首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
The bacterial strain MM-B16, which showed strong antifungal and antioomycete activity against some plant pathogens, was isolated from a mountain forest soil in Korea. Based on the physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, the bacterial strain MM-B16 was identical to Pseudomonas fluorescens. An antibiotic active against Colletotrichum orbiculare and Phytophthora capsici in vitro and in vivo was isolated from the culture filtrates of P. fluorescens strain MM-B16 using various chromatographic procedures. The molecular formula of the antibiotic was deduced to be C10H11NO2S (M+, m/z 209.0513) by analysis of electron impact mass spectral data. Based on the nuclear magnetic resonance and infrared spectral data, the antibiotic was confirmed to have the structure of a thiazoline derivative, aerugine [4-hydroxymethyl-2-(2-hydroxyphenyl)-2-thiazoline]. C. orbiculare, P. capsici, and Pythium ultimum were most sensitive to aerugine (MICs for these organisms were approximately 10 μg ml−1). However, no antimicrobial activity was found against yeasts and bacteria even at concentrations of more than 100 μg ml−1. Treatment with aerugine exhibited a significantly high protective activity against development of phytophthora disease on pepper and anthracnose on cucumber. However, the control efficacy of aerugine against the diseases was in general somewhat less than that of the commercial fungicides metalaxyl and chlorothalonil. This is the first study to isolate aerugine from P. fluorescens and demonstrate its in vitro and in vivo antifungal and antioomycete activities against C. orbiculare and P. capsici.  相似文献   

2.
Park HJ  Lee JY  Moon SS  Hwang BK 《Phytochemistry》2003,64(5):997-1001
The methanol extract of Anemarrhena asphodeloides rhizomes exhibited strong antifungal activity against the plant pathogenic fungi Magnaphothe grisea, Rhizoctonia solani, and the plant pathogenic oomycete Phytophthora capsici. The antifungal substance isolated from the rhizomes of A. asphodeloides was identified to be nyasol, (Z)-1,3-bis(4-hydroxyphenyl)-1,4-pentadiene by NMR and mass spectral analysis. Nyasol effectively inhibited the mycelial growth of Colletotrichum orbiculare, P. capsici, Pythium ultimum, R. solani, and Cladosporium cucumerinum in a range of 1-50 mug/ml, but did not affect the growth of bacteria and yeast. In a greenhouse test, treatment with the antifungal compound nyasol was significantly effective in suppressing the Phytophthora blight on pepper plants.  相似文献   

3.
The antifungal substances SH-1 and SH-2 were isolated from Streptomyces humidus strain S5-55 cultures by various purification procedures and identified as phenylacetic acid and sodium phenylacetate, respectively, based on the nuclear magnetic resonance, electron ionization mass spectral, and inductively coupled plasma mass spectral data. SH-1 and SH-2 completely inhibited the growth of Pythium ultimum, Phytophthora capsici, Rhizoctonia solani, Saccharomyces cerevisiae, and Pseudomonas syringae pv. syringae at concentrations from 10 to 50 microg/ml. The two compounds were as effective as the commercial fungicide metalaxyl in inhibiting spore germination and hyphal growth of P. capsici. However, the in vivo control efficacies of the two antifungal compounds against P. capsici infection on pepper plants were similar to those of H(3)PO(3) and fosetyl-AI but less than that of metalaxyl.  相似文献   

4.
【目的】研究枯草芽孢杆菌(Bacillus subtilis) C-D6菌株对辣椒炭疽菌(Colletotrichum capsici)附着胞形成的抑制作用,探索炭疽病生物防治的新途径。【方法】通过对峙培养测定C-D6菌株的抗菌活性,应用摇瓶培养结合生物测定筛选产生抗菌活性成分的最适培养基,采用硫酸铵分级沉淀、Sephadex G-75凝胶柱层析和阴离子交换层析对抗菌蛋白进行分离纯化,应用聚丙烯酰胺凝胶电泳测定蛋白分子量。【结果】C-D6菌株在PDA平板上对辣椒炭疽菌显示明显的抑制作用,其YPD培养液能完全抑制该菌的附着胞形成。摇瓶培养的结果显示C-D6菌株产生抗菌活性物质的最适培养基为YPD培养基。C-D6菌株在该培养基中培养14 h后,所形成的活性物质可完全抑制辣椒炭疽菌的附着胞形成。从该菌的YPD培养液中分离获得一个分子量为32 kD,能明显抑制辣椒炭疽菌附着胞形成的抗菌蛋白。【结论】C-D6菌株的生防特征显示该菌株对防治辣椒炭疽菌引起的炭疽病具有潜在的应用价值。  相似文献   

5.
A collection of 905 bacterial isolates from the rhizospheres of healthy avocado trees was obtained and screened for antagonistic activity against Dematophora necatrix, the cause of avocado Dematophora root rot (also called white root rot). A set of eight strains was selected on the basis of growth inhibitory activity against D. necatrix and several other important soilborne phytopathogenic fungi. After typing of these strains, they were classified as belonging to Pseudomonas chlororaphis, Pseudomonas fluorescens, and Pseudomonas putida. The eight antagonistic Pseudomonas spp. were analyzed for their secretion of hydrogen cyanide, hydrolytic enzymes, and antifungal metabolites. P. chlororaphis strains produced the antibiotic phenazine-1-carboxylic acid and phenazine-1-carboxamide. Upon testing the biocontrol ability of these strains in a newly developed avocado-D. necatrix test system and in a tomato-F oxysporum test system, it became apparent that P. fluorescens PCL1606 exhibited the highest biocontrol ability. The major antifungal activity produced by strain P. fluorescens PCL1606 did not correspond to any of the major classes of antifungal antibiotics produced by Pseudomonas biocontrol strains. This compound was purified and subsequently identified as 2-hexyl 5-propyl resorcinol (HPR). To study the role of HPR in biocontrol activity, two Tn5 mutants of P. fluorescens PCL1606 impaired in antagonistic activity were selected. These mutants were shown to impair HRP production and showed a decrease in biocontrol activity. As far as we know, this is the first report of a Pseudomonas biocontrol strain that produces HPR in which the production of this compound correlates with its biocontrol activity.  相似文献   

6.
A number of bacterial strains were isolated from the internal tissue of Trapa japonica. Of these, strain KPE62302H, which had a 16S rDNA sequence identical to that of Streptomyces miharaensis showed antifungal activity against several plant pathogens. Treatment of seeds with strain KPE62302H induced a significant reduction in the incidence of Fusarium wilt in tomato plants compared with untreated controls. An antifungal substance (FP-1) was purified from the culture extract of strain KPE62302H using C18 flash and Sephadex LH-20 column chromatography and reverse phase HPLC. Extensive spectrometric analysis using MS and NMR identified this as filipin III. FP-1 inhibited the mycelial growth of plant pathogenic fungi such as Alternaria mali, Aspergillus niger, Colletotrichum gloeosporioides, C. orbiculare, Cylindrocarpon destructans, Diaporthe citiri, Fusarium oxysporum at 1-10 μg ml(-1) and also markedly inhibited the development of Fusarium wilt caused by F. oxysporum f.sp. lycopersici in tomato plants by treatment with 10 μg ml(-1) under greenhouse conditions. The efficacy of FP-1 against Fusarium wilt was comparable to that of the synthetic fungicide benomyl. An egfp -tagged strain of KPE62302H confirmed its ability to colonize tomato plants.  相似文献   

7.
Tn5 transposon mutagenesis via electroporation of Pseudomonas fluorescens AU63 was used to generate mutants deficient in antifungal activity against the phytopathogenic fungi Pythium ultimum and Thielaviopsis basicola. Mutant C-45 was obtained by an initial screen for the loss of antibacterial activity against Bacillus subtilis and a subsequent screen of mutants obtained for the loss of antifungal activity against pathogenic fungi. A single chromosomal insertion of Tn5 in the chromosome of Ps. fluorescens C-45 was confirmed by Southern blot hybridization. A metabolite responsible for the observed antibacterial and antifungal activities was identified using thin layer chromatography. The antimicrobial activities of the partially purified substance present in the parental strain and missing in the C-45 mutant were not affected by protease, high temperature, acid or alkali treatment. These results provide the basis for a structural analysis of this new antimicrobial substance and the genetic elucidation of its biosynthesis.  相似文献   

8.
Pseudomonas fluorescens strain 220 is an effective antagonist of Pseudocercosporella herpotrichoides , the eyespot pathogen of cereals. Culture filtrates of Ps. fluorescens 220 were inhibitory to spore germination and hyphal growth of P. herpotrichoides and at least two compounds with antifungal and antibacterial activity were identified in cultures grown in nutrient broth. In plant tests, both a culture broth of Ps. fluorescens 220 and a crude antibiotic extract reduced eyespot disease, whereas a mutant strain of 220 deficient in antibiotic production had no effect. Production of antibiotics would therefore appear to be a major factor in the suppression of P. herpotrichoides infection. A loss of disease control when Ps. fluorescens 220 was applied to plants in water was not due to lack of survival, as populations of a marked strain of Ps. fluorescens 220 applied to the stem base of wheat plants were similar whether applied in water or culture broth.  相似文献   

9.
【目的】构建增强抑制真菌能力兼杀虫的苏云金芽胞杆菌多功能生防菌株。【方法】将含有组成型高效表达启动子、地衣芽胞杆菌chi MY基因的重组质粒p DM,转化进杀虫活性高且有一定抑菌活性的Bt519-1菌株。酶谱分析方法确认Bt519(p DM)组成型异源表达几丁质酶。室内测定工程菌株抑菌谱,计算抑菌效率,确定最敏感的植物病原真菌,进行植物盆栽病害防治的应用潜力评价。将不同浓度的Bt粗酶液灌入甜椒幼苗根部,12 h后接种辣椒疫霉孢子液,接种2 d后开始观察,记录发病株数。自7 d起调查植株发病情况统计并分析防治效果。【结果】SDS-PAGE及酶谱分析证明,Bt519(p DM)能够特异表达68 k D蛋白,该蛋白为异源几丁质酶Chi MY。抑菌谱测定证明,工程菌抑制效率达到90%以上的有5种真菌,其中最明显的是辣椒疫霉。盆栽实验证明,Bt519(p DM)7 d的防效为73.2%。工程菌株对棉铃虫的半致死浓度(LC50)为121.26 mg/L。【结论】Bt519(p DM)是一株有应用潜力的生防菌株。  相似文献   

10.
A strain of bacterium producing antifungal antibiotic was isolated and identification of the strain was attempted. We could identify the bacterium as being a Bacillus sp., based on morphological observation, physiological characteristics, and 16S rDNA sequence analysis, thus leading us to designate the strain as Bacillus sp. AH-E-1. The strain showed potent antibiotic activity against phytopathogenic and human pathogenic fungi by inducing mycelial distortion and swelling and inhibiting spore germination. The antibiotic metabolite produced by the strain demonstrated excellent thermal and pH (2-11) stability, but was labile to autoclaving. From these results, we could find a broader antifungal activity of Bacillus genus. Isolation and characterization of the active agent produced by the strain are under progress.  相似文献   

11.
Antifungal metabolites were isolated from a culture of Pseudomonas aurantiaca IB5-10. Chemical structures of the metabolites were elucidated as phenazine-1-carboxylic acid (PCA; 1), 2-hydroxyphenazine (2-OH-PHZ; 2), and cyclo-(L-Pro-L-Val; 3), respectively, based on spectroscopic methods. Among them, 3 was isolated for the first time from this strain. The antifungal activities of 1-3 were evaluated against a variety of plant pathogens. To the best of our knowledge, the antifungal activities of 3 against plant fungal pathogens have been evaluated for the first time in this work. PCA (1) showed the most potent antifungal activities against Phytophthora capsici, Rhizoctonia solani AG-1(IA), and Pythium ultimum with MICs (microgram/ml) of less than 1.0, 1.3, and 2.0, respectively. On the other hand, 2-OH-PHZ (2) showed potent antifungal activity against R. solani AG-1(IA) with the MIC (microgram/ml) of 2.0, whereas it showed moderate antifungal activity against P. ultimum with the MIC (microgram/ml) of 50.0. In addition, 3 showed antifungal activity against only R. solani AG- 1(IA).  相似文献   

12.
A strain of Acremonium luzulae (Fuckel) W. Gams was selected in screening new microorganisms for biological control of fruit postharvest diseases, especially gray and blue mold diseases on apples and strawberries. This strain manifests a very strong activity against a large number of phytopathogenic fungi. In this work, the product responsible for this antifungal activity was isolated from modified Sabouraud dextrose broth cultures of A. luzulae. It was purified to homogeneity by reverse-phase column chromatography. On the basis of UV, infrared, and 1H and 13C nuclear magnetic resonance spectra, mass spectral analysis, and the amino acid composition of the acid hydrolysates, the antibiotic was determined to be cyclosporin C. Cyclosporin C showed a broad-spectrum activity against filamentous phytopathogenic fungi but no activity against bacteria or yeasts. Its antifungal activity is only fungistatic. In contrast to Tolypocladium inflatum, another cyclosporin-producing strain, A. luzulae, did not produce additional cyclosporins. This was confirmed by in vivo-directed biosynthesis.  相似文献   

13.
AIMS: To investigate the in vitro antifungal and antioomycete activities of some aminoglycosides against true fungi and Phytophthora and Pythium species and to evaluate the potential of the antibiotics against Phytophthora late blight on plants. METHODS AND RESULTS: Antifungal and antioomycete activities of aminoglycoside antibiotics (neomycin, paromomycin, ribostamycin and streptomycin) and a paromomycin-producing strain (Streptomyces sp. AMG-P1) against Phytophthora and Pythium species and 10 common fungi were measured in potato dextrose broth (PDB) and on seedlings in pots. Paromomycin was the most active against Phytophthora and Pythium species with a minimal inhibitory concentration of 1-10 microg ml(-1) in PDB, but displayed low to moderate activities towards other common fungi at the same concentration. Paromomycin also showed potent in vivo activity against red pepper and tomato late blight diseases with 80 and 99% control value, respectively, at 100 microg ml(-1). In addition, culture broth of Streptomyces sp. AMG-P1 as a paromomycin producer exhibited high in vivo activity against late blight at 500 microg freeze-dried weight per millilitre. CONCLUSIONS: Among tested aminoglycoside antibiotics, paromomycin was the most active against oomycetes both in vitro and in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY: Data from this study show that aminoglycoside antibiotics have in vitro and in vivo activities against oomycetes, suggesting that Streptomyces sp. AMG-P1 may be used as a biocontrol agent against oomycete diseases.  相似文献   

14.
The strain ANU 6277 was isolated from laterite soil and identified as Streptomyces sp. closely related to Streptomyces albidoflavus cluster by 16S rRNA analysis. The cultural, morphological and physiological characters of the strain were recorded. The strain exhibited resistance to chloramphenicol, penicillin and streptomycin. It had the ability to produce enzymes such as amylase and chitinase. A bioactive compound was isolated from the strain at stationary phase of culture and identified as 3-phenylpropionic acid (3-PPA) by FT-IR, EI-MS, 1H NMR and 13C NMR spectral studies. It exhibited antimicrobial activity against different bacteria like Bacillus cereus, B. subtilis, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, P. flourescens, Staphylococcus aureus and some fungi including Aspergillus flavus, A. niger, Candida albicans, Fusarium oxysporum, F. udum and Penicillium citrinum. The antifungal activity of 3-PPA of the strain was evaluated in in vivo and in vitro conditions against Fusarium udum causing wilt disease in pigeon pea. The compound 3-PPA is an effective antifungal agent when compared to tricyclozole (fungicide) to control wilt caused by F. udum, but it exhibited less antifungal activity than carbendazim.  相似文献   

15.
The antifungal substances SH-1 and SH-2 were isolated from Streptomyces humidus strain S5-55 cultures by various purification procedures and identified as phenylacetic acid and sodium phenylacetate, respectively, based on the nuclear magnetic resonance, electron ionization mass spectral, and inductively coupled plasma mass spectral data. SH-1 and SH-2 completely inhibited the growth of Pythium ultimum, Phytophthora capsici, Rhizoctonia solani, Saccharomyces cerevisiae, and Pseudomonas syringae pv. syringae at concentrations from 10 to 50 μg/ml. The two compounds were as effective as the commercial fungicide metalaxyl in inhibiting spore germination and hyphal growth of P. capsici. However, the in vivo control efficacies of the two antifungal compounds against P. capsici infection on pepper plants were similar to those of H3PO3 and fosetyl-AI but less than that of metalaxyl.  相似文献   

16.
【目的】从银杏(Ginkgo biloba)茎叶中分离鉴定内生细菌, 测定其体外抑菌活性及对辣椒果疫病的防治效果。【方法】采用平板对峙法筛选出对辣椒疫霉菌(Phytophthora capsici)有拮抗作用的内生细菌, 并用平板对扣法测定其中一株防治效果较好的内生细菌产生的挥发性物质对辣椒疫霉菌生长的影响。通过生防菌液和病原菌孢子悬浮液喷雾接种辣椒果测定该菌株对辣椒果疫病的防治效果。基于形态特征、生理生化特性、16S rDNA和gyrA基因序列同源性分析鉴定该生防菌株。【结果】从银杏的茎和叶中分离获得9株内生细菌。平板对峙生长试验结果表明, 菌株W5对供试的辣椒疫霉菌、稻瘟病菌(Pyricularia grisea)、水稻纹枯菌(Rhizoctonia solani)、黄瓜枯萎病菌(Fusarium oxysporum)、荔枝霜疫霉菌(Peronophythora litchi)、荔枝酸腐菌(Geotrichum candidum)均有抑制作用, 其中对辣椒疫霉菌、稻瘟病菌和荔枝霜疫霉菌的抑菌效果显著, 抑菌率分别为88.9%、86.3%和90.2%。其产生的挥发性物质能明显抑制辣椒疫霉菌菌丝的生长。对辣椒采后果疫病的防治效果表明, 先喷雾接种W5菌悬液24 h后再接种辣椒疫霉病菌孢子悬浮液的防治效果最好, 可将辣椒果的保鲜期延长2?3 d。该菌株被鉴定为解淀粉芽胞杆菌(Bacillus amyloliquefaciens)。【结论】获得了一株对植物病原菌物有良好防治效果的银杏内生解淀粉芽胞杆菌W5, 对辣椒采后果疫病及其他病原真菌的防治具有潜在应用价值。  相似文献   

17.
New antifungal activity of penicillic acid against Phytophthora species   总被引:1,自引:0,他引:1  
Penicillic acid was isolated from a culture filtrate of Aspergillus sclerotiorum. It had a high in vitro antifungal activity against Phytophthora spp., which has not been previously reported. MICs of penicillic acid were from 1 to 25 microg ml(-1) against Phytophthora spp. Penicillic acid induced abnormal branch formation, apical branching, and swelling in P. capsici, in P. cactorum mycelia contained irregular branching and small spherical swelling at apices, in P. cambivora there was irregular branching and swelling, and in P. drechsleri there was irregular multiple spherical swelling at or near hyphal apices.  相似文献   

18.
杀虫遗传工程荧光假单胞菌IPP202部分生物学特性   总被引:5,自引:0,他引:5  
对遗传工程荧光假单胞菌IPP202进行了质粒稳定性检 测、抑菌活性测定、在棉花根部和叶面定殖能力分析、杀虫蛋白抗紫外能力检测及田间杀虫 活性测定等试验。结果表明,工程菌与出发菌株P303相比,其抑菌、定殖等有益于植物的优 良特性未发生显著变化;经过连续培养和连续稀释培养后工程菌的质粒都非常稳定;广波长 紫外线照射2 h后,苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)由于裸露的伴 孢晶体杀虫蛋白受紫外线破坏因而杀虫活性大大下降,而荧光假单胞菌工程菌的活性变化不 大;IPP202田间杀虫活性与Bt野生菌株接近。工程菌有望解决Bt本身存在的杀虫蛋白多以裸 露晶体的形式存在而易受紫外线破坏的弱点,同时也发挥了P303菌株在多种植物上定殖能力 的优点,使其具有在植物周围大量繁殖而直到杀虫作用的优势。通过进一步研究,将有望构 建成更有实用价值的工程菌。  相似文献   

19.
A set of N-arylbenzenesulfonamides with various substituents at the arylamine and benzenesulfonyl positions were prepared, and their antifungal properties were measured in vitro against such plant pathogenic fungi as Pythium ultimum, Phytophthora capsici, Rhizoctonia solani, and Botrytis cinerea. Compounds 3, 4, 8, 9, 10, 14, 16, 18, 20, 21, 24 and 27 had antifungal activity over a broad spectrum of the phytopathogenic fungi tested, where 50% of inhibition (ED50) was in the range of 3-15 microg/ml. Based on the in vitro activity, six derivatives (3, 4, 10, 18, 21 and 27) were selected and tested further for their fungicidal efficacy in vivo. The fungicidal efficacy of 10, 21 and 27 had a disease control value of over 85% at 50 microg/ml against wheat leaf rust, while that of 4 was selective against cabbage club root disease.  相似文献   

20.
Although bacteria from the genus Collimonas have demonstrated in vitro antifungal activity against many different fungi, they appeared inactive against the plant-pathogenic fungus Fusarium oxysporum f.sp. radicis-lycopersici (Forl), the causal agent of tomato foot and root rot (TFRR). Visualization studies using fluorescently labelled organisms showed that bacterial cells attached extensively to the fungal hyphae under nutrient-poor conditions but not in glucose-rich Armstrong medium. Collimonas fungivorans was shown to be as efficient in colonizing tomato root tips as the excellent colonizer Pseudomonas fluorescens strain WCS365. Furthermore, it appeared to colonize the same sites on the root as did the phytopathogenic fungus. Under greenhouse conditions in potting soil, C. fungivorans performed as well in biocontrol of TFRR as the well-established biocontrol strains P. fluorescens WCS365 and Pseudomonas chlororaphis PCL1391. Moreover, under biocontrol conditions, C. fungivorans did not attach to Forl hyphae colonizing plant roots. Based on these observations, we hypothesize that C. fungivorans mainly controls TFRR through a mechanism of competition for nutrients and niches rather than through its reported mycophagous properties, for which attachment of the bacteria to the fungal hyphae is assumed to be important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号