首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intratetrad mating, the fusion of gametes formed in a single meiosis, has unusual consequences for genetic diversity, especially in genome regions linked to mating type loci. Here we investigate the fate of modifier alleles that alter the rate of intratetrad mating, under models of heterozygote advantage and of genetic load resulting from recurrent mutation. In both cases, intratetrad mating is favored if the recombination rate between the selected locus and mating type is less than the frequency of lethal recessive alleles at that locus in the population. Positive feedback often accelerates the invasion of modifiers to the intratetrad mating rate. Recombination rate and intratetrad mating rate exert indirect selection on one another, resulting in a cascading decline in outcrossing, even in the absence of any cost of sex. However, under recurrent mutation, alleles for obligate intratetrad mating invade only very slowly, perhaps explaining why outcrossing can persist at low frequencies in a largely intratetrad mating population.  相似文献   

2.
Giraud T 《Heredity》2004,93(6):559-565
This study explores the patterns of dispersal and mating of the anther smut Microbotryum violaceum, a model species in genetics and evolutionary biology. A French metapopulation of the fungus collected from its caryophyllaceous host Silene latifolia was analysed using microsatellites. The genetic diversity was low, populations were strongly differentiated, and there was no pattern of isolation by distance among populations. There was a strong deficit in heterozygotes, confirming the high self-fertilisation rates suggested by previous studies. Within populations there was a strong pattern of isolation by distance, with identical genotypes being highly clustered. This indicates that fungal spores are dispersed mostly between adjacent plants, and such local dispersal is important for understanding the dynamics and evolution of this disease. Local clusters of identical heterozygous genotypes did not contain significantly fewer individuals than did clusters of homozygous genotypes. As selfing between products of independent meiotic events (intertetrad selfing) rapidly reduces heterozygosity, this suggests that intratetrad matings are frequent, which helps to explain the puzzling maintenance of a sex-ratio distortion in M. violaceum.  相似文献   

3.
Zakharov IA 《Genetika》2005,41(4):508-519
Genetic characteristics of intratetrad mating, i.e., fusion of haploid products of one meiotic division, are considered. Upon intratetrad mating, the probability of homozygotization is lower than that upon self-fertilization, while heterozygosity at genes linked to the mating-type locus, which determines the possibility of cell fusion, is preserved. If the mating-type locus is linked to the centromere, the genome regions adjoining the centromeres of all chromosomes remain heterozygous. Intratetrad mating is characteristic of a number of fungi (Saccharomyces cerevisiae, Saccharomycodes ludwigii, Neurospora tetrasperma, Agaricus bisporus, Microbotrium violaceum, and others). Parthenogenetic reproduction in some insects also involves this type of fusion of nuclei. Intratetrad mating leads to the accumulation of haplolethals (i.e., lethals manifesting in haploid cells but not hindering their mating) in pericentric chromosome regions. Since heterozygosity increases viability of an organism, recombination has been suppressed during evolution in fungi characterized by intratetrad mating, which ensures heterozygosity of the most part of the genome.  相似文献   

4.
Phenotypic diversity occurs in natural populations as a result of the interaction between an individual's genotype and the environment. Nevertheless, individual variation in phenotypic traits such as coat colour and body size is routinely used to differentiate between “pure” dingoes Canis dingo and dingo‐dog hybrids. Extensive anthropogenic impacts and widespread hybridization with domestic dogs has hindered our ability to study intact dingo populations and, therefore, most of our basic understanding of dingo biology (e.g., phenotypic variation, mating systems, genetic diversity) stems from observational studies on perturbed populations. We sampled a relatively undisturbed population of dingoes, from arid Australia, to determine their purity and genetic diversity. We explored their mating strategy using a pedigree built from genetic data and examined how phenotypic variation was influenced by age, sex, heterozygosity, and relatedness. Coat colour was our measure of phenotype and our population displayed four types (sandy, black & tan, white, and sable). All dingoes (n = 83) possessed a high level of dingo ancestry (mean purity > 90%) and were closely related to each other; with all but one individual related as full‐sibling or parent–offspring. Our pedigree shows both monogamous and promiscuous mating strategies exist within an undisturbed population. Variation in coat colour or body size cannot be used to infer a dingo's level of purity because the phenotype of pure dingoes is intrinsically variable. The breeding system of dingoes was long thought to be monogamous, but we provide genetic evidence for numerous mating strategies including both long‐term monogamy and extreme promiscuity.  相似文献   

5.
Spindle pole bodies (SPBs) provide a structural basis for genome inheritance and spore formation during meiosis in yeast. Upon carbon source limitation during sporulation, the number of haploid spores formed per cell is reduced. We show that precise spore number control (SNC) fulfills two functions. SNC maximizes the production of spores (1-4) that are formed by a single cell. This is regulated by the concentration of three structural meiotic SPB components, which is dependent on available amounts of carbon source. Using experiments and computer simulation, we show that the molecular mechanism relies on a self-organizing system, which is able to generate particular patterns (different numbers of spores) in dependency on one single stimulus (gradually increasing amounts of SPB constituents). We also show that SNC enhances intratetrad mating, whereby maximal amounts of germinated spores are able to return to a diploid lifestyle without intermediary mitotic division. This is beneficial for the immediate fitness of the population of postmeiotic cells.  相似文献   

6.
Understanding the evolution of sex and recombination, key factors in the evolution of life, is a major challenge in biology. Studies of reproduction strategies of natural populations are important to complement the theoretical and experimental models. Fungi with both sexual and asexual life cycles are an interesting system for understanding the evolution of sex. In a study of natural populations of yeast Saccharomyces cerevisiae , we found that the isolates are heterothallic, meaning their mating type is stable, while the general belief is that natural S. cerevisiae strains are homothallic (can undergo mating-type switching). Mating-type switching is a gene-conversion process initiated by a site-specific endonuclease HO; this process can be followed by mother–daughter mating. Heterothallic yeast can mate with unrelated haploids (amphimixis), or undergo mating between spores from the same tetrad (intratetrad mating, or automixis), but cannot undergo mother–daughter mating as homothallic yeasts can. Sequence analysis of HO gene in a panel of natural S. cerevisiae isolates revealed multiple mutations. Good correspondence was found in the comparison of population structure characterized using 19 microsatellite markers spread over eight chromosomes and the HO sequence. Experiments that tested whether the mating-type switching pathway upstream and downstream of HO is functional, together with the detected HO mutations, strongly suggest that loss of function of HO is the cause of heterothallism. Furthermore, our results support the hypothesis that clonal reproduction and intratetrad mating may predominate in natural yeast populations, while mother–daughter mating might not be as significant as was considered.  相似文献   

7.
Habitat restoration measures may result in artificially high breeding density, for instance when nest-boxes saturate the environment, which can negatively impact species' demography. Potential risks include changes in mating and reproductive behaviour such as increased extra-pair paternity, conspecific brood parasitism, and polygyny. Under particular cicumstances, these mechanisms may disrupt reproduction, with populations dragged into an extinction vortex. With the use of nuclear microsatellite markers, we investigated the occurrence of these potentially negative effects in a recovered population of a rare secondary cavity-nesting farmland bird of Central Europe, the hoopoe (Upupa epops). High intensity farming in the study area has resulted in a total eradication of cavity trees, depriving hoopoes from breeding sites. An intensive nest-box campaign rectified this problem, resulting in a spectacular population recovery within a few years only. There was some concern, however, that the new, high artificially-induced breeding density might alter hoopoe mating and reproductive behaviour. As the species underwent a serious demographic bottleneck in the 1970-1990s, we also used the microsatellite markers to reconstitute the demo-genetic history of the population, looking in particular for signs of genetic erosion. We found i) a low occurrence of extra-pair paternity, polygyny and conspecific brood parasitism, ii) a high level of neutral genetic diversity (mean number of alleles and expected heterozygosity per locus: 13.8 and 83%, respectively) and, iii) evidence for genetic connectivity through recent immigration of individuals from well differentiated populations. The recent increase in breeding density did thus not induce so far any noticeable detrimental changes in mating and reproductive behaviour. The demographic bottleneck undergone by the population in the 1970s-1990s was furthermore not accompanied by any significant drop in neutral genetic diversity. Finally, genetic data converged with a concomitant demographic study to evidence that immigration strongly contributed to local population recovery.  相似文献   

8.
Many populations are small and isolated with limited genetic variation and high risk of mating with close relatives. Inbreeding depression is suspected to contribute to extinction of wild populations, but the historical and demographic factors that contribute to reduced population viability are often difficult to tease apart. Replicated introduction events in non‐native species can offer insights into this problem because they allow us to study how genetic variation and inbreeding depression are affected by demographic events (e.g. bottlenecks), genetic admixture and the extent and duration of isolation. Using detailed knowledge about the introduction history of 21 non‐native populations of the wall lizard Podarcis muralis in England, we show greater loss of genetic diversity (estimated from microsatellite loci) in older populations and in populations from native regions of high diversity. Loss of genetic diversity was accompanied by higher embryonic mortality in non‐native populations, suggesting that introduced populations are sufficiently inbred to jeopardize long‐term viability. However, there was no statistical correlation between population‐level genetic diversity and average embryonic mortality. Similarly, at the individual level, there was no correlation between female heterozygosity and clutch size, infertility or hatching success, or between embryo heterozygosity and mortality. We discuss these results in the context of human‐mediated introductions and how the history of introductions can play a fundamental role in influencing individual and population fitness in non‐native species.  相似文献   

9.
Genetic characteristics of intratetrad mating, i.e., fusion of haploid products of one meiotic division, are considered. Upon intratetrad mating, the probability of homozygotization is lower than that upon self-fertilization, while heterozygosity at genes linked to the mating-type locus, which determines the possibility of cell fusion, is preserved. If the mating-type locus is linked to the centromere, the genome regions adjoining the centromeres of all chromosomes remain heterozygous. Intratetrad mating is characteristic of a number of fungi (Saccharomyces cerevisiae, Saccharomycodes ludwigii, Neurospora tetrasperma, Agaricus bisporus, Microbotryum violaceum, and others). Parthenogenetic reproduction in some insects also involves this type of fusion of nuclei. Intratetrad mating leads to the accumulation of haplolethals (i.e., lethals manifesting in haploid cells but not hindering their mating) in pericentric chromosome regions. Since heterozygosity increases viability of an organism, recombination has been suppressed during evolution in fungi characterized by intratetrad mating, which ensures heterozygosity of the most part of the genome.__________Translated from Genetika, Vol. 41, No. 4, 2005, pp. 508–519.Original Russian Text Copyright © 2005 by Zakharov.  相似文献   

10.
Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species.  相似文献   

11.

Background and Aims

Despite the great importance of autopolyploidy in the evolution of angiosperms, relatively little attention has been devoted to autopolyploids in natural polyploid systems. Several hypotheses have been proposed to explain why autopolyploids are so common and successful, for example increased genetic diversity and heterozygosity and the transition towards selfing. However, case studies on patterns of genetic diversity and on mating systems in autopolyploids are scarce. In this study allozymes were employed to investigate the origin, population genetic diversity and mating system in the contact zone between diploid and assumed autotetraploid cytotypes of Vicia cracca in Central Europe.

Methods

Four enzyme systems resolved in six putative loci were investigated in ten diploid, ten tetraploid and five mixed-ploidy populations. Genetic diversity and heterozygosity, partitioning of genetic diversity among populations and cytotypes, spatial genetic structure and fixed heterozygosity were analysed. These studies were supplemented by a pollination experiment and meiotic chromosome observation.

Key Results and Conclusions

Weak evidence of fixed heterozygosity, a low proportion of unique alleles and genetic variation between cytotypes similar to the variation among populations within cytotypes supported the autopolyploid origin of tetraploids, although no multivalent formation was observed. Tetraploids possessed more alleles than diploids and showed higher observed zygotic heterozygosity than diploids, but the observed gametic heterozygosity was similar to the value observed in diploids and smaller than expected under panmixis. Values of the inbreeding coefficient and differentiation among populations (ρST) suggested that the breeding system in both cytotypes of V. cracca is mixed mating with prevailing outcrossing. The reduction in seed production of tetraploids after selfing was less than that in diploids. An absence of correlation between genetic and geographic distances and high differentiation among neighbouring tetraploid populations supports the secondary contact hypothesis with tetraploids of several independent origins in Central Europe. Nevertheless, the possibility of a recent in situ origin of tetraploids through a triploid bridge in some regions is also discussed.  相似文献   

12.
Empirical support for the genetic management strategies employed by captive breeding and reintroduction programs is scarce. We evaluated the genetic management plan for the highly endangered black‐footed ferret (Mustela nigripes) developed by the American Zoo and Aquarium Associations (AZA) as a part of the species survival plan (SSP). We contrasted data collected from five microsatellite loci to predictions from a pedigree‐based kinship matrix analysis of the captive black‐footed ferret population. We compared genetic diversity among captive populations managed for continued captive breeding or reintroduction, and among wild‐born individuals from two reintroduced populations. Microsatellite data gave an accurate but only moderately precise estimate of heterozygosity. Genetic diversity was similar in captive populations maintained for breeding and release, and it appears that the recovery program will achieve its goal of maintaining 80% of the genetic diversity of the founder population over 25 years. Wild‐born individuals from reintroduced populations maintained genetic diversity and avoided close inbreeding. We detected small but measurable genetic differentiation between the reintroduced populations. The model of random mating predicted only slightly lower levels of heterozygosity retention compared to the SSP strategy. The random mating strategy may be a viable alternative for managing large, stable, captive populations such as that of the black‐footed ferret. Zoo Biol 22:287–298, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

13.
Female mate choice influences the maintenance of genetic variation by altering the mating success of males with different genotypes. The evolution of preferences themselves, on the other hand, depends on genetic variation present in the population. Few models have tracked this feedback between a choice gene and its effects on genetic variation, in particular when genes that determine offspring viability and attractiveness have dominance effects. Here we build a population genetic model that allows comparing the evolution of various choice rules in a single framework. We first consider preferences for good genes and show that focused preferences for homozygotes evolve more easily than broad preferences, which allow heterozygous males high mating success too. This occurs despite better maintenance of genetic diversity in the latter scenario, and we discuss why empirical findings of superior mating success of heterozygous males consequently do not immediately lead to a better understanding of the lek paradox. Our results thus suggest that the mechanisms that help maintain genetic diversity also have a flipside of making female choice an inaccurate means of producing the desired kind of offspring. We then consider preferences for heterozygosity per se, and show that these evolve only under very special conditions. Choice for compatible genotypes can evolve but its selective advantage diminishes quickly due to frequency-dependent selection. Finally, we show that our model reproduces earlier results on selfing, when the female choice strategy produces assortative mating. Overall, our model indicates that various forms of heterozygote-favouring (or variable) female choice pose a problem for the theory of sexual ornamentation based on indirect benefits, rather than a solution.  相似文献   

14.
Habitat fragmentation is known to cause genetic differentiation between small populations of rare species and decrease genetic variation within such populations. However, common species with recently fragmented populations have rarely been studied in this context. We investigated genetic variation and its relationship to population size and geographical isolation of populations of the common plant species, Lychnis flos-cuculi L., in fragmented fen grasslands. We analysed 467 plants from 28 L. flos-cuculi populations of different sizes (60 000-54 000 flowering individuals) in northeastern Switzerland using seven polymorphic microsatellite loci. Genetic differentiation between populations is small (F(ST) = 0.022; amova; P < 0.001), suggesting that gene flow among populations is still high or that habitat fragmentation is too recent to result in pronounced differentiation. Observed heterozygosity (H(O) = 0.44) significantly deviates from Hardy-Weinberg equilibrium, and within-population inbreeding coefficient F(IS) is high (0.30-0.59), indicating a mixed mating breeding system with substantial inbreeding in L. flos-cuculi. Gene diversity is the only measure of genetic variation which decreased with decreasing population size (R = 0.42; P < 0.05). While our results do not indicate pronounced effects of habitat fragmentation on genetic variation in the still common L. flos-cuculi, the lower gene diversity of smaller populations suggests that the species is not entirely unaffected.  相似文献   

15.
Reduced genetic diversity can result in short-term decreases in fitness and reduced adaptive potential, which may lead to an increased extinction risk. Therefore, maintaining genetic variation is important for the short- and long-term success of reintroduced populations. Here, we evaluate how founder group size and variance in male reproductive success influence the long-term maintenance of genetic diversity after reintroduction. We used microsatellite data to quantify the loss of heterozygosity and allelic diversity in the founder groups from three reintroductions of tuatara ( Sphenodon ), the sole living representatives of the reptilian order Rhynchocephalia. We then estimated the maintenance of genetic diversity over 400 years (∼10 generations) using population viability analyses. Reproduction of tuatara is highly skewed, with as few as 30% of males mating across years. Predicted losses of heterozygosity over 10 generations were low (1–14%), and populations founded with more animals retained a greater proportion of the heterozygosity and allelic diversity of their source populations and founder groups. Greater male reproductive skew led to greater predicted losses of genetic diversity over 10 generations, but only accelerated the loss of genetic diversity at small population size (<250 animals). A reduction in reproductive skew at low density may facilitate the maintenance of genetic diversity in small reintroduced populations. If reproductive skew is high and density-independent, larger founder groups could be released to achieve genetic goals for management.  相似文献   

16.
Multiple mating by social insect queens increases the genetic diversity among colony members, thereby reducing intracolony relatedness and lowering the potential inclusive fitness gains of altruistic workers. Increased genetic diversity may be adaptive, however, by reducing the prevalence of disease within a nest. Honeybees, whose queens have the highest levels of multiple mating among social insects, were investigated to determine whether genetic variation helps to prevent chronic infections. I instrumentally inseminated honeybee queens with semen that was either genetically similar (from one male) or genetically diverse (from multiple males), and then inoculated their colonies with spores of Ascosphaera apis, a fungal pathogen that kills developing brood. I show that genetically diverse colonies had a lower variance in disease prevalence than genetically similar colonies, which suggests that genetic diversity may benefit colonies by preventing severe infections.  相似文献   

17.
野生杏和栽培杏的遗传多样性和遗传结构分析   总被引:1,自引:0,他引:1  
利用SSR分子标记结合荧光毛细管电泳检测技术,研究了野生杏和栽培杏的遗传多样性和遗传结构,结果显示:27个SSR位点,平均每个位点检测到17.82个等位基因(Na)和7.44个有效等位基因(Ne),平均Shannon's信息指数(I)为2.23,平均期望杂合度(He)和观察杂合度(Ho)分别为0.70和0.52。基于SSR位点,群体水平上平均等位基因数、有效等位基因数、期望杂合度、观察杂合度和Shannon's信息指数分别为6.59、4.15、0.70、0.53和1.50,说明我国杏种质资源遗传多样性丰富,其中野生杏资源遗传多样性明显高于栽培杏资源,野生杏中西伯利亚杏种质遗传多样性最高且具有较多的特异等位基因,而栽培杏中仁用杏遗传多样性最低,特有等位基因较少。聚类分析将供试159份种质分为4组。群体遗传结构分析将159份种质划分为5个类群,分类情况与传统形态指标划分基本一致。通过本研究可知,我国杏资源遗传多样性丰富,遗传结构较为复杂;西伯利亚杏与栽培杏亲缘关系较远;野生普通杏与栽培杏具有类似的遗传结构,推测野生普通杏为栽培杏原始种;仁用杏遗传多样性较低,遗传背景狭窄。本研究结果可为杏资源新品种选育及持续利用提供重要的理论依据。  相似文献   

18.
Genetic variation within and among populations is influenced by the genetic content of the founders and the migrants following establishment. This is particularly true if populations are small, migration rate low and habitats arranged in a stepping-stone fashion. Under these circumstances the level of multiple paternity is critical since multiply mated females bring more genetic variation into founder groups than single mated females. One such example is the marine snail Littorina saxatilis that during postglacial times has invaded mainland refuge areas and thereafter small islands emerging due to isostatic uplift by occasional rafting of multiply mated females. We modelled effects of varying degrees of multiple paternity on the genetic variation of island populations colonised by the founders spreading from the mainland, by quantifying the population heterozygosity during both the transient colonisation process, and after a steady state (with migration) has been reached. During colonisation, multiple mating by males increased the heterozygosity by in comparison with single paternity, while in the steady state the increase was compared with single paternity. In the steady state the increase of heterozygosity due to multiple paternity is determined by a corresponding increase in effective population size. During colonisation, by contrast, the increase in heterozygosity is larger and it cannot be explained in terms of the effective population size alone. During the steady-state phase bursts of high genetic variation spread through the system, and far from the mainland this led to short periods of high diversity separated by long periods of low diversity. The size of these fluctuations was boosted by multiple paternity. We conclude that following glacial periods of extirpation, recolonization of isolated habitats by this species has been supported by its high level of multiple paternity.  相似文献   

19.
K Theodorou  D Couvet 《Heredity》2015,114(1):38-47
Although ex situ conservation is indispensable for thousands of species, captive breeding is associated with negative genetic changes: loss of genetic variance and genetic adaptation to captivity that is deleterious in the wild. We used quantitative genetic individual-based simulations to model the effect of genetic management on the evolution of a quantitative trait and the associated fitness of wild-born individuals that are brought to captivity. We also examined the feasibility of the breeding strategies under a scenario of a large number of loci subject to deleterious mutations. We compared two breeding strategies: repeated half-sib mating and a method of minimizing mean coancestry (referred to as gc/mc). Our major finding was that half-sib mating is more effective in reducing genetic adaptation to captivity than the gc/mc method. Moreover, half-sib mating retains larger allelic and adaptive genetic variance. Relative to initial standing variation, the additive variance of the quantitative trait increased under half-sib mating during the sojourn in captivity. Although fragmentation into smaller populations improves the efficiency of the gc/mc method, half-sib mating still performs better in the scenarios tested. Half-sib mating shows two caveats that could mitigate its beneficial effects: low heterozygosity and high risk of extinction when populations are of low fecundity and size and one of the following conditions are met: (i) the strength of selection in captivity is comparable with that in the wild, (ii) deleterious mutations are numerous and only slightly deleterious. Experimental validation of half-sib mating is therefore needed for the advancement of captive breeding programs.  相似文献   

20.
鹅掌楸不同交配组合子代遗传多样性分析   总被引:2,自引:0,他引:2  
朱其卫  李火根 《遗传》2010,32(2):183-188
揭示不同交配类型与子代遗传多样性的关系, 对于林木杂交育种及种子园管理具有理论与实践意义。文章选取来自鹅掌楸、北美鹅掌楸及杂交鹅掌楸的16个交配亲本, 共组配14个杂交组合, 分属5种交配类型, 分别为种间杂交、种内交配、多父本混合授粉、回交、以及自交。每个交配组合随机抽取30个子代, 利用SSR分子标记检测各子代群体遗传多样性以及16个交配亲本间的遗传距离。结果表明, 总体上, 鹅掌楸交配子代群体具有较高的遗传多样性。5种交配类型子代群体中, 遗传多样性水平由高至低的趋势为: 多父本混合授粉子代、种间交配子代、杂种F1与亲本的回交子代、种内交配子代, 自交子代。子代遗传多样性与亲本间遗传距离呈显著正相关, 表明亲本间遗传距离大, 则子代遗传多样性高。相同亲本正反交子代群体的遗传多样性差别不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号