首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lung cancer is a serious health problem and the leading cause of cancer death worldwide. The standard use of cell lines as in vitro pre-clinical models to study the molecular mechanisms that drive tumorigenesis and access drug sensitivity/effectiveness is of undisputable importance. Label-free mass spectrometry and bioinformatics were employed to study the proteomic profiles of two representative lung cancer cell lines and to unravel the specific biological processes. Adenocarcinoma A549 cells were enriched in proteins related to cellular respiration, ubiquitination, apoptosis and response to drug/hypoxia/oxidative stress. In turn, squamous carcinoma SW900 cells were enriched in proteins related to translation, apoptosis, response to inorganic/organic substances and cytoskeleton organization. Several proteins with differential expression were related to cancer transformation, tumor resistance, proliferation, migration, invasion and metastasis. Combined analysis of proteome and interactome data highlighted key proteins and suggested that adenocarcinoma might be more prone to PI3K/Akt/mTOR and topoisomerase IIα inhibitors, and squamous carcinoma to Ck2 inhibitors. Moreover, ILF3 overexpression in adenocarcinoma, and PCNA and NEDD8 in squamous carcinoma shows them as promising candidates for therapeutic purposes. This study highlights the functional proteomic differences of two main subtypes of lung cancer models and hints several targeted therapies that might assist in this type of cancer.  相似文献   

2.
TNF-related apoptosis-inducing ligand (TRAIL, Apo2L) is a promising anticancer agent with high specificity for cancer cells. Many strategies have been proposed to enhance the sensitivity of cancer cells to TRAIL-mediated apoptosis, including the use of combination treatment with conventional cancer therapies. However, few reports have evaluated the effects of TRAIL in combination with mechanical stress, which can also cause apoptosis of cancer cells. In the present study, we describe a custom-designed culture system that delivers two atmospheres of elevated pressure (EP) by using compressed air, and which enhances the sensitivity of cancer cells to TRAIL-mediated apoptosis. The combination of TRAIL and EP significantly increased apoptosis of human H460 lung cancer cells more than hyperbaric normoxia or normobaric mild hyperoxia. EP-potentiating TRAIL-mediated apoptosis of H460 cells was accompanied by up-regulated death receptor 5 (DR5), activation of caspases, decreased mitochondrial membrane potential, and reactive oxygen species production. We also observed EP-induced sensitization of TRAIL-mediated apoptosis in other cancer cell types. In contrast, human normal cells showed no DNA damage or cell death when exposed to the combined treatment. In a chicken chorioallantoic membrane model, EP enhanced TRAIL-mediated apoptosis of tumors that developed from transplanted H460 cells. Collectively, EP enhanced TRAIL-induced apoptosis of human lung carcinoma cells in vitro and in vivo. These findings suggest that EP is a mechanical and physiological stimulus that might have utility as a sensitizing tool for cancer therapy.  相似文献   

3.
Lung cancer is the major cause of cancer associated mortality. Mutations in EGFR have been implicated in lung cancer pathogenesis. Gefitinib (GF) is a RTKI (receptor tyrosine kinase inhibitor) first-choice drug for EGFR mutated advanced lung cancer. However, drug toxicity and cancer cell resistance lead to treatment failure. Consequently, new therapeutic strategies are urgently required. Therefore, this study was aimed at identifying tumor suppressive compounds that can synergistically improve Gefitinib chemosensitivity in the lung cancer treatment. Medicinal plants offer a vast platform for the development of novel anticancer agents. Daidzein (DZ) is an isoflavone compound extracted from soy plants and has been shown to possess many medicinal benefits. The anticancer potential of GF and DZ combination treatment was investigated using MTT, western blot, fluorescent microscopy imaging, flow cytometry and nude mice tumor xenograft techniques. Our results demonstrate that DZ synergistically induces c-Jun nuclear translocation through ROS/ASK1/JNK and downregulates EGFR-STAT/AKT/ERK pathways to activate apoptosis and a G0/G1 phase cell cycle blockade. In in-vivo, the combination treatment significantly suppressed A549 lung cancer cells tumor xenograft growth without noticeable toxicity. Daidzein supplements with current chemotherapeutic agents may well be an alternative strategy to improve the treatment efficacy of lung adenocarcinoma.  相似文献   

4.
肺癌细胞对化疗药物产生耐药性是目前肺癌化疗过程中遇到的主要问题。微小RNA(miRNA)是一类内源性非编码短链小分子RNA,它能调节细胞生长、凋亡和信号转导。miRNA的多态性与药物代谢和耐药形成密切相关,异常表达的miRNA对预测肺癌化疗药物敏感性有重要作用。调节特异miRNA的表达,将为克服肺癌耐药和选择个体化治疗开辟新的途径。  相似文献   

5.
6.
Lung cancer is the leading cause of cancer death worldwide. Histologically, 80% of lung cancers are classified as non-small-cell lung cancer (NSCLC), and the remaining 20% as small-cell lung cancer (SCLC). Lung carcinoma is the result of molecular changes in the cell, resulting in the deregulation of pathways controlling normal cellular growth, differentiation, and apoptosis. This review summarizes some of the most recent findings about the role of cell-cycle proteins in lung cancer pathogenesis and progression.  相似文献   

7.
Non-small cell lung cancer (NSCLC) and hepatocellular carcinoma (HCC) are leading causes of cancer mortality and morbidity around the world. Despite the recent advances in their diagnosis and therapy, their prognosis remains poor owing to the development of drug resistance and metastasis. Raloxifene (RX), a drug first used in the treatment of osteoporosis, was recently approved for NSCLC and HCC prevention. Unfortunately, many of the therapies that use RX are likely to become ineffective due to drug resistance. Herein, we developed a novel delivery strategy by utilizing hyaluronic acid (HA) and chitosan (CS) complexation to increase the half-life and activity of RX. Consequently, we explored the pro-apoptotic and cytotoxic effects of RX-HA-CS nanoparticles (NPs) against NSCLC (A549) and HCC (HepG2 and Huh-7) cell lines. The highest entrapment efficiency (EE%) was noted in RX-HA-CS NPs (92%) compared to RX-HA NPs (87.5%) and RX-CS NPs (68%). In addition, RX-HA-CS NPs induced the highest cytotoxicity against A549 cells compared to other platforms. The significant suppression of A549 cell viability was achieved via glucose uptake reduction resulting in diminished bioenergetics of cancer cells and activation of apoptosis via nitric oxide level elevation. This study is the first to assess the efficacy of RX in its HA-CS nano-formulation against lung and liver cancer cells and demonstrated its selective cytotoxic and apoptotic potential against human lung A549 cancer cell line. These findings demonstrate a promising drug delivery system to help mitigate drug resistance in lung cancer.  相似文献   

8.
Huffman KE  Corey DR 《Biochemistry》2005,44(7):2253-2261
The human major vault protein (MVP) is the primary component of the 13 MDa vault complex. MVP has been implicated in the development of non-P-glycoprotein-mediated drug resistance in cancer cells. Here we present several lines of evidence that dispute this assertion. siRNAs capable of specifically and efficiently knocking down expression of MVP do not alter the ability of resistant cells to remove doxorubicin from the nucleus and do not increase sensitivity to the drug. Conversely, upregulation of MVP in chemosensitive cells does not confer increased drug resistance. In multi-drug resistant (MDR) lung carcinoma cells, fluorescence microscopy reveals that doxorubicin enters the nucleus and is then removed, inconsistent with suggestions that vaults either act to prevent the drug from entering the nucleus or are involved as a nuclear efflux pump. These data suggest that vaults play no direct role in the MDR phenotype in non-small cell lung carcinoma cells and that their cellular function remains unknown. These results also have important implications concerning the value of MVP as a drug target and as a prognostic marker for chemotherapy failure. Our results suggest the need for further investigation into the link between upregulation of vaults and malignancy, the mechanism behind non-P-gp-mediated drug resistance, and the role of vaults in human cells.  相似文献   

9.
HDAC inhibitors are promising antitumor drugs with several HDAC inhibitors already in clinical trials. LAQ824, a potent pan-HDAC inhibitor, has been shown to induce cell cycle arrest and cell death. However, the mechanism of its antitumor effects and specially its tumor selectivity are still poorly understood. The focus of this study is to elucidate LAQ824 mediated anti-proliferative effects in lung carcinoma cells and the mechanism underlying the different sensitivity of LAQ824 to cancer and normal cells. In this study, LAQ824 mediated apoptosis was found to occur mainly via activation of the mitochondrial death pathway by inducing Apaf1 and caspase 9 and promoting mitochondrial release of key proapoptotic factors in lung cancer cells, but not in normal fibroblast cells. Using chromatin immunoprecipitation assay, we found that RNA PolII binding and histone H3 acetylation levels at Apaf1 promoter were increased following LAQ824 treatment, explaining LAQ824 induced expression of Apaf1 in lung cancer cells. Furthermore, we showed that LAQ824 only triggered the release of mitochondrial proapoptotic factors such as cytochrome C (Cyto C) and apoptosis inducing factor (AIF) in lung cancer cells but not in normal blast cells. In addition, LAQ824 was found to induce Bax translocation in lung cancer cell, which may play important role in the induction of the release of mitochondrial proapoptotic factors. These data provide insight into the mechanism underlying the selective induction of apoptosis by LAQ824 in cancer cells.  相似文献   

10.
Lung cancer is the leading cause of cancer-related mortality worldwide. The lack of tumor specificity remains a major drawback for effective chemotherapies and results in dose-limiting toxicities. However, a ligand-mediated drug delivery system should be able to render chemotherapy more specific to tumor cells and less toxic to normal tissues. In this study, we isolated a novel peptide ligand from a phage-displayed peptide library that bound to non-small cell lung cancer (NSCLC) cell lines. The targeting phage bound to several NSCLC cell lines but not to normal cells. Both the targeting phage and the synthetic peptide recognized the surgical specimens of NSCLC with a positive rate of 75% (27 of 36 specimens). In severe combined immunodeficiency (SCID) mice bearing NSCLC xenografts, the targeting phage specifically bound to tumor masses. The tumor homing ability of the targeting phage was inhibited by the cognate synthetic peptide, but not by a control or a WTY-mutated peptide. When the targeting peptide was coupled to liposomes carrying doxorubicin or vinorelbine, the therapeutic index of the chemotherapeutic agents and the survival rates of mice with human lung cancer xenografts markedly increased. Furthermore, the targeting liposomes increased drug accumulation in tumor tissues by 5.7-fold compared with free drugs and enhanced cancer cell apoptosis resulting from a higher concentration of bioavailable doxorubicin. The current study suggests that this tumor-specific peptide may be used to create chemotherapies specifically targeting tumor cells in the treatment of NSCLC and to design targeted gene transfer vectors or it may be used one in the diagnosis of this malignancy.  相似文献   

11.
Conventional anticancer drug sensitivity testing methods, such as succinate dehydrogenase inhibition (SDI), histoculture drug-response assay (HDRA) and collagen gel droplet embedded culture drug sensitivity testing (CD-DST), all require primary culturing and are extremely complex tests that require considerable time for analysis. A major drawback of these methods is that if culturing is not performed properly, ambiguous results are produced. Therefore, we developed an oxygen electrode apparatus that uses cellular metabolism as an indicator of anticancer drug sensitivity and investigated its usefulness in 29 breast cancer patients with the following histopathological classifications: papillotubular carcinoma (n= 15); solid tubular carcinoma (n= 6); and scirrhous carcinoma (n= 8). Comparison of anticancer drug sensitivity testing results obtained using the conventional HDRA method and those obtained using the oxygen electrode apparatus showed significant reproducibility between the two methods. In addition, similar anticancer drug sensitivity testing results using the oxygen electrode apparatus were obtained for in vivo testing of nude mice transplanted with established cancer cell lines. These findings suggest that the oxygen electrode apparatus is a useful procedure in anticancer drug sensitivity testing that provides better reproducibility and that is faster, more convenient, and less expensive than other testing methods.  相似文献   

12.
Parathyroid hormone-related protein (PTHrP)-(1–34) and PTHrP-(140–173) protect lung cancer cells from apoptosis after ultraviolet (UV) irradiation. This study evaluated upstream signaling in PTHrP-mediated alteration of lung cancer cell sensitivity to apoptosis. The two peptides increased cAMP levels in BEN lung cancer cells by 15–35% in a dose-dependent fashion, suggesting signaling through protein kinase A (PKA). In line with this view, the PKA inhibitor H89 abrogated the protective effects of PTHrP-(1–34) and PTHrP-(140–173) against caspase activation and DNA loss. PKA activation by forskolin, 3-isobutyl-1-methylxanthine (IBMX), or 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate attenuated and H89 augmented apoptosis after UV exposure as indicated by caspase-3 activation, cell DNA loss, and morphological criteria. Studies with IBMX and varying doses of forskolin indicated that small increases in cAMP, on the order of those generated by IBMX alone and the PTHrP peptides, were sufficient to protect lung cancer cells from apoptosis. In summary, PTHrP-(1–34) and PTHrP-(140–173) stimulate PKA in lung carcinoma cells and protect cells against UV-induced caspase-3 activation and DNA fragmentation. PKA activation by other means also induces resistance to apoptosis, and the protective effect of the PTHrP peptide is blocked by PKA inhibition. Thus PKA appears to have a role in the regulatory effects of PTHrP on lung cancer cell survival. caspases; cell surface receptors; growth substances; signal transduction  相似文献   

13.
14.
Lung cancer is one of the most common malignancies worldwide. Actinidia chinensis Planch root extract (acRoots) was found to have the capacity of the anti-tumor, although the molecular mechanisms remain unclear. The present study aims to investigate the molecular mechanisms by which lung cancer cells sense to inhibitory effects of acRoots with a special focus on immune-associated gene profiles. We firstly provide a preclinical evidence that acRoots can significantly inhibit lung cancer cell proliferation and apoptosis via the PI3K-OASL signal pathway. The heterogeneous alterations of immune-associated gene profiles of lung cancer cell types were measured after treatment with various doses of acRoots. The OASL gene was identified as the key regulator in molecular networks of acRoots-treated lung cancer cells and validated. The OASL gene plays an important role in the regulation of lung cancer cell sensitivity to acRoots, which modulated by the PI3K signal pathway. Thus, our data indicate that OASL can be one of the decisive regulators to maintain lung cancer cell susceptibility to acRoots and may be associated with the development of drug resistance. The regulation of OASL can be an alternative strategy to improve drug efficacy during cancer therapies.  相似文献   

15.
Lung cancer and chronic obstructive pulmonary disease (COPD) are leading causes of morbidity and mortality worldwide. They share a common environmental risk factor in cigarette smoke exposure and a genetic predisposition represented by the incidence of these diseases in only a fraction of smokers. COPD is also a major independent risk factor for lung carcinoma, among long-term smokers. Smokers with COPD also have a higher risk of developing a specific histological subtype of non-small cell lung cancer termed squamous cell carcinoma. For these reasons the focus of this review is on the potential pathogenic molecular links between tobacco smoking-related COPD and squamous cell carcinoma. We believe that we need to promote more studies on the molecular and cellular pathobiology of smokers with premalignant bronchial lesions of the squamous cell lung carcinoma compared with a control group of smokers with and without COPD to unravel the complex molecular interactions between COPD and early squamous cell lung carcinoma. These studies should also look at younger healthy smokers in combination with risk models of lung cancer and COPD. Overall these studies may allow the discovery of new molecular targets of the early carcinogenesis process that in the foreseeable future may render the early diagnosis and treatment, and may be even the prevention, of invasive squamous cell lung carcinoma a reality.  相似文献   

16.
MicroRNAs (miRNAs) play an important role in drug resistance, and it is reported that miR-27a-3p regulated the sensitivity of cisplatin in breast cancer, lung cancer and ovarian cancer. However, the relationship between miR-27a-3p and chemosensitivity of cisplatin in hepatocellular carcinoma (HCC) was unclear, especially the underlying mechanism was unknown. In the present study, we analyzed miR-27a-3p expression levels in 372 tumor tissues and 49 adjacent tissues in HCC samples from TCGA database, and found that the miR-27a-3p was down-regulated in HCC tissues. The level of miR-27a-3p was associated with metastasis, Child–Pugh grade and race. MiR-27a-3p was regarded as a favorable prognosis indicator for HCC patients. Then, miR-27a-3p was overexpressed in HepG2 cell, and was knocked down in PLC cell. Next, we conducted a series of in vitro assays, including MTT, apoptosis and cell cycle assays to observe the biological changes. Further, inhibitor rate and apoptosis rate were detected with pre- and post-cisplatin treatment in HCC. The results showed that overexpression of miR-27a-3p repressed the cell viability, promoted apoptosis and increased the percentage of cells in G0/G1 phase. Importantly, overexpression of miR-27a-3p significantly increased the inhibitor rate and apoptosis rate with cisplatin intervention. Besides, we found that miR-27a-3p added cisplatin sensitivity potentially through regulating PI3K/Akt signaling pathway. Taken together, miR-27a-3p acted as a tumor suppressor gene in HCC cells, and it could be useful for modulating cisplatin sensitivity in chemotherapy.  相似文献   

17.
Apoptosis-inducing factor (AIF) exhibits reactive oxygen species (ROS)-generating NADH oxidase activity of unknown significance, which is dispensable for apoptosis. We knocked out the aif gene in two human colon carcinoma cell lines that displayed lower mitochondrial complex I oxidoreductase activity and produced less ROS, but showed increased sensitivity to peroxide- or drug-induced apoptosis. AIF knockout cells failed to form tumors in athymic mice or grow in soft agar. Only AIF with intact NADH oxidase activity restored complex I activity and anchorage-independent growth of aif knockout cells, and induced aif-transfected mouse NIH3T3 cells to form foci. AIF knockdown in different carcinoma cell types resulted in lower superoxide levels, enhanced apoptosis sensitivity and loss of tumorigenicity. Antioxidants sensitized AIF-expressing cells to apoptosis, but had no effect on tumorigenicity. In summary, AIF-mediated resistance to chemical stress involves ROS and probably also mitochondrial complex I. AIF maintains the transformed state of colon cancer cells through its NADH oxidase activity, by mechanisms that involve complex I function. On both counts, AIF represents a novel type of cancer drug target.  相似文献   

18.
19.
Diagnostics and therapies have shown evident advances. Tumour surgery, chemotherapy and radiotherapy are the main techniques in treat cancers. Targeted therapy and drug resistance are the main focus in cancer research, but many molecular intracellular mechanisms remain unknown. Src homology region 2‐containing protein tyrosine phosphatase 2 (Shp2) is associated with breast cancer, leukaemia, lung cancer, liver cancer, gastric cancer, laryngeal cancer, oral cancer and other cancer types. Signalling pathways involving Shp2 have also been discovered. Shp2 is related to many diseases. Mutations in the ptpn11 gene cause Noonan syndrome, LEOPARD syndrome and childhood leukaemia. Shp2 is also involved in several cancer‐related processes, including cancer cell invasion and metastasis, apoptosis, DNA damage, cell proliferation, cell cycle and drug resistance. Based on the structure and function of Shp2, scientists have investigated specific mechanisms involved in cancer. Shp2 may be a potential therapeutic target because this phosphatase is implicated in many aspects. Furthermore, Shp2 inhibitors have been used in experiments to develop treatment strategies. However, conflicting results related to Shp2 functions have been presented in the literature, and such results should be resolved in future studies.  相似文献   

20.
Lung cancer is a major cause of cancer deaths throughout the world and the complexity of apoptosis resistance in lung cancer is apparent. Venom from Heteractis magnifica caused dose-dependent decreases in survival of the human non-small-cell lung cancer cell line, as determined by the MTT and Crystal Violet assays. The H. magnifica venom induced cell cycle arrest and induced apoptosis of A549 cells, as confirmed by annexin V/propidium iodide staining. The venom-induced apoptosis in A549 cells was characterized by cleavage of caspase-3 and a reduction in the mitochondrial membrane potential. Interestingly, crude extracts from H. magnifica had less effect on the survival of non-cancer cell lines. In the non-cancer cells, the mechanism via which cell death occurred was through necrosis not apoptosis. These findings are important for future work using H. magnifica venom for pharmaceutical development to treat human lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号