首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular injury leads to the exposure of blood to fibroblasts and smooth muscle cells within the vessel wall. These cells constitutively express tissue factor (TF), the cellular receptor for plasma clotting factor VIIa (FVIIa). Formation of TF.FVIIa complexes on cell surfaces triggers the blood coagulation cascade. In the present study, we have investigated the fate of TF.FVIIa complexes formed on the cell surface of fibroblasts in the presence and absence of plasma inhibitor, tissue factor pathway inhibitor (TFPI). FVIIa bound to TF on the cell surface was internalized and degraded without depleting the cell surface TF antigen and activity. TFPI significantly enhanced the TF-specific internalization and degradation of FVIIa. TFPI-enhanced internalization and degradation of FVIIa requires the C-terminal domain of TFPI and factor Xa. TFPI. Xa-mediated internalization of FVIIa was associated with the depletion of TF from the cell surface. A majority of the internalized FVIIa was degraded, but a small portion of the internalized FVIIa recycles back to the cell surface as an intact protein. In addition to TF, other cell surface components, such as low density lipoprotein receptor-related protein (LRP) and heparan sulfates, are essential for TFPI.Xa-induced internalization of FVIIa. Acidification of cytosol, which selectively inhibits the endocytotic pathway via coated pits, inhibited TFPI.Xa-mediated internalization but not the basal internalization of FVIIa. Overall, our data support the concept that FVIIa bound to cell surface TF was endocytosed by two different pathways. FVIIa complexed with TF in the absence of the inhibitor was internalized via a LRP-independent and probably noncoated pit pathway, whereas FVIIa complexed with TF along with the inhibitor was internalized via LRP-dependent coated pit pathway.  相似文献   

2.
Membrane anchoring of tissue factor (TF), the cell receptor for coagulation factor VIIa (VIIa), exemplifies an effective mechanism to localize proteolysis at the cell surface. A recombinant TF mutant (TF1-219), deleted of membrane spanning and intracellular domains, was used to evaluate the role of phospholipid interactions for assembly of substrate with the catalytic TF.VIIa complex. TF1-219 was secreted by cells rather than expressed as a cell membrane protein. Unlike free VIIa, TF1-219 as well as the TF1-219.VIIa complex demonstrated no stable association with phospholipid. In the absence of lipid, kinetic evaluation of substrate factor X cleavage by free VIIa, TF.VIIa, and TF1-219.VIIa suggests that the catalytic function of VIIa rather than substrate recognition is enhanced by complex formation. Furthermore, compared with free factor X, factor X on phospholipid was preferentially cleaved as a substrate by TF1-219.VIIa. TF-dependent initiation of the coagulation protease cascades thus involves an enhancement of the activation of factor X on the cell surface by a crucial role of the TF transmembrane domain to membrane anchor the reaction, by the TF extracellular domain to provide protein-protein interactions with VIIa to enhance the activity of the catalytic domain of VIIa, and the preferential presentation of factor X as a substrate when associated with phospholipid surfaces.  相似文献   

3.
We have examined initial assembly of the extrinsic pathway of blood coagulation on cell surfaces with radiolabeled human factor VIIa and a human fetal lung cell line possessing abundant functional tissue factor activity. Binding of factor VIIa to these cells was observed and was time- and temperature-dependent. Binding of factor VIIa was quantitatively equivalent at 37 and 6 degrees C, although the kinetics of binding differed. The radiolabeled ligand bound by the cell was indistinguishable by sodium dodecyl sulfate-polyacrylamide gel analysis from the factor VIIa offered. Factor VIIa binding was influenced by calcium ions. The binding appears to involve at least two classes of calcium-dependent binding sites. Optimal binding occurred at 2 mM calcium for both classes of sites, and there was inhibition of binding to the high affinity sites at higher calcium. Association of factor VIIa was specific, saturable, had a Kd of 123 +/- 37 pm, and factor VIIa interacted with about 100,000 binding sites per cell. Once established, specific binding was rapidly reversible. Direct cellular binding of human factor X also was observed and was calcium, time- and temperature-dependent. Factor X binding was specific and saturable with half-maximal binding at 87.6 +/- 27.4 nM to 6.03 +/- 1.03 X 10(6) sites per cell. Specific high affinity binding of factor VIIa correlated with generation of factor Xa. A direct linear relationship was observed at low factor VIIa binding; however, at higher bound factor VIIa, the relationship was nonstoichiometric, i.e. less factor Xa was formed per mole of factor VIIa. Expression of specific binding sites for factors VIIa and X provides further substantiation for the molecular assembly hypothesized to initiate the extrinsic coagulation protease cascade on cells.  相似文献   

4.
Intrinsic versus extrinsic coagulation. Kinetic considerations.   总被引:3,自引:1,他引:2       下载免费PDF全文
A study to compare the kinetics of activation of factor IX by Factor XIa/Ca2+ and by Factor VIIa/tissue factor/Ca2+ has been undertaken. When purified human proteins, detergent-extracted brain tissue factor and tritiated-activation-peptide-release assays were utilized, the kinetic constants obtained were: Km = 310 nM, kcat. = 25 min-1 for Factor XIa and Km = 210 nM, kcat. = 15 min-1 for Factor VIIa. The kinetic constants for the activation of Factor X by Factor VIIa/brain tissue factor were: Km = 205 nM, kcat. = 70 min-1. Predicted rates for the generation of Factor IXa and Factor Xa were obtained when human monocytic tumour U937 cells (source of tissue factor) and Factor VIIa were used to form the activator. In other experiments, inclusion of high-Mr kininogen did not increase the activation rates of Factor IX by Factor XIa in the presence or absence of platelets and/or denuded rabbit aorta. These kinetic data strongly indicate that both Factor XIa and Factor VIIa play physiologically significant roles in the activation of Factor IX.  相似文献   

5.
The kinetics of the binding of rVIIa to cell surface tissue factor (TF) and the resultant expression of VIIa/TF activity were studied. Binding of 125I-rVIIa (10 nM) to cell surface TF required 30-60 min for saturation, whereas VIIa/TF activity was fully expressed toward factor X (F X) on intact monolayers after only 1 min of incubation. At the time only 10-20% of the total VIIa TF complexes present at saturation had formed. Freeze-thawing the monolayers before assay increased VIIa/TF activity up to 30-fold, and the time course of its expression was similar to that of TF-specific binding of VIIa to the monolayers. Equilibrium binding revealed a single high affinity binding class of TF sites on intact monolayers for rVIIa with a Kd of 1.6 nM. Experiments with active-site inhibited rVIIa yielded evidence for two populations of VIIa. TF complexes on intact monolayers: (1) a minor population (less than 20%) that formed within 1 min of incubation and accounted for all VIIa/TF activity toward F X present on the intact monolayers, and (2) a major population that was inactive toward F X on intact monolayers but which was fully active after the monolayers were lysed. Tissue factor pathway inhibitor (TFPI).F Xa complexes inhibited the VIIa/TF activity of the first population, i.e. of the complexes active on intact monolayers, half maximally at a concentration of 0.2 nM TFPI. TFPI/Xa also bound to the second population of VIIa.TF complexes on intact monolayers and inhibited their expression of VIIa/TF activity following cell lysis with a half-maximal inhibitory concentration of 2.0 nM. The potential physiologic implications of these findings are discussed.  相似文献   

6.
We previously reported that in 3T3-L1 adipocytes 125I-insulin associates preferentially with microvilli and coated pits at low temperatures and early times of incubation. At higher temperatures it is internalized through a series of membrane limited intracellular compartments. In the present study, we used a high resolution probe, cationic ferritin (CF), to track adsorptive endocytosis in the 3T3-L1 adipocyte. We find that CF initially associates with coated pits at 2 min of incubation at 37 degrees C. With further incubation at 37 degrees C CF is internalized and after 2 to 10 min of incubation is predominantly localized to coated and non-coated clear vesicles. Approximately 50% of the apparent coated vesicles seen near the plasma membrane on single thin sections are shown by serial sectioning to be true vesicles (i.e., without a surface connection). At later time points CF is localized predominantly to lysosomal structures and, to a much smaller extent, Golgi-related structures. The remarkable similarity between 125I-insulin and CF with respect to post-binding processing suggests that while the membrane receptor confers the initial specificity, post-binding events are common for different types of ligands after they bind to cell surfaces and are subject to adsorptive endocytosis.  相似文献   

7.
Tissue factor, the physiologic trigger of blood clotting, is the membrane-anchored protein cofactor for the plasma serine protease, factor VIIa. Tissue factor is hypothesized to position and align the active site of factor VIIa relative to the membrane surface for optimum proteolytic attack on the scissile bonds of membrane-bound protein substrates such as factor X. We tested this hypothesis by raising the factor VIIa binding site above the membrane surface by creating chimeras containing the tissue factor ectodomain linked to varying portions of the membrane-anchored protein, P-selectin. The tissue factor/P-selectin chimeras bound factor VIIa with high affinity and supported full allosteric activation of factor VIIa toward tripeptidyl-amide substrates. That the active site of factor VIIa was raised above the membrane surface when bound to tissue factor/P-selectin chimeras was confirmed using resonance energy transfer techniques in which appropriate fluorescent dyes were placed in the active site of factor VIIa and at the membrane surface. The chimeras were deficient in supporting factor X activation by factor VIIa due to decreased k(cat). The chimeras were also markedly deficient in clotting plasma, although incubating factor VII or VIIa with the chimeras prior to the addition of plasma restored much of their procoagulant activity. Interestingly, all chimeras fully supported tissue factor-dependent factor VII autoactivation. These studies indicate that proper positioning of the factor VII/VIIa binding site on tissue factor above the membrane surface is important for efficient rates of activation of factor X by this membrane-bound enzyme/cofactor complex.  相似文献   

8.
Activation of the zymogen factor VII yields an enzyme form, factor VIIa, with only modest activity. The thermal effect on this low activity of factor VIIa and its enhancement by the cofactor tissue factor was investigated. Factor VIIa activity measured with a chromogenic peptide substrate is characterized by an unusual temperature dependency which indicates that the activated protease exists in an equilibrium between a latent (enzymatically inactive) and an active conformation. As shown by calorimetry and activity measurements the thermal effects on factor VIIa are fully reversible below the denaturation temperature of 58.1 degrees C. A model for factor VIIa has been proposed [Higashi, S., Nishimura, H., Aita, K. & Iwanaga, S. (1994) J. Biol. Chem. 269, 18891-18898] in which the protease is supposed to exist primarily as a latent enzyme form because of the poor incorporation into the protease structure of the N-terminal Ile153 released by proteolytic cleavage during activation of factor VII. Binding of tissue factor to factor VIIa is assumed to shift the equilibrium towards an active conformation in which the N-terminal Ile153 forms a salt bridge with Asp343. We corroborate the validity of this model by: (a) chemical modification of factor VIIa; this suggests that the thermal effect on the equilibrium between the active and inactive conformation is reflected in the relative accessibility of the active site and the N-terminal Ile153; (b) measurements of factor VIIa binding to tissue factor indicating that complex formation is favoured by stabilization of the active conformation; and (c) activity measurements of a cross-linked factor VIIa-tissue factor complex; this showed that cross-linking stabilized the active conformation of factor VIIa and essentially prevented its thermally-induced transformation into the inactive state.  相似文献   

9.
Factor VIIa is a plasma glycoprotein which, when bound to the integral membrane glycoprotein tissue factor, forms an enzymatic complex that is essential for normal hemostasis. We have developed a fluorescent substrate (6-(Mes-D-Leu-Gly-Arg)amino-1-naphthalenediethylsulfamide) which can be used to directly measure the enzymatic activity of factor VIIa in the presence and absence of tissue factor and phospholipid. The sensitivity of this substrate allows for detection of factor VIIa at concentrations below 10(-9) M. The kinetics of substrate hydrolysis by factor VIIa were evaluated and it was observed that the binding of factor VIIa to tissue factor increases the catalytic efficiency (kcat/Km) of factor VIIa substrate hydrolysis greater than 100-fold. The increase in enzymatic efficiency of factor VIIa, when complexed to tissue factor, is mediated primarily by an increase in kcat. These data suggest that tissue factor induces an alteration in the catalytic site of factor VIIa, which allows for more efficient hydrolysis of the small fluorescent substrate. Measurements conducted using various phospholipids and detergents demonstrated that the increase in catalytic efficiency of factor VIIa, when complexed to tissue factor, is independent of the supporting surface. The differential rate of substrate hydrolysis when factor VIIa is complexed to tissue factor was used to estimate the binding of factor VIIa to tissue factor. From these data an apparent dissociation constant for factor VIIa binding to tissue factor was calculated to be between 1.1 and 2.1 nM with a binding stoichiometry of 1.04:1 (factor VIIa:tissue factor). When the reactivity of this small fluorescent substrate toward single-chain factor VII was investigated, both in the presence and absence of tissue factor, no substrate hydrolysis was observed.  相似文献   

10.
Antisense oligonucleotides (ODN) are potent molecules that could be used to inhibit the synthesis of a protein specifically if delivered to the appropriate compartments (cytoplasm and nucleus) of the cell under study. We present here a simple method providing access to the fractions of internalized ODN available in the cytosolic and nuclear compartments. Cells are incubated with appropriately labeled ODN, either naked or vectorized. They are then washed and treated with pronase to remove species bound to the surface of the cell. Digitonin is added at a low concentration to induce leakage of the cytosol, which is collected. Endosomes and lysosomes are then lysed with Triton X100, and their contents, recovered by centrifugation. The crude nuclei comprising the pellet are purified by ultracentrifugation through a 2M sucrose cushion. Lactate dehydrogenase, fluorescent transferrin and cathepsin B are used as cytosolic, endosomal and lysosomal markers respectively. For vascular smooth muscle cells, the use of digitonin under optimal conditions (0.008% w/v, 4 degrees C for 5 min) resulted in more than 88% plasma membrane permeabilization, with less than 12% of endosomes and 5% of lysosomes lysed. We mainly studied a 3'-tritiated 20-mer ODN sequence complementary to the AUG region of the mRNA for the insulin-like growth factor 1 receptor, with either a phosphodiester (PO-ODN) or a phosphorothioate (PS-ODN) backbone. Cellular processing was evaluated with and without 25 kDa polyethylenimine (PEI) as a carrier. After 2.5 h of incubation at 37 degrees C, 100 times as much naked PS-ODN as naked PO-ODN was bound to the cell surface and internalized. Complexation with PEI dramatically increased both binding, by a factor of 10 and internalization by a factor of 80 of PO-ODN and, to a lesser extent, of PS-ODN. The intracellular distributions of naked PO-ODN and PS-ODN were similar. The radioactivity accumulated in nuclei accounted for about 15-20% of an intracellular radioactivity. A large proportion (about 60%) of intracellular radioactivity remained associated with the endocytic compartment. Complexation with PEI completely changed intracellular distributions: the nuclear fraction increased to 70% for PS-ODN. The fractionation method proposed, facilitating study of the subcellular distribution of the ODN, could also be used under appropriate circumstances, to study variations in cytosolic ODN content.  相似文献   

11.
The present study was undertaken to evaluate in vitro the importance of tissue factor in the mitogenic effect of factor VIIa for embryonic fibroblasts. For that purpose, embryonic fibroblasts were isolated from either wild-type or transgenic mice showing a single inactivation of the tissue factor gene or expressing a truncated form (lacking the cytosolic domain) of this protein. Factor VIIa stimulated in a dose-dependent manner the growth of the 3 types of fibroblasts, thus showing that TF is not involved in the mitogenic activity of factor VIIa. The mitogenic activity of factor VIIa disappeared in serum immunopurified in factor X and was almost totally inhibited by DX9065, a selective factor Xa inhibitor, showing that this effect of factor VIIa occurred via factor Xa generated during the incubation period. Hirudin did not show any significant effect on factor VIIa-induced fibroblast proliferation, thus showing that the effect observed for factor VIIa was selectively mediated by factor Xa and was not due to thrombin formation. Our results therefore represent the first evidence for the possible importance of factor Xa in the mitogenic effect of factor VIIa and show the negligible role of tissue factor in this process.  相似文献   

12.
Factor VIIa (VIIa) is an unusual trypsin-type serine proteinase that appears to exist in an equilibrium between minor active and dominant zymogen-like inactive conformational states. The binding of tissue factor to VIIa is assumed to shift the equilibrium into the active state. The proteinase domain of VIIa contains a unique structure: a loop formed by a disulfide bond between Cys310 and Cys329, which is five residues longer than those of other trypsin types. To examine the functional role of the loop region, we prepared two mutants of VIIa. One of the mutants, named VII-11, had five extra corresponding residues 316-320 of VII deleted. The other mutant, VII-31, had all of the residues in its loop replaced with those of trypsin. Functional analysis of the two mutants showed that VIIa-11 (Kd = 41 nm) and VIIa-31 (Kd = 160 nm) had lower affinities for soluble tissue factor as compared with the wild-type VIIa (Kd = 11 nm). The magnitude of tissue factor-mediated acceleration of amidolytic activities of VIIa-11 (7-fold) and that of VIIa-31 (2-fold) were also smaller than that of wild-type VIIa (30-fold). In the absence of tissue factor, VIIa-31 but not VIIa-11 showed enhanced activity; the catalytic efficiencies of VIIa-31 toward various chromogenic substrates were 2-18-fold greater than those of the wild-type VIIa. Susceptibility of the alpha-amino group of Ile-153 of VIIa-31 to carbamylation was almost the same as that of wild-type VIIa, suggesting that VIIa-31 as well as wild-type VIIa exist predominantly in the zymogen-like state. Therefore, the tested modifications in the loop region had adverse effects on affinity for tissue factor, disturbed the tissue factor-induced conformational transition, and changed the catalytic efficiency of VIIa, but they did not affect the equilibrium between active and zymogen-like conformational states.  相似文献   

13.
Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa.  相似文献   

14.
Extrinsic pathway inhibitor plays a key role in modulating tissue factor-dependent blood coagulation. We have studied binding of radioiodinated recombinant extrinsic pathway inhibitor (rEPI) to cultured cell surfaces. rEPI in the absence of added reactants bound to a limited extent to three cell lines studied. Binding of rEPI to two cell lines possessing surface tissue factor, but not to a cell line lacking surface tissue factor, was markedly increased in the presence of both factor VIIa and factor Xa, and calcium ions. Moreover, some increased tissue factor-dependent binding was also demonstrated with factor VIIa alone. Binding isotherms of rEPI to factor VIIa-tissue factor obtained with an ovarian carcinoma cell line were hyperbolic. Scatchard plots indicated the following: a Kd value of 4.5 +/- 1.5 nM and 335,000 +/- 84,000 sites/cell when factor Xa was present; a Kd value of 11.9 +/- 3.5 nM and 236,000 +/- 68,000 sites/cell when factor Xa was absent. In functional studies, high concentrations of rEPI, e.g. 27-67.5 nM, were found to inhibit factor VIIa-tissue factor-catalyzed release of activation peptide from tritiated factor IX in the absence of factor Xa. Whereas factor Xa was thus shown not to be required for rEPI to inhibit factor VIIa-tissue factor catalytic activity, its presence markedly enhanced rEPI's inhibitory function. Since the local concentration of extrinsic pathway inhibitor achieved at a site of tissue injury is unknown, the physiologic significance of the observation of extrinsic pathway inhibitor-induced inhibition of factor VIIa-tissue factor activity in the absence of factor Xa is not clear. However, factor Xa-independent inhibition could play a significant role when large doses of rEPI are administered in experimental studies of thrombosis.  相似文献   

15.
Factor XI is the zymogen of a dimeric plasma protease, factor XIa, with two active sites. In solution, and during contact activation in plasma, conversion of factor XI to factor XIa proceeds through an intermediate with one active site (1/2-FXIa). Factor XIa and 1/2-FXIa activate the substrate factor IX, with similar kinetic parameters in purified and plasma systems. During hemostasis, factor IX is activated by factors XIa or VIIa, by cleavage of the peptide bonds after Arg145 and Arg180. Factor VIIa cleaves these bonds sequentially, with accumulation of factor IX alpha, an intermediate cleaved after Arg145. Factor XIa also cleaves factor IX preferentially after Arg145, but little intermediate is detected. It has been postulated that the two factor XIa active sites cleave both factor IX peptide bonds prior to releasing factor IX abeta. To test this, we examined cleavage of factor IX by four single active site factor XIa proteases. Little intermediate formation was detected with 1/2-FXIa, factor XIa with one inhibited active site, or a recombinant factor XIa monomer. However, factor IX alpha accumulated during activation by the factor XIa catalytic domain, demonstrating the importance of the factor XIa heavy chain. Fluorescence titration of active site-labeled factor XIa revealed a binding stoichiometry of 1.9 +/- 0.4 mol of factor IX/mol of factor XIa (Kd = 70 +/- 40 nm). The results indicate that two forms of activated factor XI are generated during coagulation, and that each half of a factor XIa dimer behaves as an independent enzyme with respect to factor IX.  相似文献   

16.
Upon injury of a blood vessel, activated factor VII (FVIIa) forms a high-affinity complex with its allosteric regulator, tissue factor (TF), and initiates blood clotting. Active site-inhibited factor VIIa (FVIIai) binds to TF with even higher affinity. We compared the interactions of FVIIai and FVIIa with soluble TF (sTF). Six residues in sTF were individually selected for mutagenesis and site-directed labeling. The residues are distributed along the extensive binding interface, and were chosen because they are known to interact with the different domains of FVIIa. Fluorescent and spin probes were attached to engineered Cys residues to monitor local changes in hydrophobicity, accessibility, and rigidity in the sTF--FVIIa complex upon occupation of the active site of FVIIa. The results show that inhibition of FVIIa caused the structures around the positions in sTF that interact with the protease domain of FVIIa to become more rigid and less accessible to solvent. Thus, the presence of an active site inhibitor renders the interface in this region less flexible and more compact, whereas the interface between sTF and the light chain of FVIIa is unaffected by active site occupancy.  相似文献   

17.
Petrovan RJ  Ruf W 《Biochemistry》2002,41(30):9302-9309
Factor VIIa (VIIa) remains in a zymogen-like state following proteolytic activation and depends on interactions with the cofactor tissue factor (TF) for function. Val(21), Glu(154), and Met(156) are residues that are spatially close in available zymogen and enzyme structures, despite major conformational differences in the corresponding loop segments. This residue triad displays unusual side chain properties in comparison to the properties of other coagulation serine proteases. By mutagenesis, we demonstrate that these residues cooperate to stabilize the enzyme conformation and to enhance the affinity for TF. In zymogen VII, however, substitution of the triad did not change the cofactor affinity, further emphasizing the crucial role of the activation pocket in specifically stabilizing the active enzyme conformation. In comparison to VIIa(Q156), the triple mutant VIIa(N21I154Q156) had a stabilized amino-terminal Ile(16)-Asp(194) salt bridge and enhanced catalytic function. However, proteolytic and amidolytic activities of free VIIa variants were not concordantly increased. Rather, a negatively charged Asp at position 21 was the critical factor that determined whether an amidolytically more active VIIa variant also more efficiently activated the macromolecular substrate. These data thus demonstrate an unexpected complexity by which the zymogenicity-determining triad in the activation pocket of VIIa controls the active enzyme conformation and contributes to exosite interactions with the macromolecular substrate.  相似文献   

18.
The activation of human coagulation factor IX by human tissue factor.factor VIIa.PCPS.Ca2+ (TF.VIIa.PCPS.Ca2+) and factor Xa.PCPS.Ca2+ enzyme complexes was investigated. Reactions were performed in a highly purified system consisting of isolated human plasma proteins and recombinant human tissue factor with synthetic phospholipid vesicles (PCPS: 75% phosphatidylcholine (PC), 25% phosphatidylserine (PS)). Factor IX activation was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, [3H]factor IX activation peptide assay, colorimetric substrate thiobenzyl benzyloxycarbonyl-L-lysinate (Z-Lys-SBzl) hydrolysis, and specific incorporation of a fluorescent peptidyl chloromethyl ketone. Factor IX activation by the TF.VIIa.PCPS.Ca2+ enzyme complex was observed to proceed through the obligate non-enzymatic intermediate species factor IX alpha. The simultaneous activation of human coagulation factors IX and X by the TF.VIIa.PCPS.Ca2+ enzyme complex were investigated. When factors IX and X were presented to the TF.VIIa complex, at equal concentrations, it was observed that the rate of factor IX activation remained unchanged while the rate of factor X activation slowed by 45%. When the proteolytic cleavage products of this reaction were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was observed that the intermediate species factor IX alpha was generated more rapidly when factor X was present in the reaction mixture. When factor IX was treated with factor Xa.PCPS in the presence of Ca2+, it was observed that factor IX was rapidly converted to factor IX alpha. The activation of factor IX alpha by the TF.VIIa.PCPS.Ca2+ complex was evaluated, and it was observed that factor IX alpha was activated more rapidly by the TF.VIIa.PCPS.Ca2+ complex than was factor IX itself. These data suggest that factors IX and X, when presented to the TF.VIIa.PCPS.Ca2+ enzyme complex, are both rapidly activated and that factor Xa, which is generated in the initial stages of the extrinsic pathway, participates in the first proteolytic step in the activation of factor IX, the generation of factor IX alpha.  相似文献   

19.
Hemophilia A and B coagulation defects, which are caused by deficiencies of Factor VIII and Factor IX, respectively, can be bypassed by administration of recombinant Factor VIIa. However, the short half-life of recombinant Factor VIIa in vivo negates its routine clinical use. We report here an in vivo method for the continuous generation of Factor VIIa. The method depends on the implantation of a porous chamber that contains Factor Xa or XIIa, and continuously generates Factor VIIa bypass activity from the subject's own Factor VII, which enters the chamber by diffusion. Once inside, the Factor VII is cleaved to Factor VIIa by the immobilized Factor Xa or XIIa. The newly created Factor VIIa diffuses out of the chamber and back into the circulation, where it can bypass the deficient Factors VIII or IX, and enable coagulation to occur. In vitro, this method generates sufficient Factor VIIa to substantially correct Factor VIII-deficient plasma when assessed by the classical aPTT coagulation assay. In vivo, a Factor XIIa peritoneal implant generates bypass activity for up to one month when tested in rhesus monkeys. Implantation of such a chamber in a patient with hemophilia A or B could eventually provide a viable alternative to replacement therapies using exogenous coagulation factors.  相似文献   

20.
Factor VII is a multidomain, vitamin K-dependent plasma glycoprotein that participates in the extrinsic pathway of blood coagulation. Earlier studies demonstrated a novel disaccharide (Xyl-Glc) or trisaccharide (Xyl2-Glc) O-glycosidically linked to serine 52 in human plasma factor VII (Nishimura, H., Kawabata, S., Kisiel, W., Hase, S., Ikenaka, T., Shimonishi, Y., and Iwanaga, S. (1989) J. Biol. Chem. 264, 20320-20325). In the present study, human plasma and recombinant factor VII were isolated and subjected to enzymatic fragmentation. Peptides comprising residues 48-62 of the first epidermal growth factor-like domain of each factor VII preparation were isolated for comparative analysis. Using a combined strategy of amino acid sequencing, carbohydrate and amino acid composition analysis, and mass spectrometry, three different glycan structures consisting of either glucose, glucose-xylose, or glucose-(xylose)2 were detected O-glycosidically linked to serine 52 in plasma and recombinant factor VII. Approximately equal amounts of the three glycan structures were observed in plasma factor VII, whereas in recombinant factor VII the glucose and the glucose-(xylose)2 structures predominated. In addition to the O-linked glycan structures observed at serine 52, a single fucose was found to be covalently linked at serine 60 in both human plasma and recombinant factor VII. Carbohydrate and mass spectrometry analyses indicated that the fucosylation of serine 60 was virtually quantitative. Metabolic labeling studies using [14C]fucose confirmed the presence of O-linked fucose at serine 60. In order to assess whether the carbohydrate moiety at serine 52 contributes to the biological activity of factor VII, we have constructed a site-specific mutant of recombinant factor VII in which serine 52 has been replaced with an alanine residue. Mutant factor VIIa exhibited approximately 60% of the coagulant activity of wild-type factor VIIa in a clotting assay. The amidolytic activity of mutant factor VIIa was indistinguishable from that observed for recombinant wild-type factor VIIa. In addition, the ability of mutant factor VIIa in complex with either purified relipidated tissue factor apoprotein or tissue factor on the surface of a human bladder carcinoma cell line (J82) to activate either factor X or factor IX was virtually identical to that observed for wild-type factor VIIa. These results indicate that the carbohydrate moiety O-glycosidically linked to serine 52 does not appear to be involved either in the interaction of factor VIIa with tissue factor, or the expression of its proteolytic activity toward factor X or factor IX following complex formation with tissue factor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号