首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stabilization of the hypoxia-inducible factor-1 (HIF-1) protein is essential for its role as a regulator of gene expression under low oxygen conditions. Here, employing a novel hydroxylation-specific antibody, we directly show that proline 564 of HIF-1alpha and proline 531 of HIF-2alpha are hydroxylated under normoxia. Importantly, HIF-1alpha Pro-564 and HIF-2alpha Pro-531 hydroxylation is diminished with the treatment of hypoxia, cobalt chloride, desferrioxamine, or dimethyloxalyglycine, regardless of the E3 ubiquitin ligase activity of the von Hippel-Lindau (VHL) tumor suppressor gene. Furthermore, in VHL-deficient cells, HIF-1alpha Pro-564 and HIF-2alpha Pro-531 had detectable amounts of hydroxylation following transition to hypoxia, indicating that the post-translational modification is not reversible. The introduction of v-Src or RasV12 oncogenes resulted in the stabilization of normoxic HIF-1alpha and the loss of hydroxylated Pro-564, demonstrating that oncogene-induced stabilization of HIF-1alpha is signaled through the inhibition of prolyl hydroxylation. Conversely, a constitutively active Akt oncogene stabilized HIF-1alpha under normoxia independently of prolyl hydroxylation, suggesting an alternative mechanism for HIF-1alpha stabilization. Thus, these results indicate distinct pathways for HIF-1alpha stabilization by different oncogenes. More importantly, these findings link oncogenesis with normoxic HIF-1alpha expression through prolyl hydroxylation.  相似文献   

3.
Hypoxia-inducible factor 1 (HIF-1) functions as a master regulator of oxygen homeostasis by mediating a wide range of cellular and systemic adaptive physiological responses to reduced oxygen availability. In this review, we will summarize recent progress in elucidating the molecular mechanisms of HIF-1 activation, focusing on the role of oxygen-dependent prolyl and asparaginyl hydroxylases in hypoxia signal transduction.  相似文献   

4.
5.
6.

Introduction

Hypoxia induced factors (HIFs) are at the heart of the adaptive mechanisms cancer cells must implement for survival. HIFs are regulated by four hydroxylases; Prolyl hydroxylase (PHD)-1,-2,-3 and factor inhibiting HIF (FIH). We aimed to investigate the prognostic impact of these oxygen sensors in NSCLC.

Methods

Tumor tissue samples from 335 resected stages I to IIIA NSCLC patients was obtained and tissue microarrays (TMAs) were constructed. Hydroxylase expression was evaluated by immunohistochemistry.

Principal Findings

There was scorable expression for all HIF hydroxylases in tumor cells, but not in stroma. In univariate analyses, high tumor cell expression of all the HIF hydroxylases were unfavorable prognosticators for disease-specific survival (DSS); PHD1 (P = 0.023), PHD2 (P = 0.013), PHD3 (P = 0.018) and FIH (P = 0.033). In the multivariate analyses we found high tumor cell expression of PHD2 (HR = 2.03, CI 95% 1.20–3.42, P = 0.008) and PHD1 (HR = 1.45, CI 95% 1.01–2.10, P = 0.047) to be significant independent prognosticators for DSS. Besides, there was an additive prognostic effect by the increasing number of highly expressed HIF hydroxylases. Provided none high expression HIF hydroxylases, the 5-year survival was 80% vs. 23% if all four were highly expressed (HR = 6.48, CI 95% 2.23–18.8, P = 0.001).

Conclusions

HIF hydroxylases are, in general, poor prognosticators for NSCLC survival. PHD1 and PHD2 are independent negative prognostic factors in NSCLC. Moreover, there is an additive poor prognostic impact by an increasing number of highly expressed HIF hydroxylases.  相似文献   

7.
8.
9.
10.
Actin filaments play an essential role in cell movement, and many posttranslational modifications regulate actin filament assembly. Here we report that prolyl hydroxylase 3 (PHD3) interacts with nonmuscle actin in human cells and catalyzes hydroxylation of actin at proline residues 307 and 322. Blocking PHD3 expression or catalytic activity by short hairpin RNA knockdown or pharmacological inhibition, respectively, decreased actin prolyl hydroxylation. PHD3 knockdown increased filamentous F-actin assembly, which was reversed by PHD3 overexpression. PHD3 knockdown increased cell velocity and migration distance. Inhibition of PHD3 prolyl hydroxylase activity by dimethyloxalylglycine also increased actin polymerization and cell migration. These data reveal a novel role for PHD3 as a negative regulator of cell motility through posttranslational modification of nonmuscle actins.  相似文献   

11.
Key to the transduction of signals from the environment to the cell nucleus are enzymes that post-translationally modify proteins. Modifications such as protein phosphorylation have long been known to regulate protein interactions, stability, and localization, as well as enzyme activity. Recent investigations into how cells respond to varying oxygen levels have identified a new mechanism for regulating signal transduction involving the post-translational hydroxylation of proline. The enzymes that catalyze this reaction comprise a novel family of prolyl hydroxylases, which include a growth-factor-responsive and cell-death-related protein (SM-20) in mammals, and a protein (EGL-9) in C. elegans important for normal egg laying.  相似文献   

12.
Hypoxic cellular response is crucial for normal development as well as in pathological conditions in order to tolerate low oxygen. The response is mediated by Hypoxia Inducible Factors (HIFs), where the α-subunit of HIF is stabilised and able to function only in low oxygen. Prolyl hydroxylases (PHDs) are oxygen dependent dioxygenase enzymes that hydroxylate HIF-α leading to HIF degradation. Thus PHDs function as an oxygen sensor for the function of HIFs. Here we describe the mRNA expression pattern of PHDs in chick embryos. Up to embryonic day 2, PHDs are weak without specific localisation, whereas from day 3 localised expression was observed in the eye, branchial arches and dermomyotome. Later in the limb development PHDs were expressed in the perichondral mesenchyme, excluded from the developing limb cartilages.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号