首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
To test the hypothesis that a muscle mechanosensitive reflex is suppressed in the conscious condition, we examined the effect of anesthesia on the cardiovascular responses to passive mechanical stretch of the hindlimb triceps surae muscle in six conscious cats. The triceps surae muscle was manually stretched for 30 s by extending the hip and knee joints and subsequently by dorsiflexing the ankle joint; the lateral gastrocnemius muscle was lengthened by 19 +/- 2.6 mm. Heart rate (HR) and mean arterial blood pressure (MAP) did not change significantly during passive stretch of the muscle in the conscious condition. At 10-40 min after intravenously administering pentobarbital sodium (20-25 mg/kg), the identical passive stretch of the triceps surae muscle was able to induce the cardiovascular responses; HR and MAP were increased by 14 +/- 1.3 beats/min and 14 +/- 1.4 mmHg, respectively, and the cardiovascular responses were sustained throughout the passive stretch. In contrast, stretching skin on the triceps surae muscle evoked no significant changes in HR and MAP in the anesthetized condition. When anesthesia became light 40-90 min after injection of pentobarbital and the animals started to show spontaneous body movement, the cardiovascular response to passive muscle stretch tended to be blunted again. It is therefore concluded that passive mechanical stretch of skeletal muscle is capable of evoking the reflex cardiovascular response, which is suppressed in the conscious condition but exaggerated by anesthesia.  相似文献   

2.
I investigated whether muscular contraction evokes cardiorespiratory increases (exercise pressor reflex) in alpha-chloralose- and chloral hydrate-anesthetized and precollicular, midcollicular, and postcollicular decerebrated rats. Mean arterial pressure (MAP), heart rate (HR), and minute ventilation (Ve) were recorded before and during 1-min sciatic nerve stimulation, which induced static contraction of the triceps surae muscles, and during 1-min stretch of the calcaneal tendon, which selectively stimulated mechanosensitive receptors in the muscles. Anesthetized rats showed various patterns of MAP response to both stimuli, i.e., biphasic, depressor, pressor, and no response. Sciatic nerve stimulation to muscle in precollicular decerebrated rats always evoked spontaneous running, so the exercise pressor reflex was not determined from these preparations. None of the postcollicular decerebrated rats showed a MAP response or spontaneous running. Midcollicular decerebrated rats consistently showed biphasic blood pressure response to both stimulations. The increases in MAP, HR, and Ve were related to the tension developed. The static contractions in midcollicular decerebrated rats (381 +/- 65 g developed tension) significantly increased MAP, HR, and Ve from 103 +/- 12 to 119 +/- 24 mmHg, from 386 +/- 30 to 406 +/- 83 beats/min, and from 122 +/- 7 to 133 +/- 25 ml/min, respectively. After paralysis, sciatic nerve stimulation had no effect on MAP, HR, or Ve. These results indicate that the midcollicular decerebrated rat can be a model for the study of the exercise pressor reflex.  相似文献   

3.
The purpose of this study was to determine the effect of blocking synaptic transmission in the dorsal horn on the cardiovascular responses produced by activation of muscle afferent neurons. Synaptic transmission was blocked by applying the GABA(A) agonist muscimol to the dorsal surface of the spinal cord. Cats were anesthetized with alpha-chloralose and urethane, and a laminectomy was performed. With the exception of the L(7) dorsal root, the dorsal and ventral roots from L(5) to S(2) were sectioned on one side, and static contraction of the ipsilateral triceps surae muscle was evoked by electrically stimulating the peripheral ends of the L(7) and S(1) ventral roots. The dorsal surface of the L(4)--S(3) segments of the spinal cord were enclosed within a "well" created by applying layers of vinyl polysiloxane. Administration of a 1 mM solution of muscimol (based on dose-response data) into this well abolished the reflex pressor response to contraction (change in mean arterial blood pressure before was 47 +/- 7 mmHg and after muscimol was 3 +/- 2 mmHg). Muscle stretch increased mean arterial blood pressure by 30 +/- 8 mmHg before muscimol, but after drug application stretch increased MAP by only 3 +/- 2 mmHg. Limiting muscimol to the L(7) segment attenuated the pressor responses to contraction (37 +/- 7 to 24 +/- 11 mmHg) and stretch (28 +/- 2 to 16 +/- 8 mmHg). These data suggest that the dorsal horn of the spinal cord contains an obligatory synapse for the pressor reflex. Furthermore, these data support the hypothesis that branches of primary afferent neurons, not intraspinal pathways, are responsible for the multisegmental integration of the pressor reflex.  相似文献   

4.
We tested the hypothesis that static contraction causes greater reflex cardiovascular responses than dynamic contraction at equivalent workloads [i.e., same tension-time index (TTI), holding either contraction time or peak tension constant] in chloralose-anesthetized cats. When time was held constant and tension was allowed to vary, dynamic contraction of the hindlimb muscles evoked greater increases (means +/- SE) in mean arterial pressure (MAP; 50 +/- 7 vs. 30 +/- 5 mmHg), popliteal blood velocity (15 +/- 3 vs. 5 +/- 1 cm/s), popliteal venous PCO(2) (15 +/- 3 vs. 3 +/- 1 mmHg), and a greater decrease in popliteal venous pH (0.07 +/- 0.01 vs. 0.03 +/- 0.01), suggesting greater metabolic stimulation during dynamic contraction. Similarly, when peak tension was held constant and time was allowed to vary, dynamic contraction evoked a greater increase in blood velocity (13 +/- 1 vs. -1 +/- 1 cm/s) without causing any differences in other variables. To investigate the reflex contribution of mechanoreceptors, we stretched the hindlimb dynamically and statically at the same TTI. A larger reflex increase in MAP during dynamic stretch (32 +/- 8 vs. 24 +/- 6 mmHg) was observed when time was held constant, indicating greater mechanoreceptor stimulation. However, when peak tension was held constant, there were no differences in the reflex cardiovascular response to static and dynamic stretch. In conclusion, at comparable TTI, when peak tension is variable, dynamic muscle contraction causes larger cardiovascular responses than static contraction because of greater chemical and mechanical stimulation. However, when peak tensions are equivalent, static and dynamic contraction or stretch produce similar cardiovascular responses.  相似文献   

5.
We have previously shown that static muscle contraction induces the expression of c-Fos protein in neurons of the nucleus tractus solitarii (NTS) and that some of these cells were codistributed with neuronal NADPH-diaphorase [nitric oxide (NO) synthase]-positive fibers. In the present study, we sought to determine the role of NO in the NTS in mediating the cardiovascular responses elicited by skeletal muscle afferent fibers. Static contraction of the triceps surae muscle was induced by electrical stimulation of the L7 and S1 ventral roots in anesthetized cats. Muscle contraction during microdialysis of artificial extracellular fluid increased mean arterial pressure (MAP) and heart rate (HR) 51 +/- 9 mmHg and 18 +/- 3 beats/min, respectively. Microdialysis of L-arginine (10 mM) into the NTS to locally increase NO formation attenuated the increases in MAP (30 +/- 7 mmHg, P < 0.05) and HR (14 +/- 2 beats/min, P > 0.05) during contraction. Microdialysis of D-arginine (10 mM) did not alter the cardiovascular responses evoked by muscle contraction. Microdialysis of N(G)-nitro-L-arginine methyl ester (2 mM) during contraction attenuated the effects of L-arginine on the reflex cardiovascular responses. These findings demonstrate that an increase in NO formation in the NTS attenuates the pressor response to static muscle contraction, indicating that the NO system plays a role in mediating the cardiovascular responses to static muscle contraction in the NTS.  相似文献   

6.
In thirteen cats anesthetized with alpha-chloralose, we compared the cardiovascular and ventilatory responses to both static contraction and tendon stretch of a hindlimb muscle group, the triceps surae, with those to contraction and stretch of a forelimb muscle group, the triceps brachii. Static contraction and stretch of both muscle groups increased mean arterial pressure and heart rate, and the responses were directly proportional to the developed tension. The cardiovascular increases, however, were significantly greater (P < 0.05) when the triceps brachii muscles were contracted or stretched than when the triceps surae muscles were contracted or stretched, even when the tension developed by either maneuver was corrected for muscle weight. Likewise, the ventilatory increases were greater when the triceps brachii muscles were stretched than when the triceps surae muscles were stretched. Contraction of either muscle group did not increase ventilation. Our results suggest that in the anesthetized cat the cardiovascular responses to both static contraction and tendon stretch are greater when arising from forelimb muscles than from hindlimb muscles.  相似文献   

7.
The exercise pressor reflex is believed to be evoked, in part, by multiple metabolic stimuli that are generated when blood supply to exercising muscles is inadequate to meet metabolic demand. Recently, ATP, which is a P2 receptor agonist, has been suggested to be one of the metabolic stimuli evoking this reflex. We therefore tested the hypothesis that blockade of P2 receptors within contracting skeletal muscle attenuated the exercise pressor reflex in decerebrate cats. We found that popliteal arterial injection of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 10 mg/kg), a P2 receptor antagonist, attenuated the pressor response to static contraction of the triceps surae muscles. Specifically, the pressor response to contraction before PPADS averaged 36 +/- 3 mmHg, whereas afterward it averaged 14 +/- 3 mmHg (P < 0.001; n = 19). In addition, PPADS attenuated the pressor response to postcontraction circulatory occlusion (P < 0.01; n = 11). In contrast, popliteal arterial injection of CGS-15943 (250 micro g/kg), a P1 receptor antagonist, had no effect on the pressor response to static contraction of the triceps surae muscles. In addition, popliteal arterial injection of PPADS but not CGS-15943 attenuated the pressor response to stretch of the calcaneal (Achilles) tendon. We conclude that P2 receptors on the endings of thin fiber muscle afferents play a role in evoking both the metabolic and mechanoreceptor components of the exercise pressor reflex.  相似文献   

8.
Static contraction of skeletal muscle evokes increases in blood pressure and heart rate. Previous studies suggested that the dorsal horn of the spinal cord is the first synaptic site responsible for those cardiovascular responses. In this study, we examined the role of ATP-sensitive P2X receptors in the cardiovascular responses to contraction by microdialyzing the P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) into the L7 level of the dorsal horn of nine anesthetized cats. Contraction was elicited by electrical stimulation of the L7 and S1 ventral roots. Blockade of P2X receptor attenuated the contraction induced-pressor response [change in mean arterial pressure (delta MAP): 16 +/- 4 mmHg after 10 mM PPADS vs. 42 +/- 8 mmHg in control; P < 0.05]. In addition, the pressor response to muscle stretch was also blunted by PPADS (delta MAP: 27 +/- 5 mmHg after PPADS vs. 49 +/- 8 mmHg in control; P < 0.05). Finally, activation of P2X receptor by microdialyzing 0.5 mM alpha,beta-methylene into the dorsal horn significantly augmented the pressor response to contraction. This effect was antagonized by prior PPADS dialysis. These data demonstrate that blockade of P2X receptors in the dorsal horn attenuates the pressor response to activation of muscle afferents and that stimulation of P2X receptors enhances the reflex response, indicating that P2X receptors play a role in mediating the muscle pressor reflex at the first synaptic site of this reflex.  相似文献   

9.
Feedback regulation by activation of mechanosensitive afferents in the exercising muscle causes the cardiovascular and sympathetic nerve responses, which follow tension development and are almost identical between static contraction and passive stretch. The precise location of the mechanoreceptors contributing to the exercise pressor reflex, however, remained unknown. To test the hypothesis that the mechanoreceptors will be located around the myotendinous junction to monitor a change in muscle tension than a change in muscle length, we examined the reflex cardiovascular responses to passive stretch of the triceps surae muscle in anesthetized rats with three interventions; systemic injection of gadolinium, cutting the Achilles tendon, and local injection of lidocaine into the myotendinous junction. Gadolinium (42 micromol/kg iv) blunted the increases in heart rate and mean arterial blood pressure during passive stretch by 36 and 22-26%, respectively, suggesting that the reflex cardiovascular responses were evoked by stimulation of muscle mechanosensitive receptors. The cardiovascular responses to passive stretch were not different between the cut Achilles tendon and the intact tendon in the same rats, suggesting that any mechanoreceptors, terminated in the more distal part of the tendon, did not contribute to the reflex cardiovascular responses. Lidocaine (volume, 0.04-0.1 ml) injected into the myotendinous junction blunted the stretch-induced increases in heart rate and mean arterial blood pressure by 37-49 and 27-34%, respectively. We conclude that the muscle mechanosensitive receptors evoking the reflex cardiovascular responses at least partly locate at or close to the myotendinous junction of the Achilles tendon.  相似文献   

10.
It has been suggested that the midbrain periaqueductal gray (PAG) is a neural integrating site for the interaction between the muscle pressor reflex and the arterial baroreceptor reflex. The underlying mechanisms are poorly understood. The purpose of this study was to examine the roles of GABA and nitric oxide (NO) in modulating the PAG integration of both reflexes. To activate muscle afferents, static contraction of the triceps surae muscle was evoked by electrical stimulation of the L7 and S1 ventral roots of 18 anesthetized cats. In the first group of experiments (n = 6), the pressor response to muscle contraction was attenuated by bilateral microinjection of muscimol (a GABA receptor agonist) into the lateral PAG [change in mean arterial pressure (DeltaMAP) = 24 +/- 5 vs. 46 +/- 8 mmHg in control]. Conversely, the pressor response was significantly augmented by 0.1 mM bicuculline, a GABAA receptor antagonist (DeltaMAP = 65 +/- 10 mmHg). In addition, the effect of GABAA receptor blockade on the reflex response was significantly blunted after sinoaortic denervation and vagotomy (n = 4). In the second group of experiments (n = 8), the pressor response to contraction was significantly attenuated by microinjection of L-arginine into the lateral PAG (DeltaMAP = 26 +/- 4 mmHg after L-arginine injection vs. 45 +/- 7 mmHg in control). The effect of NO attenuation was antagonized by bicuculline and was reduced after denervation. These data demonstrate that GABA and NO within the PAG modulate the pressor response to muscle contraction and that NO attenuation of the muscle pressor reflex is mediated via arterial baroreflex-engaged GABA increase. The results suggest that the PAG plays an important role in modulating cardiovascular responses when muscle afferents are activated.  相似文献   

11.
Vanilloid type 1 (VR-1) receptors are stimulated by capsaicin and hydrogen ions, the latter being a by-product of muscular contraction. We tested the hypothesis that activation of VR-1 receptors during static contraction contributes to the exercise pressor reflex. We established a dose of iodoresinaferatoxin (IRTX), a VR-1 receptor antagonist, that blocked the pressor response to capsaicin injected into the arterial supply of muscle. Specifically, in eight decerebrated cats, we compared pressor responses to capsaicin (10 mug) injected into the right popliteal artery, which was subsequently injected with IRTX (100 mug), with those to capsaicin injected into the left popliteal artery, which was not injected with IRTX. The pressor response to capsaicin injected into the right popliteal artery averaged 49 +/- 9 mmHg before IRTX and 9 +/- 2 mmHg after IRTX (P < 0.05). In contrast, the pressor response to capsaicin injected into the left popliteal artery averaged 46 +/- 10 mmHg "before" and 43 +/- 6 mmHg "after" (P > 0.05). We next determined whether VR-1 receptors mediated the pressor response to contraction of the triceps surae. During contraction without circulatory occlusion, the pressor response before IRTX (100 mug) averaged 26 +/- 3 mmHg, whereas it averaged 22 +/- 3 mmHg (P > 0.05) after IRTX (n = 8). In addition, during contraction with occlusion, the pressor responses averaged 35 +/- 3 mmHg before IRTX injection and 49 +/- 7 mmHg after IRTX injection (n = 7). We conclude that VR-1 receptors play little role in evoking the exercise pressor reflex.  相似文献   

12.
Previous studies suggest that the blood pressure response to static contraction is greater than that caused by dynamic exercise. In anesthetized cats, however, pressor responses to electrically induced static and dynamic contraction of the same muscle group are similar during equivalent workloads and peak tension development [i.e., similar tension-time index (TTI)]. To determine if the same relationship exists in humans, where contraction is voluntary and central command is present, dynamic (180 s; 1/s) and static (90 s) contractions at 30% of maximal voluntary contraction (MVC) were performed. Dynamic contraction also was repeated at the same TTI for 90 s at 60% MVC. Mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), MAP during postexercise arterial occlusion (an index of the metaboreceptor-induced activation of the exercise pressor reflex), and relative perceived exertion (RPE) (an index of central command) were assessed. No differences in these variables were found between static and dynamic contraction at a tension of 30% MVC. During dynamic contraction at 60% MVC, changes in MAP (16 +/- 3 vs. 19 +/- 4 mmHg) and absolute HR (92 +/- 6 vs. 69 +/- 5 beats/min), CO (7.9 +/- 0.4 vs. 6.3 +/- 0.3 l/min), RPE (16 +/- 1 vs. 13 +/- 1), and MAP during postexercise arterial occlusion (115 +/- 3 vs. 100 +/- 4 mmHg) were greater than during static contraction (P < 0.05). Thus increases in MAP and HR, activation of central command, and muscle metabolite-induced stimulation of the exercise pressor reflex during static and dynamic contraction in humans seem to be similar when peak tension and TTI are equal. Augmented responses to dynamic contraction at 60% MVC are likely related to greater activation of these two mechanisms.  相似文献   

13.
Static contraction of hindlimb skeletal muscle in cats induces a reflex pressor response. The superficial dorsal horn of the spinal cord is the major site of the first synapse of this reflex. In this study, static contraction of the triceps surae muscle was evoked by electrical stimulation of the tibial nerve for 2 min in anesthetized cats (stimulus parameters: two times motor threshold at 30 Hz, 0.025-ms duration). Ten stimulations were performed and 1-min rest was allowed between stimulations. Muscle contraction caused a maximal increase of 32 +/- 5 mmHg in mean arterial pressure (MAP), which was obtained from the first three contractions. Activated neurons in the superficial dorsal horn were identified by c-Fos protein. Distinct c-Fos expression was present in the L6-S1 level of the superficial dorsal horn ipsilateral to the contracting leg (88 +/- 14 labeled cells per section at L7), whereas only scattered c-Fos expression was observed in the contralateral superficial dorsal horn (9 +/- 2 labeled cells per section, P < 0.05 compared with ipsilateral section). A few c-Fos-labeled cells were found in control animals (12 +/- 5 labeled cells per section, P < 0.05 compared with stimulated cats). Furthermore, double-labeling methods demonstrated that c-Fos protein coexisted with nitric oxide (NO) synthase (NOS) positive staining in the superficial dorsal horn. Finally, an intrathecal injection of an inhibitor of NOS, N-nitro-L-arginine methyl ester (5 mM), resulted in fewer c-Fos-labeled cells (58 +/- 12 labeled cells per section) and a reduced maximal MAP response (20 +/- 3 mmHg, P < 0.05). These results suggest that the exercise pressor reflex induced by static contraction is mediated by activation of neurons in the superficial dorsal horn and that formation of NO in this region is involved in modulating the activated neurons and the pressor response to contraction.  相似文献   

14.
We examined whether ATP stimulation of P2X purinoceptors would raise blood pressure in decerebrate cats. Femoral arterial injection of the P2X receptor agonist alpha,beta-methylene ATP into the blood supply of the triceps surae muscle induced a dose-dependent increase in arterial blood pressure. The maximal increase in mean arterial pressure (MAP) evoked by 0.1, 0.2, and 0.5 mM alpha,beta-methylene ATP (0.5 ml/min injection rate) was 6.2 +/- 2.5, 22.5 +/- 4.4, and 35.2 +/- 3.9 mmHg, respectively. The P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (2 mM ia) attenuated the increase in MAP elicited by intra-arterial alpha,beta-methylene ATP (0.5 mM), whereas the P2Y receptor antagonist reactive blue 2 (2 mM ia) did not affect the MAP response to alpha,beta-methylene ATP. In a second group of experiments, we tested the hypothesis that ATP acting through P2X receptors would sensitize muscle afferents and, thereby, augment the blood pressure response to muscle stretch. Two kilograms of muscle stretch evoked a 26.5 +/- 4.3 mmHg increase in MAP. This MAP response was enhanced when 2 mM ATP or 0.1 mM alpha,beta-methylene ATP (0.5 ml/min) was arterially infused 10 min before muscle stretch. Furthermore, this effect of ATP on the pressor response to stretch was attenuated by 2 mM pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (P < 0.05) but not by the P1 purinoceptor antagonist 8-(p-sulfophenyl)-theophylline (2 mM). These data indicate that activation of ATP-sensitive P2X receptors evokes a skeletal muscle afferent-mediated pressor response and that ATP at relatively low doses enhances the muscle pressor response to stretch via engagement of P2X receptors.  相似文献   

15.
The exercise pressor reflex is evoked by both mechanical and metabolic stimuli. Tendon stretch does not increase muscle metabolism and therefore is used to investigate the mechanical component of the exercise pressor reflex. An important assumption underlying the use of tendon stretch to study the mechanical component of the exercise pressor reflex is that stretch stimulates the same group III mechanosensitive muscle afferents as does static contraction. We have tested the veracity of this assumption in decerebrated cats by comparing the responses of group III and IV muscle afferents to tendon stretch with those to static contraction. The tension-time indexes as well as the peak tension development for both maneuvers did not significantly differ. We found that static contraction of the triceps surae muscles stimulated 18 of 30 group III afferents and 8 of 11 group IV afferents. Similarly, tendon stretch stimulated 14 of 30 group III afferents and 3 of 11 group IV afferents. However, of the 18 group III afferents that responded to static contraction and the 14 group III afferents that responded to tendon stretch, only 7 responded to both stimuli. On average, the conduction velocities of the 18 group III afferents that responded to static contraction (11.6 +/- 1.6 m/s) were significantly slower (P = 0.03) than those of the 14 group III afferents that responded to tendon stretch (16.7 +/- 1.5 m/s). We have concluded that tendon stretch stimulated a different population of group III mechanosensitive muscle afferents than did static contraction. Although there is some overlap between the two populations of group III mechanosensitive afferents, it is not large, comprising less than half of the group III afferents responding to static contraction.  相似文献   

16.
We have tested the hypothesis that intrathecal injections of opioid peptides attenuate the reflex pressor and ventilatory responses to static contraction of the triceps surae muscles of chloralose-anesthetized cats. We found that before intrathecal injections of [D-Ala2]Met-enkephalinamide (100 micrograms in 0.2 ml), static contraction increased mean arterial pressure and ventilation by 32 +/- 5 (SE) mmHg and 227 +/- 61 (SE) ml/min, whereas after injection of this opioid peptide, static contraction increased mean arterial pressure and ventilation by only 15 +/- 5 mmHg and 37 +/- 33 ml/min, respectively. The attenuation of both the pressor and ventilatory responses to static contraction by [D-Ala2]Met-enkephalinamide were statistically significant (P less than 0.05). Moreover, the attenuation was probably not caused by an opioid-induced withdrawal of sympathetic outflow because [D-Ala2]Met-enkephalinamide had no effect on the pressor and ventilatory responses evoked by high-intensity electrical stimulation of the central cut end of the sciatic nerve. In addition, intrathecal injection of peptides that were highly selective agonists for either the opioid mu- or delta-receptor attenuated the reflex responses to static contraction. Naloxone (1,000 micrograms), injected intrathecally, prevented the attenuation of the reflex responses to contraction by opioid peptides. We speculate that the opioid-induced attenuation of the reflex pressor and ventilatory responses to static contraction may have been due to suppression of substance P release from group III and IV muscle afferents.  相似文献   

17.
We investigated the effect of disuse atrophy on the magnitude of the muscle mechanoreflex. The left leg of eight rats (6-7 wk, male) was put in a plaster cast for 1 wk. The rats were decerebrated at the midcollicular level. We recorded the pressor and cardioaccelerator responses to 30-s stretch of the calcaneal tendon, which selectively stimulated the muscle mechanosensitive receptors in the left atrophied and right control triceps surae muscles. Atrophied muscles showed significantly lower mass control muscles (1.0 +/- 0.1 vs. 1.4 +/- 0.1 g; P < 0.05). At the same stretch tension (229 +/- 20 g), the pressor response to stretch was significantly greater in the atrophied muscles than in the control muscles (13 +/- 3 vs. 4 +/- 2 mmHg, P < 0.05). The cardioaccelerator response was not significantly different (8 +/- 4 vs. 4 +/- 2 beats/min). Comparing responses at the same relative tension (57 +/- 6 vs. 51 +/- 8% of maximal tension), the pressor response was still significantly greater in the atrophied triceps surae than in the control (14 +/- 4 vs. 4 +/- 2 mmHg; P < 0.05). These results suggest that disuse atrophy increases the magnitude of muscle mechanoreflex.  相似文献   

18.
Amiloride, injected into the popliteal artery, has been reported to attenuate the reflex pressor response to static contraction of the triceps surae muscles. Both mechanical and metabolic stimuli arising in contracting skeletal muscle are believed to evoke this effect, which has been named the exercise pressor reflex. Amiloride blocks both acid-sensing ion channels, as well as epithelial sodium channels. Nevertheless, amiloride is thought to block the metabolic stimulus to the reflex, because this agent has been shown to attenuate the reflex pressor response to injection of lactic acid into the arterial supply of skeletal muscle. The possibility exists, however, that amiloride may also block mechanical stimuli evoking the exercise pressor reflex. The mechanical component of the reflex can be assessed by measuring renal sympathetic nerve activity during the first 2-5 s of contraction. During this period of time, the sudden tension developed by contraction onset briskly discharges mechanoreceptors, whereas it has little effect on the discharge of metaboreceptors. We, therefore, examined the effect of amiloride (0.5 microg/kg) injected into the popliteal artery on the renal sympathetic and pressor responses to static contraction of the triceps surae muscles in decerebrated cats. We found that amiloride significantly attenuated the pressor and renal sympathetic responses to contraction; for the latter variable, the attenuation started 10 s after the onset of contraction. Our findings lead us to conclude that acid-sensing ion channels and epithelial sodium channels play little, if any, role in evoking the mechanical component of the exercise pressor reflex.  相似文献   

19.
The finding that pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid (PPADS), a P2 antagonist, attenuated the pressor response to calcaneal tendon stretch, a purely mechanical stimulus, raises the possibility that P2 receptors sensitize mechanoreceptors to static contraction of the triceps surae muscles. The mechanical component of the exercise pressor reflex, which is evoked by static contraction, can be assessed by measuring renal sympathetic nerve activity during the first 2-5 s of this maneuver. During this period of time, group III mechanoreceptors often discharge explosively in response to the sudden tension developed at the onset of contraction. In decerebrated cats, we, therefore, examined the effect of PPADS (10 mg/kg) injected into the popliteal artery on the renal sympathetic and pressor responses to contraction and stretch. We found that PPADS significantly attenuated the renal sympathetic response to contraction, with the effect starting 2 s after its onset and continuing throughout its 60-s period. PPADS also significantly attenuated the renal sympathetic nerve response to stretch, but did so after a latency of 10 s. Our findings lead us to conclude that P2 receptors sensitize group III muscle afferents to contraction. The difference in the onset latency between the PPADS-induced attenuation of the renal sympathetic response to contraction and the renal sympathetic response to stretch is probably due to the sensitivities of different populations of group III afferents to ATP released during contraction and stretch.  相似文献   

20.
The exercise pressor reflex, which arises from the contraction-induced stimulation of group III and IV muscle afferents, is widely believed to be evoked by metabolic stimuli signaling a mismatch between blood/oxygen demand and supply in the working muscles. Nevertheless, mechanical stimuli may also play a role in evoking the exercise pressor reflex. To determine this role, we examined the effect of gadolinium, which blocks mechanosensitive channels, on the exercise pressor reflex in both decerebrate and alpha-chloralose-anesthetized cats. We found that gadolinium (10 mM; 1 ml) injected into the femoral artery significantly attenuated the reflex pressor responses to static contraction of the triceps surae muscles and to stretch of the calcaneal (Achilles) tendon. In contrast, gadolinium had no effect on the reflex pressor response to femoral arterial injection of capsaicin (5 microg). In addition, gadolinium significantly attenuated the responses of group III muscle afferents, many of which are mechanically sensitive, to both static contraction and to tendon stretch. Gadolinium, however, had no effect on the responses of group IV muscle afferents, many of which are metabolically sensitive, to either static contraction or to capsaicin injection. We conclude that mechanical stimuli arising in contracting skeletal muscles contribute to the elicitation of the exercise pressor reflex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号