首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of glutamate from α-oxoglutarate and NH4+ by pea seedling mitochondria has been demonstrated under certain defined but non-physiological conditions. Malate acts as a hydrogen donor for the synthesis of glutamate but isocitrate is more effective, whilst succinate, in the presence or absence of ATP, is a poor donor of hydrogen. Glutamate dehydrogenase has been purified from pea mitochondria and from the cytosol. The similarities between the two preparations are interpreted to mean that the soluble glutamate dehydrogenase is released from the mitochondria during isolation. The kinetics of the mitochondrial enzyme and the effect of various metabolites on its activity have been examined. The results are discussed in relation to the proposed role of this enzyme and it is suggested that the ratio NADH-NAD+ may play a role in the control of glutamate metabolism.  相似文献   

2.
SYNOPSIS Two glutamate dehydrogenases, NADH-linked (EC 1.2.1.2) and NADPH-linked (EC 1.2.1.4.) were isolated from the epimastigote forms of Trypanosoma cruzi and purified. Both enzymes exist as hexamers. The molecular weights of the native NADH-and NADPH-linked glutamate dehydrogenases were estimated to be 360,000 and 265,000, respectively, and those of the subunits to be 58,000 and 43,000, respectively. The isoelectric point of the NADH-linked dehydrogenase is at pH 5.25 and that of the NADPH-linked enzyme at pH 5.1. The activities of both enzymes are regulated by product inhibition. In addition, purine nucleotides were shown to be potent inhibitors of the NADH-linked glutamate dehydrogenase.  相似文献   

3.
Thusius' critique (1977) of our work (Cohen et al., 1975,1976; Cohen &; Benedek, 1976), on the functional relationship between the equilibrium polymerization and catalytic activity of beef liver glutamate dehydrogenase, is refuted on a point by point basis. Thusius' critique is primarily based on data relating to the kinetics of the polymerization-depolymerization reaction. It is shown that such data are not in contradiction to our equilibrium thermodynamic analysis, for this analysis makes absolutely no predictions regarding the kinetics of the polymerization-depolymerization reaction. Moreover, the important functional relationship between the polymerization and allosteric control of beef liver glutamate dehydrogenase has, in any event, been clearly demonstrated on a purely experimental basis. Furthermore, our theoretical model is the only proposed model capable of quantitatively explaining the available data on the detailed equilibrium polymer distribution and the associated level of catalytic activity as functions of effector and enzyme concentrations.  相似文献   

4.
NAD-specific glutamate dehydrogenase (NAD-GluDH; EC 1.4.1.2) was purified to homogeneity from Sporosarcina ureae DSM 320; the native enzyme (M r 250,000±25,000) is composed of subunits identical in molecular mass (M r 42,000±3,000), suggesting a hexameric structure. In cell-free extracts and in its purified form, the enzyme was heat-stable, retaining 50% activity after 15 min incubation at temperatures up to 82°C. When exposed to low temperatures at pH values between 7.0 and 9.0. cell-free extracts and purified preparations lost enzyme activity rapidly and irreversibly. The addition of substrates, glycerol, or sodium chloride improved the stability of the enzyme with respect to cold lability and heat stability.Abbreviation NAD-GluDH nicotinamide-adenine-dinucleotide-specific glutamate dehydrogenase  相似文献   

5.
The kinetic locking-on strategy utilizes soluble analogues of the target enzymes' specific substrate to promote selective adsorption of individual NAD+-dependent dehydrogenases on their complementary immobilized cofactor derivative. Application of this strategy to the purification of NAD+-dependent dehydrogenases from crude extracts has proven that it can yield bioaffinity systems capable of producing one-chromatographic-step purifications with yields approaching 100%. However, in some cases the purified enzyme preparation was found to be contaminated with other proteins weakly bound to the immobilized cofactor derivative through binary complex formation and/or nonspecific interactions, which continuously “dribbled” off the matrix during the chromatographic procedure. The fact that this problem can be overcome by including a short pulse of 5′-AMP (stripping ligand) in the irrigant a couple of column volumes prior to the discontinuation of the specific substrate analogue (locking-on ligand) is clear from the results presented in this report. The general effectiveness of this auxiliary tactic has been assessed using model studies and through incorporation into an actual purification from a crude cellular extract. The results confirm the usefulness of the stripping-ligand tactic for the resolution and purification of NAD+-dependent dehydrogenases when using the locking-on strategy. These studies have been carried out using bovine liver glutamate dehydrogenase (GDH, EC 1.4.1.3), yeast alcohol dehydrogenase (YADH, EC 1.1.1.1), porcine heart mitochondrial malate dehydrogenase (mMDH, EC 1.1.1.37), and bovine heart -lactate dehydrogenase ( -LDH, EC 1.1.1.27).  相似文献   

6.
Human glutamate dehydrogenase isozymes (hGDH1 and hGDH2) differ markedly in their inhibition by GTP. These regulatory preferences must arise from amino acid residues that are not common between hGDH isozymes. We have constructed chimeric enzymes by reciprocally switching the corresponding amino acid segments 390-465 in hGDH isozymes that are located within or near the C-terminal 48-residue antenna helix, which is thought to be part of the regulatory domain of mammalian GDHs. These resulted in triple mutations in amino acid sequences at 415, 443, and 456 sites that are not common between hGDH1 and hGDH2. The chimeric enzymes did not change their enzyme efficiency (kcat/Km) and expression level. Functional analyses, however, revealed that the chimeric mutants almost completely acquired the different GTP regulatory preference between hGDH isozymes. These results suggest that the 415, 443, and 456 residues acting in concert are responsible for the GTP inhibitory properties of hGDH isozymes.  相似文献   

7.
Evidence is presented which shows that NH3 assimilation in Chlamydomonas occurs exclusively via the glutamate synthase cycle in illuminated and darkened cells and those in which the internal level of NH3 is elevated. This result indicates that glutamate dehydrogenase probably plays a catabolic rather than anabolic role in the N nutrition of the alga. Glutamine synthetase and glutamate dehydrogenase were characterized and their kinetic properties shown to be consistent with these proposals. It is suggested that reversible activity modulations of glutamine synthetase regulate the operation of the glutamate synthase cycle in the light but the availability of reductant and ATP limits its activity in darkened cells. The possible involvement of the two glutamate synthase enzymes in both light and dark assimilation is discussed.  相似文献   

8.
Seasonal changes in glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 2.6.1.53), and glutamate dehydrogenase (EC 1.4.1.3) were measured in both senescing leaf and bark tissues of ‘Golden Delicious’ apple trees (Malus domestica Borkh.). From the measured enzyme activities we attempted to estimate the in vivo catalytic potentials of the enzymes with special reference to nitrogen mobilization and conservation of senescing apple trees. The cumulative glutamine synthetase activity of leaf tissue was about three times higher than that of bark. The estimated catalytic potential of leaf glutamine synthetase was 800-fold higher than the actual protein nitrogen loss of senescing leaves. The cumulative glutamate synthase activity of bark was about six times higher than that of leaf. The estimated catalytic potential of bark glutamate synthase was 160-times higher than the actual protein nitrogen gain in that tissue. The cumulative glutamate dehydrogenase activities in leaf and bark tissue were approximately the same. However, the catalytic potential of leaf glutamate dehydrogenase was twice that of leaf glutamate synthase. It is thus concluded that the physiological role of glutamine synthetase in senescing leaf tissue is to furnish the amide(s) prior to mobilization of nitrogen to storage tissue. The higher activity of glutamate synthase in bark tissue could provide a mechanism to transform the imported amide nitrogen to amino nitrogen of glutamate for storage protein synthesis. The possible regulatory factors upon the activity of these enzymes in the tissues of senescing apple trees are discussed.  相似文献   

9.
The effects of 0.01 to 5 m M salicyclic acid on the increase in nitrite reductase or glutamate dehydrogenase activities in maize roots by nitrate or ammonium respectively, were examined. Nitrite reductase activity was inhibited by the highest concentration of the acid. The activity of NADH-glutamate dehydrogenase was stimulated slightly (but consistently) by the lowest concentration and was inhibited by higher concentrations. Total protein content was also inhibited at high concentrations. When the crude enzyme extract was stored at 25°C in light, the glutamate dehydrogenase activity in the control decreased after 4 h of incubation. Low concentrations of the acid had no effect on this decrease but higher concentration accelerated the process. The divalent cations Caz2+, Mn2+, Mg2+ and Zn2+ protected against loss of enzyme activity during storage, both in the absence and presence of the acid. The inhibitory effect of 5 m M salicylic acid on glutamate dehydrogenase activity is apparent due to interference with the activity of the enzyme rather than with its synthesis.  相似文献   

10.
Glutamate dehydrogenase, glutamine synthetase, glutamate synthase, glutamate puruvate transaminase and glutamate oxaloacetate transaminase have been assayed in developing testa-pericarp and endosperm of two wheat varieties, namely Shera (11.6% protein) and C-306 (9.8% protein). On per organ basis, activities of all the enzymes studied, except glutamine synthetase, increased during development. Glutamine synthetase activity decreased during development in the testa-pericarp, whereas, no glutamine synthetase activity could be detected in endosperm of either variety at any stage of development. Compared to testa-pericarp, endosperm had higher activities of glutamate synthase and glutamate pyruvate transaminase. On the whole, enzyme activities in Shera were higher, as compared to C-306. Developmental patterns and relative levels of enzyme activities in the two varieties were more or less the same, when expressed on dry weight basis or as specific activities. The results suggest that ammonia assimilation in developing wheat grain takes place by the glutamate dehydrogenase pathway in the endosperm; and both by the glutamate dehydrogenase and glutamine synthetase—glutamate synthase pathways in the testa-pericarp.  相似文献   

11.
The ‘high ammonia pathway’ enzyme glutamate dehydrogenase (NADP+) is inactivated in cells of Pseudomonas aeruginosa when the stationary phase of growth in reached. Purified glutamate dehydrogenase (NADP+) appeared to be a protein composed of six identical subunits with a molecular weight of 54 000. With antibodies raised against purified enzyme it was found that glutamate dehydrogenase (NADP+) inactivation is accompanied by a parallel decrease in immunologically reactive material. This suggests that glutamate dehydrogenase (NADP+) inactivation is caused or followed by rapid proteolysis.  相似文献   

12.
An antiserum against glutamate dehydrogenase from ox liver nuclei precipitates both the nuclear and the mitochondrial enzymes, with different equivalence zones. The antibodies of this serum have been fractionated by means of an immunoadsorbent to which mitochondrial glutamate dehydrogenase is covalently linked. After the affinity chromatography, the unretained antibodies had virtually lost the ability to precipitate the mitochondrial enzyme, whereas the retained portion, after elution, precipitated both glutamate dehydrogenases. These findings suggest that nuclear glutamate dehydrogenase contains specific antigenic determinants as well as determinants common to the mitochondrial enzyme, and that only the antibodies against the latter determinants have been selectively removed by the affinity chromatography.  相似文献   

13.
The specific activities of the enzymes of the tricarboxylic acid cycle; citrate synthase, aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarase, and malate dehydrogenase, were determined in early fifth-stage, young and mature adult Obeliscoides cuniculi, the rabbit stomach worm. ∝-Ketoglutarate dehydrogenase activity could not be determined in any fraction. Fumarate reductase activity was found only in the mitochondrial fraction while all other enzymes, including an NADP-dependent malic enzyme were localized in the cytoplasm. Glutamate dehydrogenase, acid and alkaline phosphatase activities were also recorded. High levels of those enzymes acting in the “reversed” direction, i.e. MDH and fumarase relative to the enzymes of the “forward” direction, i.e. citrate synthase, aconitase and isocitrate dehydrogenase suggests that under anaerobic conditions a modified tricarboxylic acid cycle can operate. Some variations in specific activities were apparent as the worms matured but no qualitative differences were observed.  相似文献   

14.
The subcellular location of NADP+-isocitrate dehydrogenase was investigated by preparing protoplasts from leaves of pea seedlings. Washed protoplasts were gently lysed and the whole lysate separated on sucrose gradients by a rate-zonal centrifugation. Organelles were located by marker enzymes and chlorophyll analysis. Most of the NADP+-isocitrate dehydrogenase was in the soluble fraction. About 10% of the NADP+-isocitrate dehydrogenase was present in the chloroplasts as a partially latent enzyme. Less than 1% of the activity was found associated with the peroxisome fraction. NADP+-isocitrate dehydrogenase was partially characterized from highly purified chloroplasts isolated from shoot homogenates. The enzyme exhibited apparent Km values of 11 micromolar (NADP+), 35 micromolar (isocitrate), 78 micromolar (Mn2+), 0.3 millimolar (Mg2+) and showed optimum activity at pH 8 to 8.5 with Mn2+ and 8.8 to 9.2 with Mg2+. The NADP+-isocitrate dehydrogenase activity previously claimed in the peroxisomes by other workers is probably due to isolation procedures and/or nonspecific association. The NADP+-isocitrate dehydrogenase activity in the chloroplasts might help supply α-ketoglutarate for glutamate synthase action.  相似文献   

15.
Glycerokinase and glycerol-3-phosphate dehydrogenase activities have been examined in cell extracts obtained from Neurospora crassa after growth in media containing glycerol. The glycerokinase is located in the cytosol and has been partially purified by ion exchange and gel-filtration chromatography. The molecular weight of the enzyme has been estimated by sucrose density centrifugation to be approximately 120,000. No effect of either fructose-1,6-bisphosphate or other sugar phosphates on enzyme activity was observed. The G3P dehydrogenase activity in cell extracts is apparently catalyzed by a flavin-linked enzyme as no dependence for either NAD+ or NADP+ could be demonstrated. The enzyme is located primarily in the mitochondria and is not removed from mitochondrial membranes by treatment with digitonin. Separation of digitonin-treated mitochondria on discontinuous sucrose gradients indicated that the enzyme is located on the mitochondrial inner membrane. The synthesis of both enzymes is under some form of catabolite repression since increased specific activities could only be observed in cells grown on acetate, but not glucose, sucrose, or xylose.  相似文献   

16.
The patterns of alanine dehydrogenase, glutamate dehydrogenase and malate dehydrogenase activity were studied during the normal vegetative cell cycle and during the process of gametic differentiation and dedifferentiation in synchronized cultures of Chlamydomonas reinhardtii. During all three phases of growth and differentiation the synthesis of DNA was also measured. During gametic differentiation all three enzyme levels were suppressed compared to vegetative cells although DNA and cell number were comparable. During gametic dedifferentiation no DNA synthesis occurred during the first 24 h cycle and only a doubling during the second. It was not until the third cycle that a normal 4-fold increase in DNA was observed. Cell number followed a similar pattern. Athough the levels of alanine dehydrogenase and malate dehydrogenase were uniformly low during the first cycle when glutamate dehydrogenase increased 4-fold, during the second cycle the patterns of these enzymes changed markedly. The enzymes did not attain levels characteristic of vegetative cells until the third cycle.  相似文献   

17.
Ammonia assimilation in Bacillus fastidiosus proceeds via the NADP-dependent glutamate dehydrogenase. The enzyme, purified to homogeneity, is composed of identical subunits with a molecular weight of about 48 000 dalton. Presumably the enzyme is a hexamer. The enzyme is specific for NADP (H). The pH optima for the amination and deamination reactions are 7.7 and 8.6, respectively. The temperature optimum is 60°C. Furthermore, temperature stability and apparent Km values for substrates of both the amination and deamination reactions were determined. Several metabolites were tested for their effect on the enzyme activity. Only malate and fumarate showed some inhibitory effect.Abbreviation GDH glutamate dehydrogenase  相似文献   

18.
Two distinct glutamate dehydrogenases are present in amoebae of the cellular slime mold Dictyostelium discoideum. One enzyme has been extracted from a crude mitochondrial fraction, and the other from an extramitochondrial cytoplasmic fraction. Both enzymes have been partially purified and characterized. The mitochondrial enzyme can utilize both NAD+ and NADP+ as coenzyme, while the extramitochondrial is NAD+ specific. When the mitondrial enzyme is assayed in the presence of either a rate-limiting or saturating concentration of glutamate, its activity is stimulated by both AMP and ADP and is inhibited by ATP. When the extramitochondrial enzyme is assayed in the presence of a rate-limiting concentration of glutamate, its activity is sensitive to modulation by a number of intermediates in carbohydrate metabolism and is inhibited by ADP, ATP, GTP, and CTP.  相似文献   

19.
The study was designed to investigate the effects of cryopreservation on bovine, ovine, and goat sperm motility, acrosome structure, enzyme activity, and fertilization ability. Percentage of sperm with hyaluronidase enzyme (HYD) activity was detected by a modified sodium hyaluronate-gelatin membrane. The N-α-benzoyl-DL-arginine-p-nitroanilide (BNPNA) method was used to assess the sperm acrosome enzyme (ACE). The mean percentage of sperm acrosome integrity dropped significantly (P < 0.01) after cryopreservation. The ACE activity of bovine sperm (100.48) was higher (P < 0.01) than that of ovine (57.88) or goat sperm (50.30), while the percentage of sperm with HYD activity of bovine (71.10%) and ovine (67.60%) sperm was higher than that of goat sperm (58.52%) after cryopreservation (P < 0.01). Sperm motility was positively correlated with the activity of the two acrosome enzymes before and after cryopreservation (P < 0.01). Cryopreservation had a negative effect on acrosomal morphology, motility, and acrosomal enzyme activity in their sperm. The fertilization ability of ovine and goat sperm decreased significantly after cryopreservation, but that of frozen bovine sperm did not differ significantly when compared with fresh sperm. There was no significant difference between ovine and goat sperm indices, except for percentage of sperm with HYD activity.  相似文献   

20.
Abstract: Subcellular localization of hexokinase in the honeybee drone retina was examined following fractionation of cell homogenate using differential centrifugation. Nearly all hexokinase activity was found in the cytosolic fraction, following a similar distribution as the cytosolic enzymatic marker, phosphoglycerate kinase. The distribution of enzymatic markers of mitochondria (succinate dehydrogenase, rotenone-insensitive cytochrome c reductase, and adenylate kinase) indicated that the outer mitochondrial membrane was partly damaged, but their distributions were different from that of hexokinase. The activity of hexokinase in purified suspensions of cells was fivefold higher in glial cells than in photoreceptors. This result is consistent with the hypothesis based on quantitative 2-deoxy[3H]glucose autoradiography that only glial cells phosphorylate significant amounts of glucose to glucose-6-phosphate. The activities of alanine aminotransferase and to a lesser extent of glutamate dehydrogenase were higher in the cytosolic than in the mitochondrial fraction. This important cytosolic activity of glutamate dehydrogenase was consistent with the higher activity found in mitochondria-poor glial cells. In conclusion, this distribution of enzymes is consistent with the model of metabolic interactions between glial and photoreceptor cells in the intact bee retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号