratio. The aim of this work was to evaluate the effect of BS-RNase, its monomer and dimer forms, and also various mutants of this enzyme on meiotic completion in cattle oocytes. It was found that BS-RNase has irreversible effects on the meiotic maturation of bovine oocytes in vitro, particularly on the completion of meiosis. The effect of BS-RNase is dose-dependent. In medium supplemented with 1 microg/ml, the results were comparable with those of the control (70% MII oocytes after 24 hr of culture). Whereas 5 microg/ml reduced the number of MII oocytes to 50%, 10 and 25 microg/ml arrested this process completely. The MxM form and RNase A at 5 microg/ml inhibited the maturation rate by 71 and 48%, respectively, but a less significant effect was observed for the M=M form, or the carboxymethylated monomers MCM31 and MCM32 (21%, 16%, and 42% MII oocytes, respectively, in comparison with control). These data demonstrate that bovine ribonucleases can have variable detrimental effects on the maturation of bovine oocyte. J. Exp. Zool. 287:394-399, 2000.  相似文献   

5.
Affinity chromatography of bovine pancreatic ribonuclease A   总被引:12,自引:0,他引:12  
  相似文献   

6.
Expression of bovine pancreatic ribonuclease A in Escherichia coli   总被引:3,自引:0,他引:3  
A synthetic gene for bovine pancreatic ribonuclease A (RNase A) has been expressed in Escherichia coli as a fusion protein with beta-galactosidase linked by the tetrapeptide Ile-Glu-Gly-Arg. RNase A was cleaved from the fusion using factor Xa, and the resulting product purified and reconstituted. The isolated RNase A was chromatographically, catalytically, and immunologically identical with authentic RNase A. This work argues that the method suggested by Nagai and Thogersen [Nagai, K. & Thogersen, H. C. (1984) Nature (Lond.) 309, 810-812] for releasing fusion proteins is quite general, even when applied to particularly complicated expression problem. The procedure here makes RNase A available for the first time as a model for studying structure-function relationships in proteins using site-directed mutagenesis.  相似文献   

7.
8.
9.
F X Schmid 《FEBS letters》1986,198(2):217-220
The trans----cis isomerization of Pro 93 was measured during refolding of bovine ribonuclease A. This isomerization is slow (tau = 500 s) under marginally stable folding conditions of 2.0 M GdmCl, pH 6, at 10 degrees C. However, it is strongly accelerated (tau = 100 s) in samples which, prior to isomerization, had been converted to a folding intermediate by a 15 s refolding pulse under strongly native conditions (0.8 M ammonium sulfate, 0 degree C). The results demonstrate that extensive folding is possible before Pro 93 isomerizes to its native cis state and that the presence of structural folding intermediates leads to a marked increase in the rate of subsequent proline isomerization.  相似文献   

10.
11.
12.
The S-peptide of the enzyme bovine pancreatic ribonuclease has been used as a model for covalent semisynthesis. Methods for side-chain protection, enzymatic cleavage of the peptide chain at the level of the single arginine-10 and for selective deprotection of the alpha-carboxyl function of this residue, have been examined. The partially protected [1-10] sequence has been coupled to a solid-phase generated [11-15] sequence attached to the polymer. After deblocking from the solid-support, the [1-15] semisynthetic peptide was complexed with native S-protein to give a complex with high biological activity.  相似文献   

13.
14.
Kethoxal (3-ethoxy-2-ketobutanal) reacts with the guanidino group of Nalpha-acetylarginine to produce four derivatives, reactive to periodate, stable at pH 7, with 15% reverting to arginine on acid hydrolysis. Other amino acids with blocked alpha-amino groups do not react, except the epsilon-amino of lysine (slowly). The pK of the mixed Kethoxal-Nalpha-acetylarginine derivatives is 5.8-6.1. Kethoxal reacts at neutral pH with arginyl residues of bovine pancreatic ribonuclease A. In the presence of an active-site ligand, arginine-39 and arginine-85 react at about equal rates. The loss of enzymic activity at pH 7 is proportional to the combined loss of these residues. The enzymic activity toward RNA is 20-25% of that of native RNAase at pH 7, and 90-100% at pH 5. In the absence of an active site ligand, arginine-10 is also modified with the loss of almost all enzymic activity, although arginine-10 is not an active-site residue. Arginine-33 is unreactive. Kethoxal-modified RNAase undergoes cross-linking in solution at pH 7 or in the freeze-dried state, Incubation at pH 9 in the presence of homoarginine results in partial regeneration of arginyl residues and activity at pH 7. Kethoxal modification of arginines-39 and -85 appears to raise the pK of lysine-41 by about 1 unit, as indicated ty the pH dependence of arylation by 2-carboxy-4,6-dinitrochlorobenzene. The claims of Patthy and Smith (J. Biol, Chem. (1975) 250, 565-569), and of Takahashi (J. Biol. Chem. (1968) 243, 6171-6179) that arginine-39 is a more important functional residue than is arginine-85 are questioned.  相似文献   

15.
The 4-arsono-2-nitrophenyl chromophore can serve as a versatile spectrophotometric probe of the surface structure of proteins. Values of pK1' and pK2' for the arsonic acid ionizations are near 3 and 8, respectively, and the presence of nearby positive and negative charges produces substantial alterations in the spectral response of the probe. Changes in the extinction at the wavelength of maximum difference are 30-50% of the extinction coefficients, epsilonmax, for each ionization of the arsonic acid moiety. The titration of 41-(4-arsono-2-nitrophenyl)ribonuclease A indicates that the arsonate dianion binds near the active-site histidine residues. With protonation of a carboxylate side chain in the acidic region, presumably aspartic acid-121, the active site is disrupted. The 41-(4-arsono-2-nitrophenyl) group interacts to a greater degree with the histidine-119 side chain than it does with the histidine-12 residue. Interactions of uridine or 3'-cytidylic acid with the ligand-binding region of 41-(4-arsono-2-nitrophenyl) ribonuclease A modify the spectrophotometric response extensively. 3'-Cytidylic acid binds 41-(4-arsono-2-nitrophenyl) ribonuclease A with an affinity 300 times less than that for native ribonuclease A and 17 times lower than that for 41-(2,4-dinitrophenyl) ribonuclease A. The arsononitrophenyl chromophore is responsive to changes in the active site of ribonuclease A induced by such perturbants as ligand binding, chemical modification, and both acid and thermal denaturation.  相似文献   

16.
T Kiefhaber  R Quaas  U Hahn  F X Schmid 《Biochemistry》1990,29(12):3053-3061
It is our aim to elucidate molecular aspects of the mechanism of protein folding. We use ribonuclease T1 as a model protein, because it is a small single-domain protein with a well-defined secondary and tertiary structure, which is stable in the presence and absence of disulfide bonds. Also, an efficient mutagenesis system is available to produce protein molecules with defined sequence variations. Here we present a preliminary characterization of the folding kinetics of ribonuclease T1. Its unfolding and refolding reactions are reversible, which is shown by the quantitative recovery of the catalytic activity after an unfolding/refolding cycle. Refolding is a complex process, where native protein is formed on three distinguishable pathways. There are 3.5% fast-folding molecules, which refold within the millisecond time range, and 96.5% slow-folding species, which regain the native state in the time range of minutes to hours. These slow-folding molecules give rise to two major, parallel refolding reactions. The mixture of fast- and slow-folding molecules is produced slowly after unfolding by chain equilibration reactions that show properties of proline isomerization. We conclude that part of the kinetic complexity of RNase T1 folding can be explained on the basis of the proline model for protein folding. This is supported by the finding that the slow refolding reactions of this protein are accelerated in the presence of the enzyme prolyl isomerase. However, several properties of ribonuclease T1 refolding, such as the dependence of the relative amplitudes on the probes, used to follow folding, are not readily explained by a simple proline model.  相似文献   

17.
Bovine pancreatic ribonuclease A loses almost completely its activity in 2-3 M guanidine, whereas only very slight conformational changes can be detected when following its unfolding by changes in its intrinsic fluorescence at 305 nm and ultraviolet absorbance at 287 nm. Reactivation on diluting out the denaturant is a time-dependent process, indicating that the inactivation is not due to inhibition by a reversible association of the enzyme with guanidine. The kinetic method of following the substrate reaction, in the presence of the denaturant previously proposed for use in the study of rapid inactivation reactions (Tian, W.X. and Tsou, C.-L. (1982) Biochemistry 21, 1028-1032), is applied to examine the inactivation rates of this enzyme during guanidine denaturation, and these have been compared with the unfolding rates as followed by fluorescence and absorbance changes. It is shown that during the unfolding of this enzyme in guanidine, the inactivation of the enzyme occurs within the dead time of mixing in a stopped-flow apparatus and is at least several orders of magnitude faster than the unfolding reaction as detected by the optical parameters. It appears that, as in the case of creatine kinase reported previously, the active site of a small enzyme stabilized by multiple disulfide linkages, such as ribonuclease A, is also situated in a region which is much more liable to being perturbed by denaturants than is the molecule as a whole.  相似文献   

18.
A fully active semisynthetic ribonuclease, RNase 1-118:111-124, may be prepared by enzymatically removing six residues from the COOH terminus of the protein (positions 119-124) and then complementing the inactive RNase 1-118 with a chemically synthesized peptide containing the COOH-terminal 14 residues of the molecule (RNase 111-124) [M. C. Lin, B. Gutte, S. Moore, and R. B. Merrifield (1970) J. Biol. Chem. 245, 5169-5170]. Nitration of tyrosine-115 in the peptide followed by complex formation with RNase 1-118 affords a fully active enzyme containing a unique nitrotyrosine residue in a position which is known and which is very likely to be completely exterior to the active site region. The binding constant between the tetradecapeptide and RNase 1-118 (5 X 10(6) M-1 at pH 6.0) is not changed by the nitration. Crystals of the nitrated complex are isomorphous with those of RNase 1-118:111-124, for which a refined 1.8-A structure has recently been obtained.  相似文献   

19.
The chemical modification of bovine pancreatic ribonuclease A by 6-chloropurine riboside was studied to obtain information about the role of the purine nucleoside moiety of the ribonucleic acid in the enzyme-substrate interaction. The residues involved in the reaction were identified, after performic acid oxidation and trypsin digestion, by reverse-phase HPLC peptide mapping. The labeled peptides were detected by following the absorbance at 254 nm, and amino acid analyses of these peptides showed that the reaction had taken place with the amino groups of Lys-1, -37, -41, and -91. The specificity of the reaction was unaffected by changing the ligand:protein molar ratio. Partial separation of the reaction products was accomplished by means of chromatography on CM-Sepharose: four labeled fractions corresponding to mono- and bisubstituted derivatives were found. One of the monosubstituted fractions (fraction E) contained a homogeneous protein with the nucleoside bound to the alpha-amino group of Lys-1 whereas the other (fraction D) was a mixture of derivatives labeled in the epsilon-amino group of Lys-1, -37, -41, and -91. Kinetic studies of these two monosubstituted fractions were performed with cytidine 2',3'-phosphate and ribonucleic acid as substrates. These derivatives showed a noncompetitive inhibition-like behavior with respect to RNase A. Results support the existence of several RNase A regions with affinity for purine nucleosides.  相似文献   

20.
L G Chavez  H A Scheraga 《Biochemistry》1979,18(20):4386-4395
Four antigenic regions of native bovine pancreatic ribonuclease have been located by using antibodies that react specifically with segments 1--13, 31--79, and 80--124. These antibodies were purified by affinity chromatography on columns to which these peptide segments were bound. Analysis of precipitin curves indicates that there are at least three antigenic determinants to which antibody molecules can bind simultaneously in the presence of excess antibodies. Analysis of binding data, however, for each purified specific antibody preparation, carried out by the method of Berzofsky et al. [Berzofsky, J. A., Curd, J. G., & Schechter, A. N. (1976) Biochemistry, 15, 2113], leads to an estimate of four for the number of antigenic determinants in ribonuclease; this estimate had also been made earlier by Stelos et al. [Stelos, P., Fothergill, J. E., & Singer, S. J. (1960) J. Am. Chem. Soc. 82, 6034]. We find that one determinant is associated with each of segments 1--13 and 80--124 and two with segment 31--79. No antigenic activity could be detected for segment 14--29 either in native ribonuclease or in the free fragment. These conclusions are based on (1) the use of specific peptides to isolate purified antibodies by affinity chromatography, (2) immunoprecipitation of an antigenic peptide from the peptic digest of ribonuclease, (3) competitive inhibition studies with various peptide and protein fragments [cyanogen bromide fragments 1--13, 31--79, and 80--124, the tryptic peptides 40--61 and 105--224, S-peptide, S-protein, and des(121--124)-RNase], and (4) comparison and evaluation of the published effects on antigenicity of chemical and enzymatic modifications and changes in sequence among homologous ribonucleases. These approaches provide evidence that the four antigenic determinants are localized around the alpha-helical portion of segment 1--10, somewhere in segment 40--61, at the beta bend in segment 63--75, and either at the beta bend or beta sheet in segment 87--104 of native ribonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号