首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The chaperonin GroEL binds unfolded polypeptides, preventing aggregation, and then mediates their folding in an ATP-dependent process. To understand the structural features in non-native polypeptides recognized by GroEL, we have used alpha-lactalbumin (alpha LA) as a model substrate. alpha LA (14.2 kDa) is stabilized by four disulfide bonds and a bound Ca2+ ion, offering the possibility of trapping partially folded disulfide intermediates between the native and the fully unfolded state. The conformers of alpha LA with high affinity for GroEL are compact, containing up to three disulfide bonds, and have significant secondary structure, but lack stable tertiary structure and expose hydrophobic surfaces. Complex formation requires almost the complete alpha LA sequence and is strongly dependent on salts that stabilize hydrophobic interactions. Unfolding of alpha LA to an extended state as well as the burial of hydrophobic surface upon formation of ordered tertiary structure prevent the binding to GroEL. Interestingly, GroEL interacts only with a specific subset of the many partially folded disulfide intermediates of alpha LA and thus may influence in vitro the kinetics of the folding pathways that lead to disulfide bonds with native combinations. We conclude that the chaperonin interacts with the hydrophobic surfaces exposed by proteins in a flexible compact intermediate or molten globule state.  相似文献   

2.
Two mechanisms have thus far been characterized for the assistance by chaperonins of the folding of other proteins. The first and best described is that of the prokaryotic chaperonin GroEL, which interacts with a large spectrum of proteins. GroEL uses a nonspecific mechanism by which any conformation of practically any unfolded polypeptide interacts with it through exposed, hydrophobic residues. ATP binding liberates the substrate in the GroEL cavity where it is given a chance to fold. A second mechanism has been described for the eukaryotic chaperonin CCT, which interacts mainly with the cytoskeletal proteins actin and tubulin. Cryoelectron microscopy and biochemical studies have revealed that both of these proteins interact with CCT in quasi-native, defined conformations. Here we have performed a detailed study of the docking of the actin and tubulin molecules extracted from their corresponding CCT:substrate complexes obtained from cryoelectron microscopy and image processing to localize certain regions in actin and tubulin that are involved in the interaction with CCT. These regions of actin and tubulin, which are not present in their prokaryotic counterparts FtsA and FtsZ, are involved in the polymerization of the two cytoskeletal proteins. These findings suggest coevolution of CCT with actin and tubulin in order to counteract the folding problems associated with the generation in these two cytoskeletal protein families of new domains involved in their polymerization.  相似文献   

3.
The GroEL–GroES is an essential molecular chaperon system that assists protein folding in cell. Binding of various substrate proteins to GroEL is one of the key aspects in GroEL‐assisted protein folding. Small peptides may mimic segments of the substrate proteins in contact with GroEL and allow detailed structural analysis of the interactions. A model peptide SBP has been shown to bind to a region in GroEL that is important for binding of substrate proteins. Here, we investigated whether the observed GroEL–SBP interaction represented those of GroEL–substrate proteins, and whether SBP was able to mimic various aspects of substrate proteins in GroE‐assisted protein folding cycle. We found that SBP competed with substrate proteins, including α‐lactalbumin, rhodanese, and malate dehydrogenase, in binding to GroEL. SBP stimulated GroEL ATP hydrolysis rate in a manner similar to that of α‐lactalbumin. SBP did not prevent GroES from binding to GroEL, and GroES association reduced the ATPase rates of GroEL/SBP and GroEL/α‐lactalbumin to a comparable extent. Binding of both SBP and α‐lactalbumin to apo GroEL was dominated by hydrophobic interaction. Interestingly, association of α‐lactalbumin to GroEL/GroES was thermodynamically distinct from that to GroEL with reduced affinity and decreased contribution from hydrophobic interaction. However, SBP did not display such differential binding behaviors to apo GroEL and GroEL/GroES, likely due to the lack of a contiguous polypeptide chain that links all of the bound peptide fragments. Nevertheless, studies using peptides provide valuable information on the nature of GroEL–substrate protein interaction, which is central to understand the mechanism of GroEL‐assisted protein folding. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Prefoldin (PFD) is a heterohexameric molecular chaperone complex in the eukaryotic cytosol and archaea with a jellyfish-like structure containing six long coiled-coil tentacles. PFDs capture protein folding intermediates or unfolded polypeptides and transfer them to group II chaperonins for facilitated folding. Although detailed studies on the mechanisms for interaction with unfolded proteins or cooperation with chaperonins of archaeal PFD have been performed, it is still unclear how PFD captures the unfolded protein. In this study, we determined the X-ray structure of Pyrococcus horikoshii OT3 PFD (PhPFD) at 3.0 Å resolution and examined the molecular mechanism for binding and recognition of nonnative substrate proteins by molecular dynamics (MD) simulation and mutation analyses. PhPFD has a jellyfish-like structure with six long coiled-coil tentacles and a large central cavity. Each subunit has a hydrophobic groove at the distal region where an unfolded substrate protein is bound. During MD simulation at 330 K, each coiled coil was highly flexible, enabling it to widen its central cavity and capture various nonnative proteins. Docking MD simulation of PhPFD with unfolded insulin showed that the β subunit is essentially involved in substrate binding and that the α subunit modulates the shape and width of the central cavity. Analyses of mutant PhPFDs with amino acid replacement of the hydrophobic residues of the β subunit in the hydrophobic groove have shown that βIle107 has a critical role in forming the hydrophobic groove.  相似文献   

5.
The chaperonin GroEL binds to a large number of polypeptides, prevents their self-association, and mediates appropriate folding in a GroES and adenosine triphosphate-dependent manner. But how the GroEL molecule actually recognizes the polypeptide and what are the exact GroEL recognition sites in the substrates are still poorly understood. We have examined more than 50 in vivo substrates as well as well-characterized in vitro substrates, for their binding characteristics with GroEL. While addressing the issue, we have been driven by the basic concept that GroES, being the cochaperonin of GroEL, is the best-suited substrate for GroEL, as well as by the fact that polypeptide substrate and GroES occupy the same binding sites on the GroEL apical domain. GroES interacts with GroEL through selective hydrophobic residues present on its mobile loop region, and we have considered the group of residues on the GroES mobile loop as the key element in choosing a substrate for GroEL. Considering the hydrophobic region on the GroES mobile loop as the standard, we have attempted to identify the homologous region on the peptide sequences in the proteins of our interest. Polypeptides have been judged as potential GroEL substrates on the basis of the presence of the GroES mobile loop-like hydrophobic segments in their amino acid sequences. We have observed 1 or more GroES mobile loop-like hydrophobic patches in the peptide sequence of some of the proteins of our interest, and the hydropathy index of most of these patches also seems to be approximately close to that of the standard. It has been proposed that the presence of hydrophobic patches having substantial degree of hydropathy index as compared with the standard segment is a necessary condition for a peptide sequence to be recognized by GroEL molecules. We also observed that the overall hydrophobicity is also close to 30% in these substrates, although this is not the sufficient criterion for a polypeptide to be assigned as a substrate for GroEL. We found that the binding of aconitase, alpha-lactalbumin, and murine dihydrofolate reductase to GroEL falls in line with our present model and have also predicted the exact regions of their binding to GroEL. On the basis of our GroEL substrate prediction, we have presented a model for the binding of apo form of some proteins to GroEL and the eventual formation of the holo form. Our observation also reveals that in most of the cases, the GroES mobile loop-like hydrophobic patch is present in the unstructured region of the protein molecule, specifically in the loop or beta-sheeted region. The outcome of our study would be an essential feature in identifying a potential substrate for GroEL on the basis of the presence of 1 or more GroES mobile loop-like hydrophobic segments in the amino acid sequence of those polypeptides and their location in three-dimensional space.  相似文献   

6.
Barley yellow dwarf virus (BYDV)-vector relationships suggest that there are specific interactions between BYDV virions and the aphid's cellular components. However, little is known about vector factors that mediate virion recognition, cellular trafficking, and accumulation within the aphid. Symbionins are molecular chaperonins produced by intracellular endosymbiotic bacteria and are the most abundant proteins found in aphids. To elucidate the potential role of symbionins in BYDV transmission, we have isolated and characterized two new symbionin symL genes encoded by the endosymbionts which are harbored by the BYDV aphid vectors Rhopalosiphum padi and Sitobion avenae. Endosymbiont symL-encoded proteins have extensive homology with the pea aphid SymL and Escherichia coli GroEL chaperonin. Recombinant and native SymL proteins can be assembled into oligomeric complexes which are similar to the GroEL oligomer. R. padi SymL protein demonstrates an in vitro binding affinity for BYDV and its recombinant readthrough polypeptide. In contrast to the R. padi SymL, the closely related GroEL does not exhibit a significant binding affinity either for BYDV or for its recombinant readthrough polypeptide. Comparative sequence analysis between SymL and GroEL was used to identify potential SymL-BYDV binding sites. Affinity binding of SymL to BYDV in vitro suggests a potential involvement of endosymbiotic chaperonins in interactions with virions during their trafficking through the aphid.  相似文献   

7.
Spontaneous membrane adsorption, folding and insertion of the synthetic WALP16 and KALP16 peptides was studied by computer simulations starting from completely extended conformations. The peptides were simulated using an unmodified all-atom force field in combination with an efficient Monte Carlo sampling algorithm. The membrane is represented implicitly as a hydrophobic zone inside a continuum solvent modelled using the generalized Born theory of solvation. The method was previously parameterized to match insertion energies of hydrophobic side chain analogs into cyclohexane and no parameters were optimized for the present simulations. Both peptides rapidly precipitate out of bulk solution and adsorb to the membrane surface. Interfacial folding into a helical conformation is followed by membrane insertion. Both the peptide conformations and their location in the membrane are strongly temperature dependent. The temperature dependent behaviour can be summarized by fitting to a four-state model, separating the system into folded and unfolded conformers, which are either inserted into the membrane or located at the interfaces. As the temperature is lowered the dominant peptide conformation of the system changes from unfolded surface bound configurations to folded surface bound states. Folded trans-membrane conformers represent the dominant configuration at low temperatures. The analysis allows direct estimates of the free energies of peptide folding and membrane insertion. In the case of WALP the quality of the fit is excellent and the thermodynamic behaviour is in good agreement with expected theoretical consideration. For KALP the fit is more problematic due to the large solvation energies of the charged lysine residues.  相似文献   

8.
Aggregation occurs through hydrophobic interactions when a polypeptide chain refolds in non-native states or when genetic variants of biologically active proteins assume inappropriate conformations, as observed in the case of dysfunctional serpins. Here, using the molecular chaperone BiP from bovine liver microsomes, we characterized the hydrophobic nature of the peptide segment which is considered to be a site required for aggregation among a non-inhibitory serpin ovalbumin in a heat-denatured state. Screening of the peptide scan for binding of BiP showed that BiP-binding sites are mostly buried in the folded ovalbumin. When ovalbumin was heat-denatured, the denatured protein was recognized by the antibody that reacts with the hydrophobic surface of the amino-terminal segment of ovalbumin. This antibody significantly suppressed the binding of BiP to denatured ovalbumin. BiP also bound the immobilized peptide in an ATP-dependent manner and the peptide stimulated the ATPase activity of BiP with a Km of 165 microM and a Vmax of 0.4 nmol/min per milligram. Measurement of surface plasmon resonance showed that the peptide had a Kd of 0.52 microM by BiP, lower than that for RCMLA (Kd = 1.1 microM) and even lower than that of the peptide P10K, PLSRTLSVAAKK, (Kd = 21 microM). These results demonstrate that the aggregation-prone site on heat-denatured ovalbumin has almost the same hydrophobic nature of interacting with the molecular chaperone BiP as the conventionally known peptides that bind to the Escherichia coli chaperone DnaK.  相似文献   

9.
Spontaneous membrane adsorption, folding and insertion of the synthetic WALP16 and KALP16 peptides was studied by computer simulations starting from completely extended conformations. The peptides were simulated using an unmodified all-atom force field in combination with an efficient Monte Carlo sampling algorithm. The membrane is represented implicitly as a hydrophobic zone inside a continuum solvent modelled using the generalized Born theory of solvation. The method was previously parameterized to match insertion energies of hydrophobic side chain analogs into cyclohexane and no parameters were optimized for the present simulations. Both peptides rapidly precipitate out of bulk solution and adsorb to the membrane surface. Interfacial folding into a helical conformation is followed by membrane insertion. Both the peptide conformations and their location in the membrane are strongly temperature dependent. The temperature dependent behaviour can be summarized by fitting to a four-state model, separating the system into folded and unfolded conformers, which are either inserted into the membrane or located at the interfaces. As the temperature is lowered the dominant peptide conformation of the system changes from unfolded surface bound configurations to folded surface bound states. Folded trans-membrane conformers represent the dominant configuration at low temperatures. The analysis allows direct estimates of the free energies of peptide folding and membrane insertion. In the case of WALP the quality of the fit is excellent and the thermodynamic behaviour is in good agreement with expected theoretical consideration. For KALP the fit is more problematic due to the large solvation energies of the charged lysine residues.  相似文献   

10.
S J Landry  L M Gierasch 《Biochemistry》1991,30(30):7359-7362
Chaperones facilitate folding and assembly of nascent polypeptides in vivo and prevent aggregation in refolding assays in vitro. A given chaperone acts on a number of different proteins. Thus, chaperones must recognize features present in incompletely folded polypeptide chains and not strictly dependent on primary structural information. We have used transferred nuclear Overhauser effects to demonstrate that the Escherichia coli chaperonin GroEL binds to a peptide corresponding to the N-terminal alpha-helix in rhodanese, a mitochondrial protein whose in vitro refolding is facilitated by addition of GroEL, GroES, and ATP. Furthermore, the peptide, which is unstructured when free in aqueous solution, adopts an alpha-helical conformation upon binding to GroEL. Modification of the peptide to reduce its intrinsic propensity to take up alpha-helical structure lowered its affinity for GroEL, but, nonetheless, it could be bound and took up a helical conformation when bound. We propose that GroEL interacts with sequences in an incompletely folded chain that have the potential to adopt an amphipathic alpha-helix and that the chaperonin binding site promotes formation of a helix.  相似文献   

11.
Group II chaperonins, found in eukaryotic and archaeal organisms, recognize substrate proteins through diverse mechanisms that involve either hydrophobic‐ or electrostatic‐dominated interactions. This action is distinct from the universal substrate recognition mechanism of group I chaperonins, which bind a wide spectrum of non‐native proteins primarily through hydrophobic interactions. We use computational approaches to pinpoint the substrate protein binding sites of the γ‐subunit of the eukaryotic chaperonin CCT and to identify its interactions with the stringent substrate β‐tubulin. Protein–protein docking methods reveal intrinsic binding sites of CCT comprising a helical (HL) region, homologous to the GroEL‐binding site, and the helical protrusion (HP) region. We performed molecular dynamics simulations of the solvated CCTγ apical domain, β‐tubulin peptide‐CCTγ complexes, and isolated β‐tubulin peptides. We find that tubulin binds to CCTγ through an extensive interface that spans both the HL region and the HP region. HL interactions involve both hydrophobic and electrostatic contacts, while binding to the HP region is stabilized almost exclusively by a salt bridge network. On the basis of additional simulations of a β‐tubulin‐CCTγ complex that involves a reduced interface, centered onto the HP region, we conclude that this salt bridge network is the minimal stabilizing interaction required. Strong conservation of the charged amino acids that participate in the salt bridge network, Arg306 and Glu271, indicates a general mechanism across the nonidentical CCT subunits and group II chaperonins. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Motojima F  Yoshida M 《The EMBO journal》2010,29(23):4008-4019
The current mechanistic model of chaperonin-assisted protein folding assumes that the substrate protein in the cage, formed by GroEL central cavity capped with GroES, is isolated from outside and exists as a free polypeptide. However, using ATPase-deficient GroEL mutants that keep GroES bound, we found that, in the rate-limiting intermediate of a chaperonin reaction, the unfolded polypeptide in the cage partly protrudes through a narrow space near the GroEL/GroES interface. Then, the entire polypeptide is released either into the cage or to the outside medium. The former adopts a native structure very rapidly and the latter undergoes spontaneous folding. Partition of the in-cage folding and the escape varies among substrate proteins and is affected by hydrophobic interaction between the polypeptide and GroEL cavity wall. The ATPase-active GroEL with decreased in-cage folding produced less of a native model substrate protein in Escherichia coli cells. Thus, the polypeptide in the critical GroEL-GroES complex is neither free nor completely confined in the cage, but it is interacting with GroEL's apical region, partly protruding to outside.  相似文献   

13.
It is important to understand the conformational features of the unfolded state in equilibrium with folded state under physiological conditions. In this paper, we consider a short peptide model LMYKGQPM from staphylococcal nuclease to model the conformational equilibrium between a hairpin conformation and its unfolded state using molecular dynamics simulation under NVT conditions at 300K using GROMOS96 force field. The free energy landscape has overall funnel-like shape with hairpin conformations sampling the minima. The "unfolded" state has a higher free energy of approximately 12kJ/mol with respect to native hairpin minimum and occupies a plateau region. We find that the unfolded state has significant contributions from compact conformations. Many of these conformations have hairpin-like topology. Further, these compact conformational forms are stabilized by hydrophobic interactions. Conversion between native and non-native hairpins occurs via unfolded states. Frequent conversions between folded and unfolded hairpins are observed with single exponential kinetics. We compare our results with the emerging picture of unfolded state from both experimental and theoretical studies.  相似文献   

14.
Advances in understanding how GroEL binds to non-native proteins are reported. Conformational flexibility in the GroEL apical domain, which could account for the variety of substrates that GroEL binds, is illustrated by comparison of several independent crystallographic structures of apical domain constructs that show conformational plasticity in helices H and I. Additionally, ESI-MS indicates that apical domain constructs have co-populated conformations at neutral pH. To assess the ability of different apical domain conformers to bind co-chaperone and substrate, model peptides corresponding to the mobile loop of GroES and to helix D from rhodanese were studied. Analysis of apical domain-peptide complexes by ESI-MS indicates that only the folded or partially folded apical domain conformations form complexes that survive gas phase conditions. Fluorescence binding studies show that the apical domain can fully bind both peptides independently. No competition for binding was observed, suggesting the peptides have distinct apical domain-binding sites. Blocking the GroES-apical domain-binding site in GroEL rendered the chaperonin inactive in binding GroES and in assisting the folding of denatured rhodanese, but still capable of binding non-native proteins, supporting the conclusion that GroES and substrate proteins have, at least partially, distinct binding sites even in the intact GroEL tetradecamer.  相似文献   

15.
Aburi M  Smith PE 《Biopolymers》2002,64(4):177-188
The conformations of Leu enkephalin in aqueous solution have been investigated as a function of pH using molecular dynamics simulations. The simulations suggest the peptide backbone exists as a mixture of folded and unfolded forms (approximately 50% each) at neutral pH, but is always unfolded at low or high pH. The folded form at neutral pH possesses a 2 --> 5 hydrogen bond and a close head to tail separation. No significant intramolecular hydrogen bonding of the carbonyl oxygens was observed in either the folded or unfolded forms of the peptide. Analysis of the Gly carbonyl oxygens and terminal groups indicated that, while the conformational population distribution of Leu enkephalin did vary noticeably as a function of pH, their hydration was essentially independent of pH and in agreement with the available NMR data. Further study indicated that the unfolded state of the peptide was not random in nature and consisted of one major unfolded backbone arrangement stabilized by a persistent hydrophobic interaction between the side chains of Tyr and Leu.  相似文献   

16.
Designed armadillo repeat proteins (dArmRP) are α‐helical solenoid repeat proteins with an extended peptide binding groove that were engineered to develop a generic modular technology for peptide recognition. In this context, the term “peptide” not only denotes a short unstructured chain of amino acids, but also an unstructured region of a protein, as they occur in termini, loops, or linkers between folded domains. Here we report two crystal structures of dArmRPs, in complex with peptides fused either to the N‐terminus of Green Fluorescent Protein or to the C‐terminus of a phage lambda protein D. These structures demonstrate that dArmRPs bind unfolded peptides in the intended conformation also when they constitute unstructured parts of folded proteins, which greatly expands possible applications of the dArmRP technology. Nonetheless, the structures do not fully reflect the binding behavior in solution, that is, some binding sites remain unoccupied in the crystal and even unexpected peptide residues appear to be bound. We show how these differences can be explained by restrictions of the crystal lattice or the composition of the crystallization solution. This illustrates that crystal structures have to be interpreted with caution when protein–peptide interactions are characterized, and should always be correlated with measurements in solution.  相似文献   

17.
Hammond K  Caputo GA  London E 《Biochemistry》2002,41(9):3243-3253
The T domain of diphtheria toxin is believed to aid the low-pH-triggered translocation of the partly unfolded A chain (C domain) through cell membranes. Recent experiments have suggested the possibility that the T domain aids translocation by acting as a membrane-inserted chaperone [Ren, J., et al. (1999) Science 284, 955-957]. One prediction of this model is that the membrane-inserted T domain should be able to interact with sequences that mimic unfolded proteins. To understand the basis of interaction of the membrane-inserted T domain with unfolded polypeptides, its interaction with water-soluble peptides having different sequences was studied. The membrane-inserted T domain was able to recognize helix-forming 23-residue Ala-rich peptides. In the presence of such peptides, hydrophobic helix 9 of the T domain underwent the previously characterized conformational change from a state exhibiting shallow membrane insertion to one exhibiting deep insertion. This conformational change was more readily induced by the more hydrophobic peptides that were tested. It did not occur at all in the presence a hydrophilic peptide in which alternating Ser and Gly replaced Ala or in the presence of unfolded hydrophilic peptides derived from the A chain of the toxin. Interestingly, a peptide with a complex sequence (RKE(3)KE(2)LMEW(2)KM(2)SETLNF) also interacted with the T domain very strongly. We conclude that the membrane-inserted T domain cannot recognize every unfolded amino acid sequence. However, it does not exhibit strong sequence specificity, instead having the ability to recognize and interact with a variety of amino acid sequences having moderate hydrophobicity. This recognition was not strictly correlated with the strength of peptide binding to the lipid, suggesting that more than just hydrophobicity is involved. Although it does not prove that the T domain functions as a chaperone, T domain recognition of hydrophobic sequences is consistent with it having polypeptide recognition properties that are chaperone-like.  相似文献   

18.
While it is clear that many unfolded proteins can attain their native state spontaneously in vitro, the efficiency of such folding is usually limited to conditions far removed from those encountered within cells. Two properties of the cellular environment are expected to enhance strongly the propensity of incompletely folded polypeptides to misfold and aggregate: the crowding effect caused by the high concentration of macromolecules, and the close proximity of nascent polypeptide chains emerging from polyribosomes. However, in the living cell, non-productive protein folding is in many, if not most, cases prevented by the action of a highly conserved set of proteins termed molecular chaperones. In the cytoplasm, the Hsp70 (heat-shock protein of 70 kDa) and chaperonin families of molecular chaperones appear to be the major contributors to efficient protein folding during both normal conditions and adverse conditions such as heat stress. Hsp70 chaperones recognize and shield short, hydrophobic peptide segments in the context of non-native polypeptides and probably promote folding by decreasing the concentration of aggregation-prone intermediates. In contrast, the chaperonins interact with and globally enclose collapsed folding intermediates in a central cavity where efficient folding can proceed in a protected environment. For a number of proteins, folding requires the co-ordinated action of both of these molecular chaperones.  相似文献   

19.
Proteins are denatured in aqueous urea solution. The nature of the molecular driving forces has received substantial attention in the past, whereas the question how urea acts at different phases of unfolding is not yet well understood at the atomic level. In particular, it is unclear whether urea actively attacks folded proteins or instead stabilizes unfolded conformations. Here we investigated the effect of urea at different phases of unfolding by molecular dynamics simulations, and the behavior of partially unfolded states in both aqueous urea solution and in pure water was compared. Whereas the partially unfolded protein in water exhibited hydrophobic collapses as primary refolding events, it remained stable or even underwent further unfolding steps in aqueous urea solution. Further, initial unfolding steps of the folded protein were found not to be triggered by urea, but instead, stabilized. The underlying mechanism of this stabilization is a favorable interaction of urea with transiently exposed, less-polar residues and the protein backbone, thereby impeding back-reactions. Taken together, these results suggest that, quite generally, urea-induced protein unfolding proceeds primarily not by active attack. Rather, thermal fluctuations toward the unfolded state are stabilized and the hydrophobic collapse of partially unfolded proteins toward the native state is impeded. As a result, the equilibrium is shifted toward the unfolded state.  相似文献   

20.
The chaperonin system, GroEL and GroES of Escherichia coli enable certain proteins to fold under conditions when spontaneous folding is prohibitively slow as to compete with other non-productive channels such as aggregation. We investigated the plausible mechanisms of GroEL-mediated folding using simple lattice models. In particular, we have investigated protein folding in a confined environment, such as those offered by the GroEL, to decipher whether rate and yield enhancement can occur when the substrate protein is allowed to fold within the cavity of the chaperonins. The GroEL cavity is modeled as a cubic box and a simple bead model is used to represent the substrate chain. We consider three distinct characteristic of the confining environment. First, the cavity is taken to be a passive Anfinsen cage in which the walls merely reduce the available conformation space. We find that at temperatures when the native conformation is stable, the folding rate is retarded in the Anfinsen cage. We then assumed that the interior of the wall is hydrophobic. In this case the folding times exhibit a complex behavior. When the strength of the interaction between the polypeptide chain and the cavity is too strong or too weak we find that the rates of folding are retarded compared to spontaneous folding. There is an optimum range of the interaction strength that enhances the rates. Thus, above this value there is an inverse correlation between the folding rates and the strength of the substrate-cavity interactions. The optimal hydrophobic walls essentially pull the kinetically trapped states which leads to a smoother the energy landscape. It is known that upon addition of ATP and GroES the interior cavity of GroEL offers a hydrophilic-like environment to the substrate protein. In order to mimic this within the context of the dynamic Anfinsen cage model, we allow for changes in the hydrophobicity of the walls of the cavity. The duration for which the walls remain hydrophobic during one cycle of ATP hydrolysis is allowed to vary. These calculations show that frequent cycling of the wall hydrophobicity can dramatically reduce the folding times and increase the yield as well under non-permissive conditions. Examination of the structures of the substrate proteins before and after the change in hydrophobicity indicates that there is global unfolding involved. In addition, it is found that a fraction of the molecules kinetically partition to the native state in accordabce with the iterative annealing mechanism. Thus, frequent "unfoldase" activity of chaperonins leading to global unfolding of the polypeptide chain results in enhancement of the folding rates and yield of the folded protein. We suggest that chaperonin efficiency can be greatly enhanced if the cycling time is reduced. The calculations are used to interpret a few experiments on chaperonin-mediated protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号