首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Structural studies of cysteine proteases and their inhibitors.   总被引:3,自引:0,他引:3  
Cysteine proteases (CPs) are responsible for many biochemical processes occurring in living organisms and they have been implicated in the development and progression of several diseases that involve abnormal protein turnover. The activity of CPs is regulated among others by their specific inhibitors: cystatins. The main aim of this review is to discuss the structure-activity relationships of cysteine proteases and cystatins, as well as of some synthetic inhibitors of cysteine proteases structurally based on the binding fragments of cystatins.  相似文献   

2.
This paper develops and evaluates large-scale calculation of 3D structures of protein complexes by homology modeling as a promising new approach for protein docking. The complexes investigated were papain-like cysteine proteases and their protein inhibitors, which play numerous roles in human and parasitic metabolisms. The structural modeling was performed in two parts. For the first part (evaluation set), nine crystal structure complexes were selected, 1325 homology models of known complexes were rebuilt by various templates including hybrids, allowing an analysis of the factors influencing the accuracy of the models. The important considerations for modeling the interface were protease coverage and inhibitor sequence identity. In the second part (study set), the findings of the evaluation set were used to select appropriate templates to model novel cysteine protease-inhibitor complexes from human and malaria parasites Plasmodium falciparum and Plasmodium vivax. The energy scores, considering the evaluation set, indicate that the models are of high accuracy.  相似文献   

3.
In the search for anti-SARS-CoV, tanshinones derived from Salvia miltiorrhiza were found to be specific and selective inhibitors for the SARS-CoV 3CLpro and PLpro, viral cysteine proteases. A literature search for studies involving the seven isolated tanshinone hits showed that at present, none have been identified as coronaviral protease inhibitors. We have identified that all of the isolated tanshinones are good inhibitors of both cysteine proteases. However, their activity was slightly affected by subtle changes in structure and targeting enzymes. All isolated compounds (17) act as time dependent inhibitors of PLpro, but no improved inhibition was observed following preincubation with the 3CLpro. In a detail kinetic mechanism study, all of the tanshinones except rosmariquinone (7) were identified as noncompetitive enzyme isomerization inhibitors. However, rosmariquinone (7) showed a different kinetic mechanism through mixed-type simple reversible slow-binding inhibition. Furthermore, tanshinone I (5) exhibited the most potent nanomolar level inhibitory activity toward deubiquitinating (IC50 = 0.7 μM). Additionally, the inhibition is selective because these compounds do not exert significant inhibitory effects against other proteases including chymotrysin, papain, and HIV protease. These findings provide potential inhibitors for SARS-CoV viral infection and replication.  相似文献   

4.
Of seven human cystatins investigated, none inhibited the cysteine proteases staphopain A and B secreted by the human pathogen Staphylococcus aureus. Rather, the extracellular cystatins C, D and E/M were hydrolyzed by both staphopains. Based on MALDI-TOF time-course experiments, staphopain A cleavage of cystatin C and D should be physiologically relevant and occur upon S. aureus infection. Staphopain A hydrolyzed the Gly11 bond of cystatin C and the Ala10 bond of cystatin D with similar Km values of approximately 33 and 32 microM, respectively. Such N-terminal truncation of cystatin C caused >300-fold lower inhibition of papain, cathepsin B, L and K, whereas the cathepsin H activity was compromised by a factor of ca. 10. Similarly, truncation of cystatin D caused alleviated inhibition of all endogenous target enzymes investigated. The normal activity of the cystatins is thus down-regulated, indicating that the bacterial enzymes can cause disturbance of the host protease-inhibitor balance. To illustrate the in vivo consequences, a mixed cystatin C assay showed release of cathepsin B activity in the presence of staphopain A. Results presented for the specificity of staphopains when interacting with cystatins as natural protein substrates could aid in the development of therapeutic agents directed toward these proteolytic virulence factors.  相似文献   

5.
The dipeptidyl epoxyesters 3 and 4 are potent, irreversible inhibitors of cruzain and rhodesain.  相似文献   

6.
Staphylococcus aureus is a human pathogen causing a wide range of diseases. Most staphylococcal infections, unlike those caused by other bacteria are not toxigenic and very little is known about their pathogenesis. It has been proposed that a core of secreted proteins common to many infectious strains is responsible for colonization and infection. Among those proteins several proteases are present and over the years many different functions in the infection process have been attributed to them. However, little direct, in vivo data has been presented. Two cysteine proteases, staphopain A (ScpA) and staphopain B (SspB) are important members of this group of enzymes. Recently, two cysteine protease inhibitors, staphostatin A and staphostatin B (ScpB and SspC, respectively) were described in S. aureus shedding new light on the complexity of the processes involving the two proteases. The scope of this review is to summarize current knowledge on the network of staphylococcal cysteine proteases and their inhibitors in view of their possible role as virulence factors.  相似文献   

7.
8.
The genes encoding secreted, broad-spectrum activity cysteine proteases of Staphylococcus spp. (staphopains) and Streptococcus pyogenes (streptopain, SpeB) are genetically linked to genes encoding cytoplasmic inhibitors. While staphopain inhibitors have lipocalin-like folds, streptopain is inhibited by a protein bearing the scaffold of the enzyme profragment. Bioinformatic analysis of other prokaryotic genomes has revealed that two more species may utilize this same genetic arrangement to control streptopain-like proteases with lipocalin-like inhibitors, while three other species may employ a C-terminally located domain that resembles the profragment. This apparently represents a novel system that bacteria use to control the intracellular activity of their proteases.  相似文献   

9.
Cystatin C belongs to the most widespread group of endogenous extracellular cysteine protease inhibitors; its biological functions are investigated now. Using the ELISA method we have demonstrated that the highest cystatin C concentration is registered in human cerebrospinal fluid; significantly lower cystatin C lever is detected in human urine. In healthy individuals of young age serum cystatin C concentration is lower than in elder persons (of 50–65 years old). In patients with hemoblastoses (lymphoma, lymphogranulomatosis) increased serum cystatin C concentration was normalized after effective antitumor therapy. This suggests that serum cystatin C concentration can be used as one of the prognostic criteria in patients with several types of hemoblastoses.  相似文献   

10.
Physiological and pathological roles of cysteine proteases make them important targets for inhibitor development. Although highly potent inhibitors of this group of enzymes are known, their major drawback is a lack of sufficient specificity. Two cysteine protease covalent inhibitors, viz. (i) Z-RL-deoxo-V-peptide-epoxysuccinyl hybrid, and (ii) Z-RLVG-methyl-, have been developed and modeled in the catalytic pocket of papain, an archetypal thiol protease. A number of configurations have been generated and relaxed for each system using the AMBER force field. The catalytic pockets S3 and S4 appear rather elusive in view of the observed inhibitors' flexibility. This suggest rather limited chances for the development of selective structure-based inhibitors of thiol proteases, designed to exploit differences in the structure of catalytic pockets of various members of this family.  相似文献   

11.
The stereoselective synthesis of cathepsin inhibitors from indoline type epoxyamides is described. The use of this type of epoxyamides permitted the preparation of E-64 and CA-074 related compounds depending on the order in which the key steps, the oxidation of indoline amides to indole amides and oxidative acetal cleavage were undertaken. By taking advantage of the facile substitution of the indole of the corresponding indole epoxyamides, with various nucleophiles, we were able to prepare different epoxysuccinic acids derivatives as potential cathepsin inhibitors.  相似文献   

12.
A new class of inhibitors for cysteine proteases cathepsin B, L, K and S is described. These inhibitors are based on the beta-lactam ring designed to interact with the nucleophilic thiol of the cysteine in the active site of cysteine proteases. Some 3-acylamino-azetidin-2-one derivatives showed very potent inhibition activities for cathepsins L, K and S at the nanomolar or subnanomolar IC(50) values.  相似文献   

13.
Hypervalent organotellurium compounds (organotelluranes) have shown several promising applications, including their use as potent and selective cysteine protease inhibitors and antiprotozoal agents. Here, we report the antimalarial activities of three organotellurane derivatives (RF05, RF07 and RF19) in two Plasmodium falciparum strains (CQS 3D7 and CQR W2), which demonstrated significant decreases in parasitemia in vitro. The inhibition of intracellular P. falciparum proteases by RF05, RF07 and RF19 was determined and the IC50 values were 3.7 ± 1.0 μM, 1.1 ± 0.2 μM and 0.2 ± 0.01 μM, respectively. Using an assay performed in the presence of the ER Ca2 +-ATPase inhibitor we showed that the main enzymatic targets were cysteine proteases stimulated by calcium (calpains). None of the compounds tested caused haemolysis or a significant decrease in endothelial cell viability in the concentration range used for the inhibition assay. Taken together, the results suggest promising compounds for the development of antimalarial drugs.  相似文献   

14.
Heterocyclic and open-chain dipeptide-derived nitriles have been synthesized, containing an additional electrophilic center enabling the subsequent covalent modification of the thioimidate nitrogen formed in situ at the active site of the enzyme. The inhibitory potential of these nitriles against the cysteine proteases papain and cathepsins L, S, and K was determined. The open-chain dipeptide nitriles 8 and 10 acted as moderate reversible inhibitors, but no evidence for an irreversible inhibition of these enzymes was discernable.  相似文献   

15.
A new series of peptidyl allyl sulfone inhibitors was discovered while trying to synthesize epoxy sulfone inhibitors from vinyl sulfones using basic oxidizing conditions. The various dipeptidyl allyl sulfones were evaluated with calpain I, papain, cathepsins B and L, cruzain and rhodesain and found to be potent inhibitors. In comparison to the previously developed class of vinyl sulfone inhibitors, the novel dipeptidyl allyl sulfones were more potent inhibitors than the corresponding dipeptidyl vinyl sulfones. It was observed that the stereochemistry of the vinyl sulfone precursor played a role in the potency of the dipeptidyl allyl sulfone inhibitor.  相似文献   

16.
17.
Cysteine proteases are involved in many physiological processes and their hyperactivity may lead to severe diseases. Nature has developed various strategies to protect cells and whole organisms against undesired proteolysis. One of them is the control of proteolytic activity by inhibition. This paper presents the mechanisms underlying the action of proteinaceous inhibitors of cysteine proteinases and covers propeptides binding backwards relative to the substrate or distorting the protease catalytic centre similarly to serpins, the p35 protein binding covalently to the enzyme, and cystatins that are exosite binding inhibitors. The paper also discusses tyropins and chagasins that, although unrelated to cystatins, inhibit cysteine proteinases by a similar mechanism, as well as inhibitors of the apoptosis protein family that bind in a direction opposite to that of the substrate, similarly to profragments. Special attention is given to staphostatins, a novel family of inhibitors acting in an unusual manner.  相似文献   

18.
A systematic study of P2 and P3 substitution in a series of vinyl sulfone cysteine protease inhibitors is described. The introduction of a methyl substituent in the P2 phenylalanine aryl ring had a favorable effect on protease inhibition and conferred modest selectivity for rhodesain over cruzain. Rhodesain selectivity could be enhanced further by combining these P2 modifications with certain P3 amide substituents.  相似文献   

19.
J Kardos  A Bódi  P Závodszky  I Venekei  L Gráf 《Biochemistry》1999,38(38):12248-12257
Chymotrypsinogen and proelastase 2 are the only pancreatic proteases with propeptides that remain attached to the active enzyme via a disulfide bridge. It is likely, although not proven, that these propeptides are functionally important in the active enzymes, as well as in the zymogens. A mutant chymotrypsin was constructed to test this hypothesis, but it was demonstrated that the lack of the propeptide had no effect on the catalytic efficiency, substrate specificity, or folding of the protein [Venekei, I., et al. (1996) FEBS Lett. 379, 139-142]. In this paper, we investigate the role of the disulfide-linked propeptide in the conformational stability of chymotrypsin(ogen). We compare the stabilities of the wild-type and mutant proteins (lacking propeptide-enzyme interactions) in their zymogen (chymotrypsinogen) and active (chymotrypsin) forms. The mutants exhibited a substantially increased sensitivity to heat denaturation and guanidine hydrochloride unfolding, and a faster loss of activity at extremes of pH relative to those of their wild-type counterparts. From guanidine hydrochloride denaturation experiments, we determined that covalently linked propeptide provides about 24 kJ/mol of free energy of extra stabilization (DeltaDeltaG). In addition, the mutant chymotrypsinogen lacked the normal resistance to digestion by pepsin. This may also explain (besides keeping the zymogen inactive) the evolutionary conservation of the propeptide-enzyme interactions. Tryptophan fluorescence, circular dichroism, microcalorimetric, and activity measurements suggest that the propeptide of chymotrypsin restricts the relative mobility between the two domains of the molecule. In pancreatic serine proteases, such as trypsin, that lose the propeptide upon activation, this function appears to be accomplished via alternative interdomain contacts.  相似文献   

20.
Lysosomal cysteine proteases: facts and opportunities   总被引:35,自引:0,他引:35  
Turk V  Turk B  Turk D 《The EMBO journal》2001,20(17):4629-4633
From their discovery in the first half of the 20th century, lysosomal cysteine proteases have come a long way: from being the enzymes non-selectively degrading proteins in lysosomes to being those responsible for a number of important cellular processes. Some of the features and roles of their structures, specificity, regulation and physiology are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号