首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The phylogenetically related phototrophic bacteria Rhodospirillum tenue and Rhodocyclus purpureus modulate activity of their glutamine synthetases by adenylylation/deadenylylation. Evidence for covalent modification includes the inhibitory effect of Mg2+ on the activity of glutamine synthetase extracted from cells of either species grown on excess ammonia, and the lack of Mg2+ inhibition of activity of the enzyme isolated from N2-(R. tenue) or glutamine (R. purpureus)-grown cells. In addition, snake venom phosphodiesterase treatment of glutamine synthetase from either species grown on excess ammonia relieved Mg2+ inhibition of the enzyme (as measured via the -glutamyl transferase assay), and changed the cation specificity from Mn2+ to Mg2+ (in the biosynthetic assay).  相似文献   

2.
Characteristics of the three major ammonia assimilatory enzymes, glutamate dehydrogenase (GDH), glutamine synthetase (GS) and glutamate synthase (GOGAT) in Corynebacterium callunae (NCIB 10338) were examined. The GDH of C. callunae specifically required NADPH and NADP+ as coenzymes in the amination and deamination reactions, respectively. This enzyme showed a marked specificity for -ketoglutarate and glutamate as substrates. The optimum pH was 7.2 for NADPH-GDH activity (amination) and 9.0 for NADP+-GDH activity (deamination). The results showed that NADPH-GDH and NADP+-GDH activities were controlled primarily by product inhibition and that the feedback effectors alanine and valine played a minor role in the control of NADPH-GDH activity. The transferase activity of GS was dependent on Mn+2 while the biosynthetic activity of the enzyme was dependent on Mg2+ as essential activators. The pH optima for transferase and biosynthetic activities were 8.0 and 7.0, respectively. In the transfer reaction, the K m values were 15.2 mM for glutamine, 1.46 mM for hydroxylamine, 3.5×10-3 mM for ADP and 1.03 mM for arsenate. Feedback inhibition by alanine, glycine and serine was also found to play an important role in controlling GS activity. In addition, the enzyme activity was sensitive to ATP. The transferase activity of the enzyme was responsive to ionic strength as well as the specific monovalent cation present. GOGAT of C. callunae utilized either NADPH or NADH as coenzymes, although the latter was less effective. The enzyme specifically required -ketoglutarate and glutamine as substrates. In cells grown in a medium with glutamate as the nitrogen source, the optimum pH was 7.6 for NADPH-GOGAT activity and 6.8 for NADH-GOGAT activity. Findings showed that NADPH-GOGAT and NADH-GOGAT activities were controlled by product inhibition caused by NADP+ and NAD+, respectively, and that ATP also had an important role in the control of NADPH-GOGAT activity. Both activities of GOGAT were found to be inhibited by azaserine.Abbreviations GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase  相似文献   

3.
Summary The free amino acid pools in the nitrogen-fixing blue-green algae Anabaena cylindrica, A. flos-aquae and Westiellopsis prolifica contain a variety of amino acids with aspartic acid, glutamic acid and the amide glutamine being present in much higher concentrations than the others. This pattern is characteristic of that found in organisms having glutamine synthetage/glutamate synthetase [glutamine amide-2-oxoglutarate amino transferase (oxido-reductase)] as an important pathway of ammonia incorporation. Under nitrogen-starved conditions the level of acetylene reduction (nitrogen fixation) and the glutamine pool both increase but the free ammonia pool decreases, suggesting that ammonia rather than glutamine regulates nitrogen fixation.Glutamine synthetase has been demonstrated in Anabaena cylindrica using the -glutamyl transferase assay and also using a biosynthetic assay in which Pi release from ATP during glutamine synthesis was measured. The enzyme (-glutamyl transferase assay) is present in nitrogen-fixing cultures and activity is higher in aerobic than in microaerophilic cultures. Ammonium-grown cultures have lowest levels of all and activity in the presence of nitrate-nitrogen (150 mg nitrogen 1-1) is lower than in aerobic cultures growing on elemental nitrogen. Ammonium-nitrogen and nitrate-nitrogen have no effect on glutamine synthetase in vitro. Glutamate synthetase also operates in nitrogen-fixing cultures of Anabaena cylindrica.  相似文献   

4.
In cyanobacteria, the glutamine synthetase-L-glutamine-2-oxoglutarate aminotransferase (GS-GOGAT) pathway is the major ammonia-assimilating route. The GS ofAnabaena doliolum was synthesized more under N2-fixing conditions, followed by ammonium, nitrate, and nitrite as nitrogen sources. The activities of both the glutamine synthetase, Mg2+-dependent biosynthetic and Mn2+-dependent -glutamyl transferase were optimum at pH 7. The active site of the enzyme bears sulfhydryl (-SH) groups; this was confirmed with the-SH group inhibitors, para-chloromercuribenzoate (pCMB) and N-ethylmaleimide (NEM). The biosynthetic and -glutamyl transferase activities showed specificity for the divalent cations, Mg2+ and Mn2+, respectively. The other divalent cations Co2+, Cu2+, and Ni2+ were poor substitutes. This enzyme also required these divalent cations to stabilize its structure and function under extreme conditions such as high and low temperatures and urea denaturation. The glutamate analogl-methionine-d,l-sulfoximine, inactivated the enzyme, whereas the GOGAT inhibitor, azaserine, had no effect on the enzyme activity. The GS enzyme required de novo protein synthesis.  相似文献   

5.
Summary High levels of glutamine synthetase, detected using both a biosynthetic assay (P i release from ATP) and a -glutamyl transferase assay, are present in aerobically grown N2-fixing cultures of Anabaena cylindrica. The enzyme is soluble, has a pH optimum of 6.5–7.5, with a peak at 7.1–7.2 (biosynthetic activity) or 6.9 (transferase activity), and a temperature optimum at 30°C–40°C. Partially purified preparations are stable in air at 5°C for at least 3 days. Mg2+, Mn2+, Co2+ and Ca2+ support high rates of biosynthetic activity, Zn2+ is less effective and Cu2+ and Ba2+ are ineffective.Enzyme activity is regulated at several levels: possibly by repression and derepression of the enzyme in response to NH4 + level; by variation in the Mn2+: ATP ratio with optimum activity at a 1:1 ratio; by feed-back inhibition which may be of a cumulative type. The consensus of the evidence suggests the absence of a covalent enzyme modification of the type found in E. coli. Glutamine synthetase levels are almost twice as high on a protein basis in the heterocysts as in the vegetative cells. Apparent K m values for whole filaments for NH4 + and glutamate in the biosynthetic reactions are 1 mM and 2 mM respectively.  相似文献   

6.
The purification and some properties of glutamine synthetase (GS) from the mycelium of the basidiomycete Pleurotus ostreatus are described. The enzyme was purified to apparent homogeneity with ion exchange chromatography and a Dyematrex Green A column as the major purification steps. The GS has a molecular weight of 470 kDa and is composed of eight subunits with a molecular weight of 58 kDa. A tetrameric form of the enzyme may also be active. The apparent K m values for the biosynthetic reaction varied in different mycelial extracts from 2.5 to 3.5 mM and from 0.02 to 0.06 for glutamate and ammonium respectively. In the transferase reaction, K m values of 48 mM and 6.2 mM were found for L-glutamine and hydroxylamine, respectively. From the divalent cations tested, Mn2+ showed the strongest stimulatory effect both on the transferase and the biosynthetic reaction. ADP was the only nucleotide having an activating effect on the transferase reaction. The biosynthetic reaction was strongly inhibited by AMP and the transferase reaction by carbamoylphosphate. L-Alanine and glycine inhibited both reactions. Received: 21 February 1996/Accepted: 12 March 1996  相似文献   

7.
Glutamine synthetase, the first enzyme of the ammonia assimilatory pathway, has been purified from Anabaena sp. CA by use of established procedures and by affinity chromatography as a final step. No adenylylation system controlling glutamine synthetase activity was found. The enzyme shows a marked specificity for Mg2+ in the biosynthetic assay and Mn2+ in the transferase assay. Under physiological conditions, Co2+ produces a large stimulatory effect on the Mg2+-dependent biosynthetic activity. The enzyme is inhibited by the feedback modifiers l-alanine, glycine, l-serine, l-aspartate, and 5′-AMP. Inhibition by l-serine and l-aspartate is linear, noncompetitive with respect to l-glutamate with apparent Ki values of 3 and 13 mm, respectively. Cumulative inhibition is seen with mixtures of l-serine, l-aspartate, and 5′-AMP. The results indicate that, in vivo, divalent cation availability and the presence of feedback inhibitors may play the dominant role in regulating glutamine synthetase activity and hence ammonia assimilation in nitrogen-fixing cyanobacteria.  相似文献   

8.
Glutamine synthetase (GS, EC 6.3.1.2) from Nocardia asteroides was purified to homogeneity by ammonium sulfate precipitation, Sephadex G-150, and DEAE-Sepharose chromatography. The native molecular weight of the purified enzyme was determined to be 720 kDa. SDS-PAGE analysis of the purified preparation revealed a single band corresponding to 59 kDa, indicating the possible presence of 12 identical subunits. The divalent cations Mn2- and Mg2+ were found to be essential for optimal transferase and biosynthetic activity, respectively. The optimal pH and temperature for both activities of the enzyme were found to be 7.2 and 50°C. Amino acids such as l-alanine, glycine, and aspartate inhibited the GS activity. The K m values for the substrates of the biosynthetic reaction ATP, glutamate, and ammonium chloride were found to be 400 m, 7.7mm, and 200 m, respectively. Addition of ammonium chloride to the nitrogen-limited culture resulted in a decrease of GS transferase and biosynthetic activities. Phosphodiesterase treatment of the extract from ammonia-shocked cultures showed an increase in GS transferase activity. The results indicate the possible regulation of GS by covalent modification.  相似文献   

9.
Glutamine synthetase (EC 6.3.1.2) has been purified from a collagenolytic Vibrio alginolyticus strain. The apparent molecular weight of the glutamine synthetase subunit was approximately 62,000. This indicates a particle weight for the undissociated enzyme of 744,000, assuming the enzyme is the typical dodecamer. The glutamine synthetase enzyme had a sedimentation coefficient of 25.9 S and seems to be regulated by a denylylation and deadenylylation. The pH profiles assayed by the -glutamyltransferase method were similar for NH4-shocked and unshocked cell extracts and isoactivity point was not obtained from these eurves. The optimum pH for purified and crude cell extracts was 7.9. Cell-free glutamine synthetase was inhibited by some amino acids and AMP. The transferase activity of glutamine synthetase from mid-exponential phase cells varied greatly depending on the sources of nitrogen or carbon in the growth medium. Glutamine synthetase level was regulated by nitrogen catabolite repression by (NH4)2SO4 and glutamine, but cells grown, in the presence of proline, leucine, isoleucine, tryptophan, histidine, glutamic acid, glycine and arginine had enhanced levels of transferase activity. Glutamine synthetase was not subject to glucose, sucrose, fructose, glycerol or maltose catabolite repression and these sugars had the opposite effect and markedly enhanced glutamine synthetase activity.Abbreviations GS glutamine synthetase - SMM succinate minimal medium - ASMM ammonium/succinate minimal medium - GT -glutamyl transferase - SVP snake venom phosphodiesterase  相似文献   

10.
Fully unadenylylated glutamine synthetase (GS) from the endophytic bacterium Azospirillum brasilense Sp245 was isolated and purified. The enzyme was electrophoretically homogeneous and contained strongly bound metal ions, which could not be removed by dialysis. Mn2+, Mg2+, and Co2+ were found to be effective in supporting biosynthetic activity of the A. brasilense GS. Some kinetic properties of Mn2+-activated and Mg2+-activated unadenylylated GS were characterized. Circular dichroism analysis of the enzyme showed that the A. brasilense GS is a highly structured protein: 59% of its residues form -helices and 13% -strands. Removal of the metal ions from the A. brasilense GS by treatment with EDTA resulted in alterations in the enzyme secondary structure.  相似文献   

11.
Glutamine synthetase (EC 6.3.1.2) was purified to homogeneity from a free-living nitrogen fixing bacteria, Bacillus polymyxa. The holoenzyme, relative molecular mass (Mr) of 600 000 is composed of monomeric sub-units of 60 000 (Mr). The isoelectric point of the sub-units was 5.2. The pH optimum for the biosynthetic and transferase enzyme activity was 8.2 and 7.8, respectively. The apparent K m values (K m app ) in the biosynthetic reaction for glutamate, NH4Cl and ATP were 3.2, 0.22 and 1 mM, respectively. In the transferase reaction the K m values for glutamine, hydroxylamine and ADP were 6.5, 3.5 and 8×10-4 mM respectively. L-Methionine-D-L-sulfoximine was a very potent inhibitor in both biosynthetic and transferase reactions. Similar to most Gram positive bacteria there was no evidence of in vivo adenylylation and the enzyme seemed to be mainly regulated by feed-back mechanism.Abbreviations PMSF phenylmethylsulfonylfluoride - TCA trichloroacetic acid - GS glutamine synthetase - MSO L-Methionine-D-L-sulfoximine - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis - SVPDE snake venum phosphodiesterase  相似文献   

12.
In samples from nitrogen-fixing continuous cultures of strain CB756 of the cowpea type rhizobia (Rhizobium sp.), newly fixed NH4+ is in equilibrium with the medium, from where it is assimilated by the glutamine synthetase/glutamate synthase pathway. In samples from steady state cultures with different degrees of oxygen-limitation, nitrogenase activity was positively correlated with the biosynthetic activity of glutamine synthetase in cell free extracts. Also, activities in biosynthetic assays were positively correlated with activities in γ-glutamyl transferase assays containing 60 mM Mg2+. Relative adenylylation of glutamine synthetase was conveniently measured in cell free extracts as the ratio of γ-glutamyl transferase activities without and with addition of 60 mM Mg2+.Automatic control of oxygen supply was used to facilitate the study of transitions between steady-state continuous cultures with high and low nitrogenase activities. Adenylylation of glutamine synthetase and repression of nitrogenase activity in the presence of excess NH4+, were masked when oxygen strongly limited culture yield. Partial relief of the limitation in cultures supplied with 10 mM NH4+ produced early decline in nitrogenase activity and increase in relative adenylylation of glutamine synthetase. Decreased oxygen supply produced a rapid decline in relative adenylylation, followed by increased nitrogenase activity, supporting the concept that control of nitrogenase synthesis is modulated by glutamine synthetase adenylylation in these bacteria.  相似文献   

13.
In this paper we examine the functionality of Glu-297 from the -polypeptide of Phaseolus vulgaris glutamine synthetase (EC 6.3.1.2). For this purpose, the gln cDNA was recombinantly expressed in Escherichia coli, and site-directed mutants constructed, in which this residue was replaced by alanine. The level of glutamine synthetase transferase catalytic activity in the mutant strain was 70-fold lower while biosynthetic activity remained practically unaffected. Kinetic parameters for both enzyme activities were not greatly altered except for the Km for ammonium in biosynthetic activity, which increased 100-fold. A similar result was reported when mutagenizing Glu-327 from E. coli glutamine synthetase, a residue shown to be present at the active site. This suggests that the Glu residue mutated in the higher-plant enzyme could develop a similar catalytic role to that of bacteria. Another characteristic feature of the mutant protein was its higher resistance to inhibition of the biosynthetic activity by L-methionine sulfoximine, a typical inhibitor of glutamine synthetase. In addition, we show that immunoreactivity of the glutamine synthetase mutant protein, both under native and denaturing conditions, is similar to the wild type, indicating that no deep conformational changes were produced as a consequence of the introduced mutation. However, structural changes in the active site can be predicted from alterations detected in the behaviour of the mutant protein towards affinity chromatography on 2,5-ADP-Sepharose, as compared to the wild type. Nevertheless, complementation of an E. coli glnA mutation indicated that the E297A mutant enzyme was physiologically functional.  相似文献   

14.
An enzyme preparation catalyzing p-nitroaniline release from γ-glutamyl-p-nitroanilide was obtained in a 200-fold purified state from fruit bodies of an edible mushroom, Lentinus edodes. Analysis of the final preparation by differential centrifugation revealed that the enzyme was still bound with subcellular particles. The enzyme catalyzed both the hydrolysis and transfer of the γ-glutamyl moiety from γ-glutamyl-p-nitroanilide, but exhibited essentially no activity of glutaminase, glutamine aminotransferase, glutamine synthetase or γ-glutamyl cyclotransferase. With γ-glutamyl-p-nitroanilide the activity was maximal at about pH 7.6. The enzyme activity increased with an increasing concentration of Tris-HCl buffer, but not with phosphate buffer which was inhibitory. An apparent Michaelis constant of 4 mm was obtained in 0.5 m Tris-HCl buffer at pH 7.6. S-Alkylcysteine sulfoxide served as the best glutamyl acceptor. A serine-borate mixture, pCMB, Cu2+, Hg2+ and Zn2+ were potent inhibitors. All the experimental results, including the insoluble nature of the enzyme, allowed us to classify the Lentinus enzyme in the family of γ-glutamyl transferase.  相似文献   

15.
Agaricus bisporus glutamine synthetase, a key enzyme in nitrogen metabolism, was purified to apparent homogeneity. The native enzyme appeared to be a GS-II type enzyme. It has a molecular weight of 325 kDa and consists of eight 46-kDa subunits. Its pI was found at 4.9. Optimal activity was found at 30°C. The enzyme had low thermostability. Stability declined rapidly at temperatures above 20°C. The enzyme exhibits a K m for glutamate, ammonium, and ATP of 22mm, 0.16mm and 1.25mm respectively in the biosynthetic reaction, with optimal activity at pH 7. The enzyme is slightly inhibited by 10mm concentrations of l-alanine, l-histidine, l-tryptophan, anthranilic acid, and 5-AMP and was strongly inhibited by methionine sulfoximine and phosphinothricine. For the transferase reaction K i-values were 890 m and 240 m for methionine sulfoximine and phosphinothricine respectively. For the biosynthetic reaction K i was 17 m for both methionine sulfoximine and phosphinothricine.  相似文献   

16.
Glutamine auxotrophic (Gln -) and l-methionine d,l-sulfoximine (MSX) resistant (MSX r) mutants of N. muscorum were isolated and characterized for nitrogen nutrition, nitrogenase activity, glutamine synthetase (GS) activity and glutamine amide, -keto-glutarate amido transferase (GOGAT) activity. The glutamine auxotroph was found to the GOGAT-containing GS-defective, incapable of growth with N2 or NH 4 + but capable of growth with glutamine as nitrogen source, thus, suggesting GS to be the primary enzyme of both ammonia assimilation and glutamine formation in the cyanobacterium. The results of transformation and reversion studies suggests that glutamine auxotrophy is the result of a mutation in the gln A gene and that gln A gene can be transferred from one strain to another by transformation.  相似文献   

17.
Rhodopseudomonas globiformis strain 7950 grew with a variety of amino acids, urea, or N2 as sole nitrogen sources. Cultures grown on N2 reduced acetylene to ethylene; this activity was absent from cells grown on nonlimiting NH 4 + . Glutamate dehydrogenase could not be detected in extracts of cells of strain 7950, although low levels of an alanine dehydrogenase were present. Growth ofR. globiformis on NH 4 + was severely inhibited by the glutamate analogue and glutamine synthetase inhibitor, methionine sulfoximine. High levels of glutamine synthetase (as measured in the -glutamyl transferase assay) were observed in cell extracts of strain 7950 regardless of the nitrogen source, although N2 and amino acid grown cells contained somewhat higher glutamine synthetase contents than cells grown on excess NH 4 + . Levels of glutamate synthase inR. globiformis were consistent with that reported from other phototrophic bacteria. Both glutamate synthase and alanine dehydrogenase were linked to NADH as coenzyme. We conclude thatR. globiformis is capable of fixing N2, and assimilates NH 4 + primarily via the glutamine synthetase/glutamate synthase pathway.Abbreviations GS glutamine synthetase - GOGAT Glutamineoxoglutarate aminotransferase - GDH Glutamate dehydrogenase - ADH Alanine dehydrogenase - MSO Methionine sulfoximine  相似文献   

18.
Zinc-induced paracrystalline aggregation of glutamine synthetase   总被引:22,自引:0,他引:22  
The unique capacity of glutamine synthetase to form highly insoluble paracrystalline aggregates in the presence of Zn2+ and Mg2+ mixtures is the basis of a new simple procedure for the isolation of the enzyme from crude extracts of Escherichia coli. Under optimal conditions (pH 5.85, 25 °C, 1.5 mm ZnSO4 and 50 MgCl2 over 95% of the enzyme is precipitated from crude extracts; differential extraction of the precipitate with dilute buffer (pH 7.0) containing 2.5 mm MgCl2 leads to high yields of almost pure glutamine synthetase. Polyacrylamide gel electrophoresis of the purified enzyme shows it to consist of one major protein and two minor protein components, all of which exhibit glutamine synthetase activity. The major component appears to be identical with the enzyme previously isolated by the older more tedious procedure of Woolfolk et al. (1966). The γ-glutamyl transferase activity of enzyme isolated by the new procedure is the same as that isolated by the older method, but its biosynthetic activity is 25–35% lower. In all other respects examined (i.e., divalent ion specificity, pH optimum, apparent Km values for substrates, susceptibility to feedback inhibition and physical properties) enzymes prepared by the old and the new procedures are indistinguishable. From studies with pure glutamine synthetase isolated by either procedure, it has been established that paracrystalline aggregation does not occur until 9–10 equivs of Zn2+ are bound per mole of enzyme. The high specificity of Zn2+ in inducing enzyme aggregation, suggests that its binding provokes a unique conformational state of the enzyme. This is supported by the fact that addition of Zn2+ to relaxed (divalent cation free) enzyme elicits a change in the ultraviolet spectrum of the enzyme that is qualitatively different from that caused by either Mg2+ or Mn2+. Moreover, in contrast to Mg2+, the binding of Zn2+ decreases the fluorescence associated with the binding of 2-p-toludinyl-naphthalene-6-sulfonic acid to the enzyme, suggesting that Zn2+ binding is accompanied by a decrease in the number of exposed hydrophobic regions on the enzyme.  相似文献   

19.
Extractable glutamine synthetase activity of the cyanobacterium Anabaena cylindrica was reduced by approximately 50% when N2-fixing cultures were treated with 10 mM NH 4 + or were placed in darkness. The deactivated enzyme could be rapidly reactivated (within 5 min) by adding 40 mM 2-mercaptoethanol to the biosynthetic reaction mixture. The enzyme could also be reactivated in vivo by replacing the culture in light or by removing NH 4 + . When the enzyme was deactivated by simultaneously adding NH 4 + and placing the culture in darkness, reactivation occurred on reillumination and removal of NH 4 + . The removal of NH 4 + in darkness did not result in reactivation. On in vitro reactivation of glutamine synthetase from dark or NH 4 + -treated cultures the maximum glutamine synthetase activity observed frequently exceeded that of glutamine synthetase extracted from untreated cultures. Anacystis nidulans showed a similar type of reversible dark deactivation to A. cylindrica but Plectonema boryanum and a Nostoc did not. With A. cylindrica, a direct positive correlation between the size of the intracellular pool of glutamate and biosynthetic glutamine synthetase activity occurred during light/dark shifts, and on treatment with NH 4 + . The changes in activity of glutamine synthetase in A. cylindrica in response to light resemble in some respects the light modulation of enzymes of the oxidative and reductive pentose phosphate pathways noted in cyanobacteria by others.  相似文献   

20.
The mechanism of ammonia assimilation in nitrogen fixing bacteria   总被引:1,自引:0,他引:1  
Summary Enzymatic and genetic evidence are presented for a new pathway of ammonia assimilation in nitrogen fixing bacteria: ammonium glutamine glutamate. This route to the important glutamate-glutamine family of amino acids differs from the conventional pathway, ammonium glutamate glutamine, in several respects. Glutamate synthetase [(glutamine amide-2-oxoglutarate aminotransferase) (oxidoreductase)], which is clearly distinct from glutamate dehydrogenase, catalyzes the reduced pyridine nucleotide dependent amination of -ketoglutarate with glutamine as amino donor yielding two molecules of glutamate as product. The enzyme is completely inhibited by the glutamine analogue DON, whereas glutamate dehydrogenase is not affected by this inhibitor; the glutamate synthetase reaction is irreversible. Glutamate synthetase is widely distributed in bacteria; the pyridine nucleotide coenzyme specificity of the enzyme varies in many of these species.The activities of key enzymes are modulated by environmental nitrogenous sources; for example, extracts of N2-grown cells of Klebsiella pneumoniae form glutamate almost exclusively by this new route and contain only trace amounts of glutamate dehydrogenase activity whereas NH3-grown cells possess both pathways. Also, the biosynthetically active form of glutamine synthetase with a low K m for ammonium predominates in the N2-grown cell.Several mutant strains of K. pneumoniae have been isolated which fail to fix nitrogen or to grow in an ammonium limited environment. Extracts of these strains prepared from cells grown on higher levels of ammonium have low levels of glutamate synthetase activity and contain the biosynthetically inactive species of glutamine synthetase along with high levels of glutamate dehydrogenase. These mutants missing the new assimilatory pathway have serious defects in their metabolism of many inorganic and organic nitrogen sources; utilization of at least 20 different compounds is effected. We conclude that the new ammonia assimilatory route plays an important role in nitrogenous metabolism and is essential for nitrogen fixation.Abbreviation DON 6-diazo-5-oxo-l-norleucine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号