首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium.  相似文献   

2.
3.
It is generally believed that the mechanism of action of neurotrophic factors involves uptake of neurotrophic factor by nerve terminals and retrograde transport through the axon and back to the cell body where the factor exerts its neurotrophic effect. This view originated with the observation almost 20 years ago that nerve growth factor (NGF) is retrogradely transported by sympathetic axons, arriving intact at the neuronal cell bodies in sympathetic ganglia. However, experiments using compartmented cultures of rat sympathetic neurons have shown that neurite growth is a local response of neurites to NGF locally applied to them which does not directly involve mechanisms in the cell body. Recently, several NGF-related neurotrophins have been identified, and several unrelated molecules have been shown to act as neurotrophic or differentiation factors for a variety of types of neurons in the peripheral and central nervous systems. It has become clear that knowledge of the mechanisms of action of these factors will be crucial to understanding neurodegenerative diseases and the development of treatments as well as the means to repair or minimize neuronal damage after spinal injury. The concepts derived from work with NGF suggest that the site of exposure of a neuron to a neurotrophic factor is important in determining its response. 1994 John Wiley & Sons, Inc.  相似文献   

4.
《The Journal of cell biology》1993,122(5):1053-1065
We examined the expression of the neurotrophins (NTFs) and their receptor mRNAs in the rat trigeminal ganglion and the first branchial arch before and at the time of maxillary nerve growth. The maxillary nerve appears first at embryonic day (E)10 and reaches the epithelium of the first branchial arch at E12, as revealed by anti-L1 immunohistochemistry. In situ hybridization demonstrates, that at E10- E11, neurotrophin-3 (NT-3) mRNA is expressed mainly in the mesenchyme, but neurotrophin-4 (NT-4) mRNA in the epithelium of the first branchial arch. NGF and brain-derived neurotrophic factor (BDNF) mRNAs start to be expressed in the distal part of the first brachial arch shortly before its innervation by the maxillary nerve. Trigeminal ganglia strongly express the mRNA of trkA at E10 and thereafter. The expression of mRNAs for low-affinity neurotrophin receptor (LANR), trkB, and trkC in trigeminal ganglia is weak at E10, but increases by E11-E12. NT-3, NT-4, and more prominently BDNF, induce neurite outgrowth from explant cultures of the E10 trigeminal ganglia but no neurites are induced by NGF, despite the expression of trkA. By E12, the neuritogenic potency of NGF also appears. The expression of NT-3 and NT-4 and their receptors in the trigeminal system prior to target field innervation suggests that these NTFs have also other functions than being the target-derived trophic factors.  相似文献   

5.
The insulin-like growth factors I and II are single chain polypeptides homologous to proinsulin. IGF I and IGF II contribute to cell regulation and stimulate protein synthesis via signaling through type I receptors which are homologous to insulin receptors and activate phosphorylation cascades. IGFs enhance the proliferation of chondocytes and the proliferation of their collagen and proteoglycan matrix; IGFs stimulate longitudinal (endochondral) bone growth. Throughout life, IGFs are constitutvely expressed ubiquitous factors which help to maintain the survival of differentiated cells, Increased expression is found during growth and tissue repair, Six specific binding proteins, IGFBP 1-6, allow additional tissue compartment specific control of IGF activity; IGFBP production favours storage and IGFBP cleavage leads to activation.  相似文献   

6.
Pharmacological treatment is a therapeutic approach to improving nerve regeneration and functional recovery after peripheral nerve crush injury. The objective of the present study was to investigate the effects of the polypeptides isolated from Achyranthes bidentata Blume (abbreviated as ABPP) on rat sciatic crush injury and to test the possible involvement of neurotrophic factors. After surgical crush injury, rats received daily intraperitoneal injection of 0.2 ml saline containing 2 mg ABPP, 1 μg nerve growth factor (NGF) or no additive. The results from walking track analysis, electrophysiological assessment and histological evaluation indicated that the repair outcomes by ABPP treatment were close to those by NGF treatment, but better than those by treatment with saline alone. The quantitative real-time RT-PCR was used to monitor the mRNA expression of growth associated protein in the crush nerves and the mRNA expression of NGF, brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), tyrosine kinase (Trk)A and TrkB in the dorsal root ganglia (DRGs) at L4–L6. The mRNA expression of these genes in the crush nerve sample and DRGs sample was higher after treatment with ABPP or NGF than after treatment with saline alone. Our findings suggest that ABPP might protect peripheral nerve against crush injury through stimulating release of neurotrophic factors and the other cytokines.  相似文献   

7.
BACKGROUND: Chronic diabetes causes structural changes in the retinal capillaries of nearly all patients with a disease duration of more than 15 years. Acellular occluded vessels cause hypoxia, which stimulates sight-threatening abnormal angiogenesis in 50% of all type I diabetic patients. The mechanism by which diabetes produces acellular retinal capillaries is unknown. MATERIALS AND METHODS: In this study, evidence of programmed cell death (PCD) was sought in the retinas of early diabetic rats, and the effect of nerve growth factor (NGF) on PCD and capillary morphology was evaluated. RESULTS: Diabetes induced PCD primarily in retinal ganglion cells (RGC) and Muller cells. This was associated with a transdifferentiation of Muller cells into an injury-associated glial fibrillary acidic protein (GFAP)-expressing phenotype, and an up-regulation of the low-affinity NGF receptor p75NGFR on both RGC and Muller cells. NGF treatment of diabetic rats prevented both early PCD in RGC and Muller cells, and the development of pericyte loss and acellular occluded capillaries. CONCLUSIONS: These data provide new insight into the mechanism of diabetic retinal vascular damage, and suggest that NGF or other neurotrophic factors may have potential as therapeutic agents for the prevention of human diabetic retinopathy.  相似文献   

8.
Shortly after neurons begin to innervate their targets in the developing vertebrate nervous system they become dependent on the supply of a neurotrophic factor, such as nerve growth factor (NGF) for survival. Recently, Martin et al. (1988) have shown that inhibiting protein synthesis prevents the death of NGF-deprived sympathetic neurons, suggesting that NGF promotes neuronal survival by suppressing an active cell death program. To determine if other neurotrophic factors may regulate neuronal survival by a similar mechanism we examined the effects of inhibiting protein and RNA synthesis in other populations of embryonic neurons that require different neurotrophic factors, namely: 1) trigeminal mesencephalic neurons, a population of proprioceptive neurons that are supported by brain-derived neurotrophic factor; 2) dorsomedial trigeminal ganglion neurons, a population of cutaneous sensory neurons that are supported by NGF; 3) and ciliary ganglion neurons, a population of parasympathetic neurons that are supported by ciliary neuronotrophic factor. Blocking either protein or RNA synthesis rescued all three populations of neurons from cell death induced by neurotrophic factor deprivation in vitro. Thus, at least three different neurotrophic factors appear to promote survival by a similar mechanism that may involve the suppression of an endogenous cell death program.  相似文献   

9.
Neurotrophic and growth factors are major subgroups of polypeptides that are synthesized naturally and characterized by the following effects: neuronal differentiation, survey of nerve cell functional integrity, protection against degeneration and lesions, which maintain nerve cells alive. Neurotrophic and growth factors increase the resistance of neuronal tissue to the noxious influence such as hypoxia, exitotoxicity, trauma, stress injury, hypoglycemia, etc. Neurotrophic and growth factors are important in the synaptic plastivcity, activity of learning and cognitive proecesses, regulation of depressive and anxiogenic states. Analysis of clinical and experimental data suggested tha main role of neurotrophins and growth factors in the pathogenesis of ischemic and neurodegenerative brain processes. Some factors are considered as specific markers or targets for concrete diseases; but for any other factors the protective function and therapeutically opportunity for treatment of some pathologies have been revealed. There is some evidence for antiapoptic effects of neurotrophic and growth factors as a basic principle for their neuroprotective function.  相似文献   

10.
11.
The insulin like growth factors (IGF-I and -II) are structurally and functionally related to insulin. While insulin is a key regulator of glucose homeostasis over the short term, emerging evidence suggests that the IGFs are involved in the longer term glucose homeostasis, possibly by modulating insulin sensitivity. Unlike insulin, the IGFs are present in most biological fluids as complexes with high affinity binding proteins, the insulin-like growth factor binding proteins (IGFBPs). The IGFBPs regulate the bioavailability of the IGFs. Of the six IGFBPs identified there is evidence from studies in transgenic mice that both IGFBP-1 and IGFBP-3 may have a role in glucose regulation.  相似文献   

12.
The field of neurotrophins, particularly, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), has witnessed a number of breakthroughs in recent years. There is evidence now that NGF and BDNF mediate multiple biological phenomena, ranging from the Rita Levi Montalcini's neurotrophic through immunotrophic to epitheliotrophic and nociceptive effects. In 2003 we, for the first time, enriched the "NGFome" with one more expression presented in our concept of NGF metabotrophicity, also that of BDNF. This envisages that these two factors may operate as metabotrophins, that is, involved in the maintenance of cardiometabolic homeostasis (glucose and lipid metabolism as well as energy balance, cardioprotection, and wound healing). Recent results also demonstrated that the circulating and/or tissue levels of NGF and BDNF are altered in cardiometabolic diseases (atherosclerosis, obesity, type 2 diabetes, metabolic syndrome, and type 3 diabetes). Altogether, a hypothesis of metabotrophic deficit due to the reduction of NGF/BDNF availability and/or utilization was raised, and implicated in the pathogenesis of cardiometabolic diseases. This may cultivate a novel pathogenic and therapeutic thinking for these diseases.  相似文献   

13.
Abstract: Recent clinical evidence has suggested that interferon-β is efficacious in the treatment of the demyelinating disease, multiple sclerosis. The mechanism of its efficacy remains unclear, and suggested modes of action have focused on immune modulation. Nonimmune effects of interferon-β may also contribute to its efficacy. Given that astrocytes produce a range of neurotrophic factors, we examined the possibility that interferon-β could increase the astrocytic production of nerve growth factor (NGF), which has been reported to cause oligodendrocytes to proliferate and to extend their processes; these phenotypes can impact favorably on remyelination. When the recombinant form of mouse interferon-β was added to mouse astrocyte cultures, a dose-dependent increase in NGF mRNA was obtained. The 40-fold increase in NGF mRNA elicited by 1,000 U/ml interferon-β was far more potent than that produced by other NGF-elevating agents in this study. In concordance, the protein for NGF was elevated by interferon-β. The production of NGF by interferon-β may be relevant to its clinical efficacy in multiple sclerosis. Furthermore, we suggest the potential utility of interferon-β in Alzheimer's disease.  相似文献   

14.
Dividing neuroendocrine cells differentiate into a neuronal-like phenotype in response to ligands activating G protein-coupled receptors, leading to the elevation of the second messenger cAMP. Growth factors that act at receptor tyrosine kinases, such as nerve growth factor, also cause differentiation. We report here that two aspects of cAMP-induced differentiation, neurite extension and growth arrest, are dissociable at the level of the sensors conveying the cAMP signal in PC12 and NS-1 cells. Following cAMP elevation, neuritogenic cyclic AMP sensor/Rapgef2 is activated for signaling to ERK to mediate neuritogenesis, whereas Epac2 is activated for signaling to the MAP kinase p38 to mediate growth arrest. Neither action of cAMP requires transactivation of TrkA, the receptor for NGF. In fact, the differentiating effects of NGF do not require activation of any of the cAMP sensors protein kinase A, Epac, or neuritogenic cyclic AMP sensor/Rapgef2 but, rather, depend on ERK and p38 activation via completely independent signaling pathways. Hence, cAMP- and NGF-dependent signaling for differentiation are also completely insulated from each other. Cyclic AMP and NGF also protect NS-1 cells from serum withdrawal-induced cell death, again by two wholly separate signaling mechanisms, PKA-dependent for cAMP and PKA-independent for NGF.  相似文献   

15.
Senescence of the central nervous system is characterized by a progressive loss of neurons that can result in physiological and behavioral impairments. Reduction in the levels of central neurotrophic factors or of neurotrophin receptors may be one of the causes of the onset of these degenerative events. Thus, a proper therapeutic approach would be to increase support to degenerating neurons with trophic factors or to stimulate endogenous neurotrophic activity. Here we report that acetyl-l-carnitine arginine amide (ST-857) is able to stimulate neurite outgrowth in rat pheochromocytoma PC12 cells in a manner similar to that elicited by nerve growth factor (NGF). Neurite induction by ST-857 requires de novo mRNA synthesis and is independent of the action of several common trophic factors. The integrity of the molecular structure of ST-857 is essential for its activity, as the single moieties of the molecule have no effect on PC12 cells, whether they are tested separately or together. Also, minor chemical modifications of ST-857, such as the presence of the arginine moiety at a position other than the amino one, completely abolish its neuritogenic effect. Lastly, the presence of ST-857 in the culture medium competes with the high affinity NGF binding in a dose dependent fashion. These results, although preliminary, are suggestive of a possible role for ST-857 in the development of therapeutic strategies to counteract degenerative diseases of the CNS.  相似文献   

16.
Differentiation and survival of neuronal cell types requires the action of neurotrophic polypeptides such as nerve growth factor (NGF). In the central and peripheral nervous system and the phaeochromocytoma cell model PC12, NGF exerts its effects through the activation of the signalling capacity of Trk, a receptor tyrosine kinase (RTK) which upon interaction with NGF becomes phosphorylated on tyrosines and thereby acquires the potential to interact with signal-transducing proteins such as phospholipase C-gamma (PLC gamma), phosphatidylinositol-3'-kinase (PI3'-K) and SHC. Mutagenesis of the specific binding sites for these src homology 2 (SH2) domain-containing substrates within the Trk cytoplasmic domain suggests a non-essential function of PI3'-K and reveals a major role for the signal controlled by the SHC binding site at tyrosine 490 and a co-operative function of the PLC gamma-mediated pathway for neuronal differentiation of PC12 cells.  相似文献   

17.
The effects of epidermal growth factor (EGF) and nerve growth factor (NGF) from mouse submaxillary glands on lipolysis and lipogenesis in isolated rat adipocytes were studied. EGF and NGF at nanomolar concentrations augmented basal lipogenesis. The lipogenic responses to EGF and NGF were additive with a submaximal response induced by insulin but not with that of a maximal response to insulin, indicating a similarity in the mechanisms of action of EGF, NGF and insulin. EGF and NGF also inhibited epinephrine-induced lipolysis. The antilipolytic and lipogenic activities of EGF and NGF were considerably less potent by concentration than those of insulin.  相似文献   

18.
《Life sciences》1994,55(5):PL91-PL98
Previous studies have suggested that nicotine may have beneficial actions in neurodegenerative disease models. The purpose of the experiments described in this study was to determine whether the long lasting and beneficial effects of nicotine observed previously could be expressed through actions upon nerve growth factor (NGF) receptors. Using a differentiated PC-12 neuronal cell model, we have detected an increase in expression of cell surface NGF receptor protein after acute exposure to nicotine in the micromolar range. In addition, we have also observed a persistent effect upon NGF receptor expression which lasted even after nicotine (nanomolar range) was removed from the tissue culture medium. This increase in cell surface NGF receptor protein was blocked in the presence of mecamylamine, indicating that this effect is likely nicotinic receptor mediated. These results are consistent with the hypothesis that the lasting and beneficial actions of nicotine previously observed in vivo may involve an indirect effect upon the level of neuronal cell surface NGF receptor expression. Our observations offer one possible mechanism for a potential neurotrophic effect of nicotine.  相似文献   

19.
Human neuroblastoma SH-SY5Y cells differentiate terminally in culture upon exposure to nerve growth factor (NGF) for 4-5 weeks. The neuronal phenotypic properties acquired in response to prolonged NGF treatment include morphological differentiation, cessation of mitotic activity, neuronal marker expression, increased membrane electrical potentials, and a survival dependence upon NGF for trophic support (Jensen, L.M. (1987) Dev. Biol. 120, 56-64). Thus, differentiated cultures survive indefinitely in the continued presence of NGF, however, withdrawal of NGF from differentiated cultures effects the loss of cellular viability within 3-6 days. Here, we show that death of differentiated SH-SY5Y cells caused by NGF deprivation is characteristic of apoptosis. To compare the differentiation promoting and the neurotrophic properties of NGF, whole SH-SY5Y cell extracts were analyzed by two-dimensional polyacrylamide gel electrophoresis using isoelectric focusing and nonequilibrium pH gradient electrophoresis gels in the first dimension. Steady-state levels of polypeptides extracted from whole-cell lysates of naive (untreated) cells, terminally differentiated cells, and NGF-deprived differentiated cells were compared. Over 1,000 spots from each were analyzed using computer-aided spot matching and densitometry. We noted 25 polypeptides that decreased during differentiation, including 15 that decreased by a factor of 10 or more. The levels of five polypeptides were induced from very low or undetectable levels in naive cells. Withdrawal of NGF from terminally differentiated cells produced alterations in steady-state protein patterns substantially distinct from those occurring during differentiation. While levels of most proteins do not appear affected early after NGF withdrawal, others rapidly return to levels comparable with those of the naive state and some changes occurring with differentiation are enhanced further upon NGF withdrawal. Three polypeptides were regulated uniquely by NGF withdrawal, including two that were induced, on average, 20- and 28-fold and another that was depressed more than 7-fold after NGF deprivation, before cell death. These data indicate that NGF elicits both constitutive and nonconstitutive changes in gene expression and suggest that the differentiation promoting and the neurotrophic properties of NGF correlate with the regulation of different gene products.  相似文献   

20.
Insulin-like growth factors (IGF-I/-II) are not only the endocrine mediators of growth hormone-induced metabolic and anabolic actions but also polypeptides that act in a paracrine and autocrine manner to regulate cell growth, differentiation, apoptosis and transformation. The IGF system is a complex network comprised of two growth factors (IGF-I and -II), cell surface receptors (IGF-IR and -IIR), six specific high affinity binding proteins (IGFBP-I to IGFBP-6), IGFBP proteases as well as several other IGFBP-interacting molecules, which regulate and propagate IGF actions in several tissues. Besides their broad-spectrum physiological and pathophysiological functions, recent evidence suggests even a link between IGFs and different malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号