首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By comparing sequences of human, mouse and rat orthologous genes, we show that in 5′-untranslated regions (5′-UTRs) of mammalian cDNAs but not in 3′-UTRs or coding sequences, AUG is conserved to a significantly greater extent than any of the other 63 nt triplets. This effect is likely to reflect, primarily, bona fide evolutionary conservation, rather than cDNA annotation artifacts, because the excess of conserved upstream AUGs (uAUGs) is seen in 5′-UTRs containing stop codons in-frame with the start AUG and many of the conserved AUGs are found in different frames, consistent with the location in authentic non-coding sequences. Altogether, conserved uAUGs are present in at least 20–30% of mammalian genes. Qualitatively similar results were obtained by comparison of orthologous genes from different species of the yeast genus Saccharomyces. Together with the observation that mammalian and yeast 5′-UTRs are significantly depleted in overall AUG content, these findings suggest that AUG triplets in 5′-UTRs are subject to the pressure of purifying selection in two opposite directions: the uAUGs that have no specific function tend to be deleterious and get eliminated during evolution, whereas those uAUGs that do serve a function are conserved. Most probably, the principal role of the conserved uAUGs is attenuation of translation at the initiation stage, which is often additionally regulated by alternative splicing in the mammalian 5′-UTRs. Consistent with this hypothesis, we found that open reading frames starting from conserved uAUGs are significantly shorter than those starting from non-conserved uAUGs, possibly, owing to selection for optimization of the level of attenuation.  相似文献   

2.
3.
4.
A short model genome RNA and also the genome RNA of influenza A virus bearing both 5′- and 3′-terminal common sequences activated the interferon-induced double-stranded-RNA-dependent protein kinase, PKR, by stimulating autophosphorylation in vitro. The activated PKR catalyzed phosphorylation of the alpha subunit of eucaryotic translation initiation factor 2 (eIF2α). The NS1 protein efficiently eliminated the PKR-activating activity of these RNAs by binding to them. Two mutant NS1 proteins, each harboring a single amino acid substitution at different regions, exhibited temperature sensitivity in their RNA binding activity in the mutant virus-infected cell lysates as well as when they were prepared as fusion proteins expressed in bacteria. The virus strains carrying these mutant NS1 proteins exhibited temperature sensitivity in virus protein synthesis at the translational level, as reported previously, and could not repress the autophosphorylation of PKR developing during the virus growth, which is normally suppressed by a viral function(s). As a result, the level of eIF2α phosphorylation was elevated 2.5- to 3-fold. The defect in virus protein synthesis was well correlated with the level of phosphorylation of PKR and eIF2α.  相似文献   

5.
The nonsense-mediated mRNA decay (NMD) pathway, present in most eukaryotic cells, is a specialized pathway that leads to the recognition and rapid degradation of mRNAs with premature termination codons and, importantly, some wild-type mRNAs. Earlier studies demonstrated that aberrant mRNAs with artificially extended 3′-untranslated regions (3′-UTRs) are degraded by NMD. However, the extent to which wild-type mRNAs with long 3′-UTRs are degraded by NMD is not known. We used a global approach to identify wild-type mRNAs in Saccharomyces cerevisiae that have longer than expected 3′-UTRs, and of these mRNAs tested, 91% were degraded by NMD. We demonstrate for the first time that replacement of the natural, long 3′-UTR from wild-type PGA1 mRNA, which encodes a protein that is important for cell wall biosynthesis, with a short 3′-UTR renders it immune to NMD. The natural PGA1 3′-UTR is sufficient to target a NMD insensitive mRNA for decay by the NMD pathway. Finally, we show that nmd mutants are sensitive to Calcofluor White, which suggests that the regulation of PGA1 and other cell wall biosynthesis proteins by NMD is physiologically significant.  相似文献   

6.
7.
8.
9.
Ezrin is a key regulator of cancer metastasis that links the extracellular matrix to the actin cytoskeleton and regulates cell morphology and motility. We discovered a small-molecule inhibitor, NSC305787, that directly binds to ezrin and inhibits its function. In this study, we used a nano-liquid chromatography-tandem mass spectrometry (nano-LC–MS-MS)-based proteomic approach to identify ezrin-interacting proteins that are competed away by NSC305787. A large number of the proteins that interact with ezrin were implicated in protein translation and stress granule dynamics. We validated direct interaction between ezrin and the RNA helicase DDX3, and NSC305787 blocked this interaction. Downregulation or long-term pharmacological inhibition of ezrin led to reduced DDX3 protein levels without changes in DDX3 mRNA. Ectopic overexpression of ezrin in low-ezrin-expressing osteosarcoma cells caused a notable increase in DDX3 protein levels. Ezrin inhibited the RNA helicase activity of DDX3 but increased its ATPase activity. Our data suggest that ezrin controls the translation of mRNAs preferentially with a structured 5′ untranslated region, at least in part, by sustaining the protein level of DDX3 and/or regulating its function. Therefore, our findings suggest a novel function for ezrin in regulation of gene translation that is distinct from its canonical role as a cytoskeletal scaffold at the cell membrane.  相似文献   

10.
11.
Although the involvement of viruses in alterations of testicular function and in sexually transmitted diseases is well known, paradoxically, the testicular antiviral defense system has virtually not been studied. The well known antiviral activity of interferons (IFNs) occurs via the action of several IFN-induced proteins, among which the 2′5′ oligoadenylate synthetase (2′5′ A synthetase), the double-stranded RNA-activated protein kinase (PKR), and the Mx proteins are the best known. To explore the antiviral capacity of the testis and to study the testicular action of IFNs, we looked for the presence and regulation of these three proteins in isolated seminiferous tubule cells, cultured in the presence or in the absence of IFN α, IFN γ, or Sendai virus. In all conditions tested, the meiotic pachytene spermatocytes and the post-meiotic early spermatids lacked 2′5′ A synthetase, PKR, and Mx mRNAs and proteins. In contrast, Sertoli cells constitutively expressed these mRNAs and proteins, and their levels were greatly increased after IFN α or Sendai virus exposure. While peritubular cells were also able to markedly express 2′5′ A synthetase, PKR, and Mx mRNA and proteins after IFN α or viral exposure, only PKR was constitutively present in these cells. Interestingly, IFN γ had no effect on peritubular cells' 2′5′ A synthetase and Mx production but it enhanced Mx proteins in Sertoli cells. In conclusion, this study reveals that the seminiferous tubules are particularly well equipped to react to a virus attack. The fact that the two key tubular elements of the blood–testis barrier, namely, Sertoli and peritubular cells, were found to assume this protection allows the extension of the concept of blood–testis barrier to the testicular antiviral defense.  相似文献   

12.
During eukaryotic translation, mRNAs may form intra-molecular interactions between distant domains. The 5′-cap and the polyA tail were shown to interact through their associated proteins, and this can induce physical compaction of the mRNA in vitro. However, the stability of this intra-molecular association in translating mRNAs and whether additional contacts exist in vivo are largely unknown. To explore this, we applied a novel approach in which several endogenous polysomal mRNAs from Saccharomyces cerevisiae were cleaved near their stop codon and the resulting 3′-UTR fragments were tested either for co-sedimentation or co-immunoprecipitation (co-IP) with their ORFs. In all cases a significant fraction of the 3′-UTR fragments sedimented similarly to their ORF-containing fragments, yet the extent of co-sedimentation differed between mRNAs. Similar observations were obtained by a co-IP assay. Interestingly, various treatments that are expected to interfere with the cap to polyA interactions had no effect on the co-sedimentation pattern. Moreover, the 3′-UTR appeared to co-sediment with different regions from within the ORF. Taken together, these results indicate extensive physical associations between 3′-UTRs and their ORFs that vary between genes. This implies that polyribosomal mRNAs are in a compact configuration in vivo.  相似文献   

13.
14.
Translation of most eukaryotic mRNAs and many viral RNAs is enhanced by their poly(A) tails. Hepatitis C virus (HCV) contains a positive-stranded RNA genome which does not have a poly(A) tail but has a stretch of 98 nucleotides (X region) at the 3′-untranslated region (UTR), which assumes a highly conserved stem-loop structure. This X region binds a polypyrimidine tract-binding protein (PTB), which also binds to the internal ribosome entry site (IRES) in HCV 5′-UTR. These RNA-protein interactions may regulate its translation. We generated a set of HCV RNAs differing only in their 3′-UTRs and compared their translation efficiencies. HCV RNA containing the X region was translated three- to fivefold more than the corresponding RNAs without this region. Mutations that abolished PTB binding in the X region reduced, but did not completely abolish, enhancement in translation. The X region also enhanced translation from another unrelated IRES (from encephalomyocarditis virus RNA), but did not affect the 5′-end-dependent translation of globin mRNA in either monocistronic or bicistronic RNAs. It did not appear to affect RNA stability. The free X region added in trans, however, did not enhance translation, indicating that the translational enhancement by the X region occurs only in cis. These results demonstrate that the highly conserved 3′ end of HCV RNA provides a novel mechanism for enhancement of HCV translation and may offer a target for antiviral agents.  相似文献   

15.
16.
17.
Ribonucleotide reductase catalyzes a rate-limiting reaction in DNA synthesis by converting ribonucleotides to deoxyribonucleotides. It consists of two subunits and the small one, M2 (or R2), plays an essential role in regulating the enzyme activity and its expression is finely controlled. Changes in the M2 level influence the dNTP pool and, thus, DNA synthesis and cell proliferation. M2 gene has two promoters which produce two major mRNAs with 5′-untranslated regions (5′-UTRs) of different lengths. In this study, we found that the M2 mRNAs with the short (63 nt) 5′-UTR can be translated with high efficiency whereas the mRNAs with the long (222 nt) one cannot. Examination of the long 5′-UTR revealed four upstream AUGs, which are in the same reading frame as the unique physiological translation initiation codon. Further analysis demonstrated that these upstream AUGs act as negative cis elements for initiation at the downstream translation initiation codon and their inhibitory effect on M2 translation is eIF4G dependent. Based on the findings of this study, we conclude that the expression of M2 is likely regulated by fine tuning the translation from the mRNA with a long 5′-UTR during viral infection and during the DNA replication phase of cell proliferation.  相似文献   

18.
19.
The 3′ end region of foot-and-mouth disease virus (FMDV) consists of two distinct elements, a 90 nt untranslated region (3′-NCR) and a poly(A) tract. Removal of either the poly(A) tract or both the 3′-NCR and the poly(A) tract abrogated infectivity in susceptible cells in the context of a full-length cDNA clone. We have addressed the question of whether the impairment of RNA infectivity is related to defects at the translation level using a double approach. First, compared to the full-length viral RNA, removal of the 3′ sequences reduced the efficiency of translation in vitro. Secondly, a stimulatory effect of the 3′ end sequences on IRES-dependent translation was found in vivo using bicistronic constructs. RNAs carrying the FMDV 3′ end sequences linked to the second cistron showed a significant stimulation of IRES-dependent translation, whereas cap-dependent translation was not affected. Remarkably, IRES-dependent stimulation exerted by the poly(A) tract or the 3′-NCR seems to be the result of two separate events, as the 3′-NCR alone enhanced IRES activity on its own. Under conditions of FMDV Lb protease-induced translation shut-off, the stimulation of IRES activity reached values above 6-fold in living cells. A northern blot analysis indicated that IRES stimulation was not the consequence of a change in the stability of the bicistronic RNA produced in transfected cells. Analysis of the RNA-binding proteins interacting with a mixture of 3′ end and IRES probes showed an additive pattern. Altogether, our results strongly suggest that individual signals in the viral 3′ end ensure stimulation of FMDV translation.  相似文献   

20.
The Pea Enation Mosaic Virus (PEMV) 3′ translational enhancer, known as the kissing-loop T-shaped structure (kl-TSS), binds to 40S subunits, 60S subunits, and 80S ribosomes, whereas the Turnip crinkle virus (TCV) TSS binds only to 60S subunits and 80S ribosomes. Using electrophoretic mobility gel shift assay (EMSA)-based competition assays, the kl-TSS was found to occupy a different site in the ribosome than the P-site-binding TCV TSS, suggesting that these two TSS employ different mechanisms for enhancing translation. The kl-TSS also engages in a stable, long-distance RNA-RNA kissing-loop interaction with a 12-bp 5′-coding-region hairpin that does not alter the structure of the kl-TSS as revealed by molecular dynamics simulations. Addition of the kl-TSS in trans to a luciferase reporter construct containing either wild-type or mutant 5′ and 3′ PEMV sequences suppressed translation, suggesting that the kl-TSS is required in cis to function, and both ribosome-binding and RNA interaction activities of the kl-TSS contributed to translational inhibition. Addition of the kl-TSS was more detrimental for translation than an adjacent eIF4E-binding 3′ translational enhancer known as the PTE, suggesting that the PTE may support the ribosome-binding function of the kl-TSS. Results of in-line RNA structure probing, ribosome filter binding, and high-throughput selective 2′-hydroxyl acylation analyzed by primer extension (hSHAPE) of rRNAs within bound ribosomes suggest that kl-TSS binding to ribosomes and binding to the 5′ hairpin are compatible activities. These results suggest a model whereby posttermination ribosomes/ribosomal subunits bind to the kl-TSS and are delivered to the 5′ end of the genome via the associated RNA-RNA interaction, which enhances the rate of translation reinitiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号