首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new device that utilizes the voltages induced in separate coils encircling the rib cage and abdomen by a magnetic field is described for measurement of cross-sectional areas of the human chest wall (rib cage and abdomen) and their variation during breathing. A uniform magnetic field (1.4 X 10(-7) Tesla at 100 kHz) is produced by generating an alternating current at 100 kHz in two square coils, 1.98 m on each side, parallel to the planes of the areas to be measured and placed symmetrically cephalad and caudad to these planes at a mean distance of 0.53 m. We demonstrated that the accuracy of the device on well-defined surfaces (squares, circles, rectangles, ellipses) was within 1% in all cases. Observed errors are due primarily to small inhomogeneities of the magnetic field and variation of the orientation of the coil relative to the field. Using a second magnetic field (80 kHz) perpendicular to the first, we measured the errors due to nonparallel orientation during quiet breathing and inspiratory capacity maneuvers. In 10 normal subjects, orientation effects were less than 2% for the rib cage and less than 0.7% for the abdomen. In five of these subjects, orientation effects at functional residual capacity in lateral and seated postures were generally less than or equal to 5%, but estimated tidal volume during spontaneous breathing was comparable to measurements in the supine posture. In five curarized patients, we assessed the linearity of volume-motion relationships of the rib cage and abdomen, comparing cross-sectional area and circumference measurements. Departures from linearity using cross-sectional areas were only one-third of those using circumferences. In seven normal subjects we compared cross-sectional area measurements with respiratory inductive plethysmography (RIP) and found comparable estimates of lung volume change over a wide range of relative rib cage contributions to tidal volume (-5 to 105%), with slightly higher standard deviations for the RIP (SD = 10% for RIP; SD = 4% for cross-sectional area).  相似文献   

2.
We describe a single-posture method for deriving the proportionality constant (K) between rib cage (RC) and abdominal (AB) amplifiers of the respiratory inductive plethysmograph (RIP). Qualitative diagnostic calibration (QDC) is based on equations of the isovolume maneuver calibration (ISOCAL) and is carried out during a 5-min period of natural breathing without using mouthpiece or mask. In this situation, K approximates the ratio of standard deviations (SD) of the uncalibrated changes of AB-to-RC volume deflections. Validity of calibration was evaluated by 1) analyzing RIP waveforms during an isovolume maneuver and 2) comparing changes of tidal volume (VT) amplitude and functional residual capacity (FRC) level measured by spirometry (SP) with RIP values. Comparisons of VT(RIP) to VT(SP) were also obtained in a variety of postures during natural (uninstructed) preferential RC and AB breathing and with voluntary changes of VT amplitude and FRC level. VT(RIP)-to-VT(SP) comparisons were equal to or closer than published reports for single posture, ISOCAL, multiple- and linear-regression procedures. QDC of RIP in supine posture with comparisons to SP in that posture and others showed better accuracy in horizontal than upright postures.  相似文献   

3.
Dissociation between diaphragmatic and rib cage muscle fatigue   总被引:2,自引:0,他引:2  
To assess rib cage muscle fatigue and its relationship to diaphragmatic fatigue, we recorded the electromyogram (EMG) of the parasternal intercostals (PS), sternocleidomastoid (SM), and platysma with fine wire electrodes and the EMG of the diaphragm (DI) with an esophageal electrode. Six normal subjects were studied during inspiratory resistive breathing. Two different breathing patterns were imposed: mainly diaphragmatic or mainly rib cage breathing. The development of fatigue was assessed by analysis of the high-to-low (H/L) ratio of the EMG. To determine the appropriate frequency bands for the PS and SM, we established their EMG power spectrum by Fourier analysis. The mean and SD for the centroid frequency was 312 +/- 16 Hz for PS and 244 +/- 48 Hz for SM. When breathing with the diaphragmatic patterns, all subjects showed a fall in H/L of the DI and none had a fall in H/L of the PS or SM. During rib cage emphasis, four out of five subjects showed a fall in H/L of the PS and five out of six showed a fall in H/L of the SM. Four subjects showed no fall in H/L of the DI; the other two subjects were unable to inhibit diaphragm activity to a substantial degree and did show a fall in H/L of the DI. Activity of the platysma was minimal or absent during diaphragmatic emphasis but was usually strong during rib cage breathing. We conclude that fatigue of either the diaphragm or the parasternal and sternocleidomastoid can occur independently according to the recruitment pattern of inspiratory muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
It is established that during tidal breathing the rib cage expands more than the abdomen in the upright posture, whereas the reverse is usually true in the supine posture. To explore the reasons for this, we studied nine normal subjects in the supine, standing, and sitting postures, measuring thoracoabdominal movement with magnetometers and respiratory muscle activity via integrated electromyograms. In eight of the subjects, gastric and esophageal pressures and diaphragmatic electromyograms via esophageal electrodes were also measured. In the upright postures, there was generally more phasic and tonic activity in the scalene, sternocleidomastoid, and parasternal intercostal muscles. The diaphragm showed more phasic (but not more tonic) activity in the upright postures, and the abdominal oblique muscle showed more tonic (but not phasic) activity in the standing posture. Relative to the esophageal pressure change with inspiration, the inspiratory gastric pressure change was greater in the upright than in the supine posture. We conclude that the increased rib cage motion characteristic of the upright posture owes to a combination of increased activation of rib cage inspiratory muscles plus greater activation of the diaphragm that, together with a stiffened abdomen, acts to move the rib cage more effectively.  相似文献   

5.
We studied rib cage distortability and reexamined the mechanical action of the diaphragm and the rib cage muscles in six supine anesthetized dogs by measuring changes in upper rib cage cross-sectional area (Aurc) and changes in lower rib cage cross-sectional area (Alrc) and the respective pressures acting on them. During quiet breathing in the intact animal the rib cage behaved as a unit (Aurc: 14.6 +/- 7.9 vs. Alrc: 15.1 +/- 9.6%), whereas considerable distortions of the rib cage occurred during breathing after bilateral phrenicotomy (Aurc: 21.0 +/- 5.1 vs. Alrc: 7.0 +/- 4.8%). These distortions were even more pronounced during phrenic nerve stimulation and separate stimulation of the costal and crural parts of the diaphragm (e.g., phrenic nerve stimulation; Aurc: -7.1 +/- 5.1 vs. Alrc: 6.9 +/- 3.5%). During the latter maneuvers the upper rib cage deflated along the relationship between upper rib cage dimensions and pleural pressure obtained during passive deflation, whereas the lower rib cage inflated close to the relationship between lower rib cage dimensions and abdominal pressure obtained during passive inflation. The latter relationship is expected to differ between costal and crural stimulation, since costal action has both an appositional and insertional component and crural action only has an appositional component. The difference between costal and crural stimulation, however, was relatively small, and the slopes were only slightly steeper for the costal than for the crural stimulation (2.9 +/- 1.2 vs. 2.2 +/- 1.0%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We studied the effect of microgravity (0 Gz) on the anteroposterior diameters of the upper (URC-AP) and lower (LRC-AP) rib cage, the transverse diameter of the lower rib cage (LRC-TR), and the xiphipubic distance and on the electromyographic (EMG) activity of the scalene and parasternal intercostal muscles in five normal subjects breathing quietly in the seated posture. Gastric pressure was also recorded in four subjects. At 0 Gz, end-expiratory LRC-AP and xiphipubic distance increased but LRC-TR invariably decreased, as did end-expiratory gastric pressure. No consistent effect was observed on tidal LRC-TR and xiphipubic displacements, but tidal changes in URC-AP and LRC-AP were reduced. Although scalene and parasternal phasic inspiratory EMG activity tended to decrease at 0 Gz, both muscle groups demonstrated an increase in tonic activity. We conclude that during brief periods of weightlessness 1) the rib cage at end expiration is displaced in the cranial direction and adopts a more circular shape, 2) the tidal expansion of the ventral rib cage is reduced, particularly in its upper portion, and 3) the scalenes and parasternal intercostals generally show a decrease in phasic inspiratory EMG activity and an increase in tonic activity.  相似文献   

7.
Chest wall motion during epidural anesthesia in dogs   总被引:3,自引:0,他引:3  
To determine the relative contribution of rib cage and abdominal muscles to expiratory muscle activity during quiet breathing, we used lumbar epidural anesthesia in six pentobarbital sodium-anesthetized dogs lying supine to paralyze the abdominal muscles while leaving rib cage muscle motor function substantially intact. A high-speed X-ray scanner (Dynamic Spatial Reconstructor) provided three-dimensional images of the thorax. The contribution of expiratory muscle activity to tidal breathing was assessed by a comparison of chest wall configuration during relaxed apnea with that at end expiration. We found that expiratory muscle activity was responsible for approximately half of the changes in thoracic volume during inspiration. Paralysis of the abdominal muscles had little effect on the pattern of breathing, including the contribution of expiratory muscle activity to tidal breathing, in most dogs. We conclude that, although there is consistent phasic expiratory electrical activity in both the rib cage and the abdominal muscles of pentobarbital-anesthetized dogs lying supine, the muscles of the rib cage are mechanically the most important expiratory muscles during quiet breathing.  相似文献   

8.
We examined chest wall and rib cage configuration in seven normal subjects during a variety of breathing maneuvers. Magnetometers were used to measure lower rib cage anteroposterior, lower rib cage transverse, upper rib cage anteroposterior, and abdomen anteroposterior diameters. Changes of these diameters were recorded during voluntary maneuvers, rebreathing, reading, and "natural" breathing. Relative motion of the rib cage and abdomen was displayed with the rib cage represented by the product of its lower anteroposterior and transverse diameters. During spontaneous breathing the rib cage and chest wall are near their relaxation configuration. During chemically driven ventilation the chest wall and rib cage progressively depart from this configuration. Much greater distortions of the chest wall and rib cage occurred during some voluntary maneuvers. Additionally, esophageal pressure and gastric pressure were measured during voluntary distortion of the rib cage. Substantial changes in lower rib cage shape occurred during voluntary maneuvers when compared with spontaneous breaths at the same transmural pressure. We conclude that the unitary behavior of the rib cage in normal subjects requires muscle coordination.  相似文献   

9.
We hypothesized that, in quadriplegia, chest wall distortion would increase the energy cost of ventilation. To assess this, we measured the oxygen cost of breathing (VO2 resp) and changes in chest wall configuration during inspiratory resistive-loaded breathing tasks in five quadriplegic and five normal subjects. Each subject performed three breathing tasks that spanned a range of work rates (Wtot). Configurational changes of the abdomen and upper, lower, and transverse rib cage were assessed with magnetometers. We found that 1) in both groups, VO2resp increased linearly with Wtot over the range of tasks performed, 2) the mean slope of the regression line of VO2resp vs. Wtot was greater for quadriplegic than for normal subjects (3.7 +/- 0.8 vs. 2.0 +/- 0.7 ml O2/J, P less than 0.01), 3) efficiency of breathing (Wtot/VO2resp) was less for quadriplegic than for normal subjects (1.9 +/- 0.6 vs. 3.5 +/- 1.4%, P less than 0.001), 4) during inhalation, upper and lower rib cages behaved similarly in the two groups, but the quadriplegic subjects had a decrease in transverse rib cage and a much greater increase in abdomen than normal subjects, and 5) functional residual capacity decreased in normal but not in quadriplegic subjects during the breathing tasks. We conclude that the lesser efficiency of breathing in quadriplegia may be related to the elastic work of chest wall distortion, shorter mean operational diaphragm length, and possibly differences between normal and quadriplegic subjects in mechanical advantage of available inspiratory muscles.  相似文献   

10.
A mathematical model of the chest wall partitioned into rib cage, diaphragmatic and abdominal components is developed consistent with published experimental observations. The model describes not only the orthodox chest wall movements (rib cage and abdomen expand together during inspiration) of the quietly breathing standing adult, but also Mueller maneuvers (inspiration against an occluded airway opening) and the paradoxical breathing patterns (rib cage contracts while abdomen expands during inspiration) observed in quadriplegia and in the newborn. The abdomen is inferred to act as a cylinder reinforced by the abdominal muscles functioning similarly to bands around a barrel. The rib cage and abdominal wall are inferred to act not as though they were directly attached to one another, but as though they were being pressed together by the skeleton. Furthermore, transabdominal pressure is visualized as acting, not across the rib cage isolated from the diaphragm, as has been suggested previously, but instead, across the combined rib cage and diaphragm acting as a deformable unit containing the lungs.  相似文献   

11.
The effects of diaphragm paralysis on respiratory activity were assessed in 13 anesthetized, spontaneously breathing dogs studied in the supine position. Transient diaphragmatic paralysis was induced by bilateral phrenic nerve cooling. Respiratory activity was assessed from measurements of ventilation and from the moving time averages of electrical activity recorded from the intercostal muscles and the central end of the fifth cervical root of the phrenic nerve. The degree of diaphragm paralysis was evaluated from changes in transdiaphragmatic pressure and reflected in rib cage and abdominal displacements. Animals were studied both before and after vagotomy breathing O2, 3.5% CO2 in O2, or 7% CO2 in O2. In dogs with intact vagi, both peak and rate of rise of phrenic and inspiratory intercostal electrical activity increased progressively as transdiaphragmatic pressure fell. Tidal volume decreased and breathing frequency increased as a result of a shortening in expiratory time. Inspiratory time and ventilation were unchanged by diaphragm paralysis. These findings were the same whether O2 or CO2 in O2 was breathed. After vagotomy, no significant change in phrenic or inspiratory intercostal activity occurred with diaphragm paralysis in spite of increased arterial CO2 partial pressure. Ventilation and tidal volume decreased significantly, and respiratory timing was unchanged. These results suggest that mechanisms mediated by the vagus nerves account for the compensatory increase in respiratory electrical activity during transient diaphragm paralysis. That inspiratory time is unchanged by diaphragm paralysis whereas the rate or rise of phrenic nerve activity increases suggest that reflexes other than the Hering-Breuer reflex contribute to the increased respiratory response.  相似文献   

12.
The pneumotachometer is currently the most accepted device to measure tidal breathing, however, it requires the use of a mouthpiece and thus alteration of spontaneous ventilation is implied. Respiratory inductive plethysmography (RIP), which includes two belts, one thoracic and one abdominal, is able to determine spontaneous tidal breathing without the use of a facemask or mouthpiece, however, there are a number of as yet unresolved issues. In this study we aimed to describe and validate a new RIP method, relying on a combination of thoracic RIP and nasal pressure signals taking into account that exercise-induced body movements can easily contaminate RIP thoracic signals by generating tissue motion artifacts. A custom-made time domain algorithm that relies on the elimination of low amplitude artifacts was applied to the raw thoracic RIP signal. Determining this tidal ventilation allowed comparisons between the RIP signal and simultaneously-recorded airflow signals from a calibrated pneumotachometer (PT). We assessed 206 comparisons from 30 volunteers who were asked to breathe spontaneously at rest and during walking on the spot. Comparisons between RIP signals processed by our algorithm and PT showed highly significant correlations for tidal volume (Vt), inspiratory (Ti) and expiratory times (Te). Moreover, bias calculated using the Bland and Altman method were reasonably low for Vt and Ti (0.04 L and 0.02 s, respectively), and acceptable for Te (<0.1 s) and the intercept from regression relationships (0.01 L, 0.06 s, 0.17 s respectively). The Ti/Ttot and Vt/Ti ratios obtained with the two methods were also statistically correlated. We conclude that our methodology (filtering by our algorithm and calibrating with our calibration procedure) for thoracic RIP renders this technique sufficiently accurate to evaluate tidal ventilation variation at rest and during mild to moderate physical activity.  相似文献   

13.
In an attempt to understand the role of the parasternal intercostals in respiration, we measured the changes in length of these muscles during a variety of static and dynamic respiratory maneuvers. Studies were performed on 39 intercostal spaces from 10 anesthetized dogs, and changes in parasternal intercostal length were assessed with pairs of piezoelectric crystals (sonomicrometry). During static maneuvers (passive inflation-deflation, isovolume maneuvers, changes in body position), the parasternal intercostals shortened whenever the rib cage inflated, and they lengthened whenever the rib cage contracted. The changes in parasternal intercostal length, however, were much smaller than the changes in diaphragmatic length, averaging 9.2% of the resting length during inflation from residual volume to total lung capacity and 1.3% during tilting from supine to upright. During quiet breathing the parasternal intercostals always shortened during inspiration and lengthened during expiration. In the intact animals the inspiratory parasternal shortening was close to that seen for the same increase in lung volume during passive inflation and averaged 3.5%. After bilateral phrenicotomy, however, the parasternal intercostal shortening during inspiration markedly increased, whereas tidal volume diminished. These results indicate that 1) the parasternal intercostals in the dog are real agonists (as opposed to fixators) and actively contribute to expand the rib cage and the lung during quiet inspiration, 2) the relationship between lung volume and parasternal length is not unique but depends on the relative contribution of the various inspiratory muscles to tidal volume, and 3) the physiological range of operating length of the parasternal intercostals is considerably smaller than that of the diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The shortening of the canine parasternal intercostals during inspiration may have a passive component, and we have previously speculated that this might result from the actions of the levator costae and external intercostals (J. Appl. Physiol. 66: 1421-1429, 1989). The present studies were designed, therefore, to evaluate the pattern of activation of these muscles in the dog and to define their action on the rib cage during breathing. The results indicate that 1) the levator costae and external intercostals in the cranial part of the rib cage are active during inspiration, both in the supine and in the prone posture; 2) the inspiratory activation of the two muscles is increased after bilateral phrenicotomy; 3) it is increased even more when the parasternal intercostals in the different interspaces are also denervated; and 4) when the levator costae and external intercostals are the only muscles active during inspiration, the ribs continue to move cranially, and the sternum, rather than moving caudally as it does in the intact animal, moves cranially as well. Therefore, we conclude that the levator costae and external intercostals in the dog have a true inspiratory function. When needed, they are capable of causing a significant expansion of the rib cage and the lung during breathing.  相似文献   

15.
The order of recruitment of single-motor units in parasternal intercostal muscles during inspiration was studied in normal human subjects during quiet breathing and voluntary hyperventilation. Electromyograms were recorded from the second and third intercostal spaces by means of bipolar fine wire electrodes. Flow at the mouth, volume, end-expired CO2, and rib cage and abdominal anterior-posterior diameters were monitored. Single-motor units were identified using criteria of amplitude and shape, and the time of first appearance of each unit in each inspiration was noted. Hyperventilation was performed with visual feedback of the display of rib cage and abdomen excursions, keeping the ratio of rib cage to abdominal expansion. Subjects were normocapnic in quiet breathing and developed hypocapnia during hyperventilation. Recruitment order was stable in quiet breathing, but in some cases was altered during voluntary hyperventilation. Some low threshold units that fired early in the breath in quiet breathing fired earlier at the beginning of a period of voluntary hyperventilation but progressively later in the breath as hyperventilation went on, whereas later firing units moved progressively toward the early part of inspiration. This suggests that different groups of motoneurons in the pool supplying parasternal intercostal muscles receive different patterns of synaptic input.  相似文献   

16.
The first rib of hominoids   总被引:1,自引:0,他引:1  
Homo sapiens is unique among extant hominoids in displaying a univertebral articular pattern for the first rib; that is, the head of the first rib articulates only with the body of the first thoracic vertebra. All other hominoids, indeed virtually all other mammals, display a bivertebral pattern; that is, the head of the first rib articulates with the bodies of both the seventh cervical and the first thoracic vertebrae, as well as the intervening disk. Two fossil hominid partial first ribs, A.L. 288-lax and A.L. 333-118, show that the univertebral pattern was fully established in the hominid lineage by the appearance of Australopithecus afarensis. Four hypotheses, based in functional anatomy, can be postulated for the evolution of the univertebral pattern: (1), it increases the volume (via increased length) of the neck, which could, in turn, compensate for the functional loss of the laryngeal sac systems in hominid vocalization; (2), it is a consequence of the more barrel-shaped thorax in hominids; (3), it is a consequence of functional modifications in the hominid shoulder girdle; and/or (4), it is a consequence of modifications in hominid first rib motion while breathing in an upright stance. Fossil evidence supports all but the first hypothesis, and most strongly supports the third. However, evidence for the first hypothesis does suggest that the evolution of descent of the upper respiratory system in the hominid lineage may have been permitted by the presence of the univertebral pattern, while the reverse is probably not true. Furthermore, fossil evidence for the third hypothesis shows that, by the appearance of A. afarensis, the hominid upper limb had been freed from locomotor constraints, which concomitantly confirms full adaptation to upright posture. Thus, because of their potential relationship with upright posture, the two remaining hypotheses (i.e., "thoracic shape" and "first rib movement during breathing") also have support from the fossil evidence.  相似文献   

17.
It is traditionally considered that the difference in orientation of the muscle fibers makes the external intercostals elevate the ribs and the internal interosseous intercostals lower the ribs during breathing. This traditional view, however, has recently been challenged by the observation that the external and internal interosseous intercostals, when contracting alone in a single interspace, have a similar effect on the ribs into which they insert. This view has also been challenged by the observation that the external and internal intercostals in a given interspace often change their length in the same direction during breathing. In an attempt to clarify the respiratory function of these muscles, we studied eight supine lightly anesthetized dogs during quiet breathing and during static inspiratory efforts. In each animal electromyographic (EMG) recordings from the external and internal interosseous intercostals were obtained in all interspaces from the second to the eighth, and selective denervations were systematically performed to ensure with complete certainty the origin of the recorded EMG activities. The external intercostals were only activated in phase with inspiration, whereas the internal interosseous intercostals were only activated in phase with expiration. These phasic EMG activities, however, were generally small in magnitude, and the muscles were often silent. Indeed, activation of the externals was always confined to the upper portion of the rib cage, whereas activation of the internals was limited to the lower portion of the rib cage. Internal intercostal activation always occurred sequentially along a caudocephalic gradient. These observations are thus compatible with the traditional view of intercostal muscle action.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
By use of the method of Konno and Mead and the respiratory magnetometer, the partition of respired gas volumes into rib cage and diaphragm-abdomen components was accomplished in 81 normal subjects including 32 young and middle-aged men, 29 young and middle-aged women, and 20 elderly men. Studied were isovolume maneuvers and the relaxation configuration over the inspiratory capacity range, quiet tidal breathing, increased amplitudes of slow breathing, rapid inspirations and expirations, and both quiet and forceful phonation. No major differences were noted between men and women or between the young and the elderly during any respiratory acts. During quiet breathing most normal subjects are abdominal breathers when supine and thoracic breathers when upright. Rapid respiratory maneuvers were accomplished mostly through rib cage displacement suggesting that rib cage muscles are capable of more rapid action than diaphragm and abdominal muscles. Data from deep breathing and rapid maneuvers supported the view that abdominal and rib cage muscles often act to optimize the mechanical (length-tension) advantage of the diaphragm.  相似文献   

19.
Respiratory inductance plethysmography (RIP) has been widely used to measure ventilation during sleep, but its accuracy in this role has not been adequately tested. We have thus examined the accuracy of the RIP by comparing tidal volume measured with RIP with that measured by a pneumotachograph in eight unrestrained normal subjects during sleep. We have also studied the effect of posture on the accuracy of the RIP. In all sleep stages the correlation between RIP tidal volume measurements and expired volume showed relatively poor correlations (mean r = 0.49-0.60), and the bias of the measurements varied widely. Changes in posture altered the correlations between the two measurements, with no systematic differences between positions. When the subjects resumed a position, the 95% confidence intervals of tidal volume measurement did not overlap the original confidence limits in that posture on 13 of 25 occasions. This study shows that the RIP does not accurately measure tidal volume during sleep in unrestrained subjects and should only be used for semiquantitative assessment of ventilation during sleep.  相似文献   

20.
Inhibition of breathing associated with gallbladder stimulation in dogs   总被引:2,自引:0,他引:2  
The effect of mechanical stimulation of the gallbladder on breathing was studied in anesthetized spontaneously breathing dogs. Measurements of tidal volume, breathing frequency, rib cage and abdominal diameter, transdiaphragmatic pressure, and electrical activity of the diaphragm were made while traction or compression was applied to the gallbladder for periods of 30 s. Both forms of mechanical stimulation produced similar changes, including large decreases in tidal volume, respiratory rate, electrical activity of the diaphragm, and transdiaphragmatic pressure swings. Inspiratory rib cage expansion was little affected, but abdominal expansion was greatly reduced, and swings in gastric pressure were reduced more than swings in pleural pressure, indicating a selective decrease in diaphragmatic activity. Recovery of all measured parameters returned toward control values, despite continued traction or compression. Some inhibition persisted after the stimulus was withdrawn. The very brief interval between stimulus and response suggested that the mechanism was a neural reflex. The afferents involved are unknown but are not purely vagal in nature, since qualitatively similar results were seen in animals after vagotomy. The alteration in breathing frequency indicates that at least part of the reflex is supraspinally mediated. The change in pattern of breathing closely resembles that seen in subjects after abdominal surgery and supports the theory that reflex inhibition of breathing contributes to postoperative pulmonary complications seen in those subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号