首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaves treated with δ-aminoievulinic acid accumulate protochlorophyllide636 in large amounts. Due to a continuous conversion of protochlorophyllide636 (nonphototransformable) into protochlorophyllide650 (phototransformable) in weak red light, the photoreduction of protochlorophyllide to chlorophyllide can proceed for at least 20 minutes and results in a chlorophyllide content of the leaves three times higher than that in untreated leaves. The half time for this chlorophyllide accumulation is 55 seconds. A photodestruction of the pigments takes place at high light intensities or if the content of protochlorophyllide636 is high. The conversion of protochlorophyllide636 to chlorophyllide is dependent on the light intensity used for phototransformation of protochlorophyllide550 The conversion of PChlide646 was not limiting for chlorophyllide formation within the range of the light intensity used. The extrapolation of a double reciprocal plot of chlorophyllide formation, rate versus light intensity gives a maximal value of 8.7 μg chlorophyllide per g fresh weight and min. The conversion of protochlorophyllide363 to protochlorophyllide650 is believed to depend on the available sites of an apophotoenzyme.  相似文献   

2.
Two forms of protochlorophyllide are found in dark-grown bean (Phaseolus vulgaris, var. Black Velentine) leaves, one (protochlorophyllide650) which is directly photoconvertible to chlorophyllide and another (protochlorophyllide632) which is not. Dark-grown leaves placed in solutions of δ-aminolevulinic acid accumulate protochlorophyllide632. Protochlorophyllide650 and protochlorophyllide632 can be partially separated on sucrose density gradients. A nitrogen atmosphere blocks chlorophyll synthesis in light or the regeneration of protochlorophyllide650 in the dark, even in the presence of excess δ-aminolevulinic acid, except when a stockpile of protochlorophyllide632 is present in the leaf. Under the latter conditions chlorophyll synthesis or protochlorophyllide650 regeneration is accompanied by a decrease in protochlorophyllide632. These experiments suggest that protochlorophyllide632 may be converted to protochlorophyllide650.  相似文献   

3.
Absorbancy changes in dark-grown, excised wheal leaves fed with δ-aminolevulinic acid are measured in vivo. The treatment with σ-aminolevulinic acid caused accumulation of protochlorophyllide, absorbing at 636 nm. After flashlight this form is found to convert in darkness to protochlorophyllide, absorbing at 650 nm. The conversion starts instantly after the leaves have been exposed to the flashlight, and the pre-existent pool of protocholorophyllidc absorbing at 650 nm will become emptied. The conversion is completed after 15–20 minutes, when a new pool of protochlorophyllide has been filled up. This new pool is transformed to chlorophyllide by a second flash and the sequence is repeated. The conversion may be composed of two reactions, a conclusion which can be drawn from the behaviour at different temperatures. One of these reactions is fairly temperature independent while the other is temperature dependent. The action of the protochlorophyllide holochrome is discussed.  相似文献   

4.
Tanaka A  Tsuji H 《Plant physiology》1980,65(6):1211-1215
The effects of calcium on chlorophyll accumulation and its stability in the early phase of greening in cucumber cotyledons were investigated. Chlorophyll accumulation was hardly affected by dark preincubation of cotyledons with 10 millimolar calcium solution, but was inhibited almost completely when 50 or 100 millimolar solution was used. On the other hand, 50 millimolar calcium inhibited δ-aminolevulinic acid formation in the light by only 75%. Calcium had little effect on the lag for initiation of protochlorophyllide650 regeneration, but slowed down the rate of accumulation of protochlorophyllide650. In calcium-treated cotyledons, the chlorophyll formed by primary photoconversion was quickly decomposed in the dark. The present results show that calcium inhibited chlorophyll accumulation by inhibiting δ-aminolevulinic acid formation in the light and by stimulating the decomposition of newly formed chlorophyll, both effects being completely prevented by potassium.  相似文献   

5.
Dark-grown leaves of wheat fed with δ-aminolevulinic acid accumulate protochlorophyllide636 in excess. After the leaves had been illuminated with high intensity red light (154 W × m?2) for half a minute, a treatment which blocks the phototrans-formation protochlorophyllide chlorophyllide, the sensitivity of chlorophyllide and protochlorophyllide to light was examined. The decrease in pigment content, caused by photo-oxidation was found to be very close to a second order reaction. The second order “rate constant” for decrease in absorbance was found to be eight times greater for the formed chlorophyllide than for protochlorophyllide. The light intensity dependence of the decomposition was found to be linear within the intensity range used (E= 25 – 154 W × m?2). In samples in which the pigments had been heat denatured, it was possible to photodecompose the chlorophyllide without affecting the protochlorophyllide. The results are discussed in connection with the theory of a photodynamic action involving oxygen in the singlet state (1ΔO2).  相似文献   

6.
The relationship of phototransformable protochlorophyllide to photoinactive protochlorophyllide has been studied in primary leaves of 7- to 9-day-old dark-grown bean (Phaseolus vulgaris L. var. Red Kidney) seedlings. Various levels of photoinactive protochlorophyllide, absorbing at 633 nm in vivo, were induced by administering δ-aminolevulinic acid to the leaves in darkness. Phototransformable protochlorophyllide, absorbing at 650 nm in vivo, was subsequently transformed to chlorophyllide by a light flash, and the regeneration of the photoactive pigment was followed by monitoring the absorbance increase at 650 nm in vivo. A small increase in the level of protochlorophyllide633 causes a marked increase in the extent of regeneration of protochlorphyllide650 following a flash. High levels of the inactive pigment species, however, retard the capacity to reform photoactive protochlorophyllide. A nonstoichiometric and kinetically complex decrease in absorbance at 633 nm in vivo accompanied the absorbance increase at 650 nm. The half-time for protochlorophyllide650 regeneration in control leaves was found to be three times longer than the half-time for conversion of chlorophyllide678 to chlorophyllide683 at 22 C. The results are consistent with the hypothesis that protochlorophyllide633 is a direct precursor of protochlorophyllide650 and that the protein moiety of the protochlorophyllide holochrome acts as a “photoenzyme” in the conversion of protochlorophylide to chlorophyllide.  相似文献   

7.
Etiolated barley seedlings lose the ability to produce chlorophyll and soluble protein on exposure to light with increasing age. Similarly, the production of δ-aminolaevulinic acid-dehydratase and succinyl-CoA synthetase is decreased in older etiolated leaves exposed to light. The rate of protochlorophyllide652 regeneration decreased well before the rates of exogenous δ-aminolaevulinic acid conversion to protochlorophyllide632 was affected by ageing. Application of kinetin retarded these ageing symptoms in the etiolated leaves.  相似文献   

8.
Oak seedlings (Quercus robur L.) were germinated in darkness for 3 weeks and then given continuous long wavelength far-red light (LFR; wavelengths longer than 700 nm). A control group of seedlings was kept in darkness. After 2 additional weeks the chlorophyll formation ability in red light was examined in the different seedlings. The stability of the protochlorophyll(ide) and chlorophyll(ide) forms to high intensity red irradiation was also measured. Oak seedlings grown in darkness accumulated protochlorophyll(ide) (6 μg per g fresh matter). Absorption spectra and fluorescence spectra indicated the presence of more protochlorophyll(ide)628–632 than protochlorophyllide650–657. The level of protochlorophyll(ide) was higher in leaves of plants cultivated in LFR light (13 μg per g fresh matter) than in leaves of dark grown plants. 12% of the protochlorophyll(ide) was esterified in both cases. The level of protochlorophyll(ide)628–632 in LFR grown oaks varied with the age of the leaves, being higher in the older (basal) leaves, but also in the very youngest (top-most) leaves. The ability of the leaves to form photostable chlorophyll in red light showed a similar age dependence, being low in rather young and in older leaves. A low ability to form photostable chlorophyll thus appears to be correlated with a high content of protochlorophyll(ide)628–632. Upon irradiation only the protochlorophyllide650–657 was transformed to chlorophyllide. After this phototransformation the chlorophyllide peak at 684 nm shifted to 671 nm within about 30 min in darkness. This shift took place without any accompanying change in photostability of the chlorophyll(ide). Upon irradiation with strong red light a similar shift took place within one minute. This indicates that the chlorophyllide after phototransformation was rather loosely bound to the photoreducing enzyme. The development towards photostable chlorophyll forms consists of three phases and is discussed.  相似文献   

9.
Rapid regeneration of protochlorophyllide(650)   总被引:13,自引:11,他引:2       下载免费PDF全文
The rate of regeneration of protochlorophyllide650 was examined spectrophotometrically after a saturating light flash using 8- to 9-day-old dark-grown bean leaves. The regeneration occurred to the extent of 15% with a half rise time of about 20 seconds. Feeding δ-aminolevulinic acid to the excised leaves in the dark increased protochlorophyllides635 but not the absorption at 650 nanometers, suggesting that the holochrome was normally saturated with protochlorophyllide and that the holochrome protein was not controlled by the level of protochlorophyllide. After a light flash, the excess protochlorophyllide, formed from exogenous δ-aminolevulinic acid, readily combined to regenerate the 650 nanometer absorbing species; the regeneration occurred to the extent of 60 to 80% with a half rise time of about 50 seconds. Regeneration was blocked at 0°, suggesting that there was some enzymic process required for regeneration, possibly the formation of a reductant component of the protochlorophyllides650 holochrome.  相似文献   

10.
Cut seedlings of wheat plants (Triticum aestivum L. cv. Starke II Weibull) between 6 and 7 days old were water stressed in darkness by exposing them to air of 35% relative humidity 2.5 to 20 h. This treatment resulted in a water potential of -11 bars in the leaves after 20 h. The leaves were then rewatered and irradiated. The chlorophyll formation that took place in fully turgid leaves during the greening was markedly decreased in the case of the water-stress pretreatmet. and especially the lag phase was prolonged. The longer the stress pretreatment the more evident was the subsequent effect on chlorophyll formation. However, no linear relationship was found between the amount of stress and the chlorophyll content. Protochlorophyllide regeneration from endogenously formed δ-aminolevulinic acid was markedly decreased even after the shortest water-stress period. However, protochlorophyllide accumulation from exogenously supplied δ-aminolevulinic acid was only slightly decreased following the water-stress pretreatment. Further more, the ratio of protochlorophyllide650 to protochlorophyllide628 was slightly reduced by the same conditions. During the stress period both abscisic acid and proline were accumulated in the leaves. The content of abscisic acid increased up to six times the normal level during water stress lasting for 20 h. The increase of proline was about three-fold for similar treatment. After rewatering the leaves the levels of both abscisic acid and proline rapidly declined and reached. 10 h later, the levels found in unstressed seedlings. The increase in abscisic acid during water stress associated with impaired chlorophyll metabolism suggested that the after-effect of water stress might be linked to chlorophyll metabolism through abscisic acid or some of its metabolites. The changes in proline content open the possibility that this substance could function as a reserve substance for the formation of chlorophyll after the discon tinuation of the stress.  相似文献   

11.
H. Kasemir  G. Prelim 《Planta》1976,132(3):291-295
Summary The rate of chlorophyllide esterification in mustard cotyledons can be increased by a pretreatment with 5 min red light applied 24 h prior to the protochlorophyll(ide)chlorophyll(ide) photoconversion at 60 h after sowing. Simultaneously the red light pulse pretreatment leads to a decrease of the total amount of chlorophyll(ide) a in darkness. It has been proven that phytochrome (Pfr) is the photoeffector for both. Since the amounts of esterified chlorophyllide are determined by the ratio [chlorophyll a]/[chlorophyllide a+chlorophyll a] it is assumed that Pfr increases the rate of esterification indirectly via stimulating the decrease of chlorophyll(ide) a. The regulation of chlorophyll synthesis by Pfr does not seem to involve a control of esterification. The duration of the chlorophyllide esterification differs from the duration of the Shibata shift although both are greatly shortened by the red light pulse pretreatment. The effect of 5 min red light on the duration of the esterification is fully reversible by 5 min far-red light while the reversibility with respect to the Shibata shift is lost within 2 min [Jabben, M. and H. Mohr, Photochem. Photobiol. 22, 55–58 (1975)]. We conclude that the control of the chlorophyllide esterification and the control of the Shibata shift cannot be traced back to the same initial action of Pfr.Abbreviations Chl chlorophyll - Chlide chlorophyllide - Chl(ide) sum of Chl and Chlide - PChl protochlorophyll - PChlide protochlorophyllide - PChl(ide) sum of PChl and PChlide - Pfr far-red absorbing form of the phytochrome system  相似文献   

12.
Wild-type cells of the unicellular rhodophyte, Cyanidium caldarium, synthesize chlorophyll a, phycobiliproteins, and heme from δ-aminolevulinic acid during light-dependent chloroplast development but are unable to make photosynthetic pigments in the dark. C. caldarium, mutant GGB-Y, is an obligate heterotroph which, in the light, produces a chloroplast devoid of photosynthetic pigments. The present investigation has shown that δ-aminolevulinic acid is synthesized in cells of mutant GGB-Y incubated with levulinic acid, a competitive inhibitor of δ-aminolevulinic acid dehydrase (the second enzyme in the porphyrin biosynthetic pathway). In vivo, cells of mutant GGB-Y preferentially incorporated C1 of glutamate and α-ketoglutarate into the C5 fragment (formaldehyde) of δ-aminolevulinic acid after alkaline periodate degradation. This suggested that δ-aminolevulinic acid arises directly from the carbon skeleton of glutamate and α-ketoglutaric acid. The pattern of incorporation of C3, C4, and C5 of α-ketoglutarate into the C1–C4 (succinic acid) fragment of δ-aminolevulinic acid after alkaline periodate degradation was consistent with the origin of δ-aminolevulinic acid from a five-carbon precursor. C1 and C2 of glycine and C2 and C3 of succinate were incorporated into both the formaldehyde and succinate fragments of δ-aminolevulinic acid in a manner inconsistent with condensation of glycine and succinyl CoA by δ-aminolevulinic acid synthetase, the rate-limiting enzyme in the porphyrin pathway in animals and bacteria. Extracts of the soluble protein from cells of mutant GGB-Y displayed a Soret band at 410 nm indicating the presence of hemoproteins. This shows that mutant GGB-Y cells synthesize heme. The respiration of radiolabeled glutamate, α-ketoglutarate, and glycine to 14CO2 is consistent with the existence of mitochondrial cytochromes in cells of mutant GGB-Y and with the ability of the mutant to synthesize δ-aminolevulinic acid. The present results suggest that δ-aminolevulinic acid is synthesized directly from glutamate or α-ketoglutarate and that this is the only process by which the rate-limiting intermediate in the porphyrin pathway is synthesized in C. caldarium. If correct, the rate-limiting, regulative enzyme in the biosynthetic pathway for synthesis of chlorophyll a, bile pigment (phycocyanobilin), and heme must have been completely different in the evolutionary antecedents of modern-day plants and animals.  相似文献   

13.
The above-ground parts of two years old seedlings of Douglas fir (Pseudotsuga menziesii) were exposed to filtered air, NH3, NO2+, SO2 (66, 96 and 95 μg m?3, respectively), to a mixture of NO2+NH3 (55 + 82 μg m?3) or SO2+NO2 (128 + 129 μg m?3), for 8 months in fumigation chambers. Both chlorophyll fluorescence and gas exchange measurements were carried out on shoots which had sprouted at the beginning of the exposure period. The chlorophyll fluorescence measurements were performed after 3 and 5 months of exposure (average shoot age 70 and 140 days, respectively). Light response curves of electron transport rate (J) were determined, in which J was deduced from chlorophyll fluorescence. In addition, light response curves of net CO2 assimilation were determined after 5 months of exposure. After 3 months of exposure (average shoot age 70 days) all exposure treatments showed a lower maximum electron transport rate (Jmax) as compared to the control shoots (filtered air). A large reduction (45%) was observed for shoots exposed to SO2+NO2. During the exposure period between 3 and 5 months (average shoot age 70 and 140 days, respectively) a decrease of Jmax was observed for all treatments. Jmax had further declined some time after termination of the exposure, when average shoot age was 310 days. Shoots exposed to SO2 and SO2+NO2 also showed a reduction in maximum net CO2 assimilation (Pmax) as compared to the control shoots. However, shoots exposed to NO2 showed no reduction and even a higher Pmax was observed for shoots exposed to NH3 or NO2+NH3. Needles of these treatments also showed a higher chlorophyll content which might explain the contradictory results obtained for these treatments: the increased amount of photosynthetic units counteracts the reduction in Jmax and consequently no reduction in Pmax is measured. Shoots exposed to SO2 and SO2+NO2 also showed a reduction in maximum stomatal conductance (gs). However, the stomatal opening was larger than could be expected on basis of their (maximum) CO2 assimilation rate. Consequently, water use efficiency of these shoots was lower than that of the control shoots. Also shoots exposed to NO2 had a lower water use efficiency due to a significantly higher maximum gs. Shoots exposed to NH3 showed a high transpiration rate in the dark, indicating imperfect stomatal closure.  相似文献   

14.
Biosynthesis of chlorophyll is partly controlled by the phytochrome system. In order to study the effects of an activated phytochrome system on the protochlorophyllide (PChlide) biosynthesis without accompanying phototransformation to chlorophyll, wheat seedlings (Triticum aestivum L. cv. Starke II Weibull) were irradiated with long wavelength far-red light of low intensity. Absorption spectra were measured in vivo after different times in the far-red light or in darkness. The relationship between the different PChlide forms, the absorbance ratio 650nm636 nm changed with age in darkness, and the change was more pronounced when the leaves were grown in far-red light. Absorption spectra of dark-grown leaves always showed a maximum in the red region at 650 nm. For leaves grown in far-red light the absorption at 636 nm was high, with a maximum at the 5 day stage where it exceeded the absorption at 650 nm. At the same time there was a maximum in the total amount of PChlide accumulated in the leaves, about 30% more than in leaves grown in darkness. But the amount of the directly phototransformable PChlide, mainly PChlide650–657, was not increased. The amount of PChlide628–632, or more probably the amount of (PChlide628–632, + PChlide 636–657) was thus higher in young wheat leaves grown in far-red light than in those grown in darkness. After the 5 day stage the absorption at 636 nm relative to 650 nm decreased with age, and at the 8 day stage the spectra were almost the same in both types of leaves. Low temperature fluorescence spectra of the leaves also showed a change in the ratio between the different PChlide forms. The height of the fluorescence peak at 632 nm relative to the peak at 657 nm was higher in leaves grown in far-red light than in dark-grown leaves. – After exposure of the leaves to a light flash, the half time for the Shibata shift was measured. It increased with age both for leaves grown in darkness and in far-red light; but in older leaves grown in far-red light (7–8 days) the half time was slightly longer than in dark-grown leaves. – The chlorophyll accumulation in white light as well as the leaf unrolling were faster for leaves pre-irradiated with far-red light. The total length of the seedlings was equal or somewhat shorter in far-red light, but the length of the coleoptile was markedly reduced from 8.1 ± 0.1 cm for dark-grown seedlings to 5.2 ± 0.1 cm for seedlings grown in far-red light.  相似文献   

15.
The relation between light-induced electron transport with NO3?, NO2? or CO2 as acceptors, ATP pools and transients in dark-light-dark transitions, and phosphate uptake was examined in phosphorus-starved cells of Scenedesmus obtusiusculus Chod. Net O2 evolution at saturating light was around 6 μmol × (mg chlorophyll × h)?1 in the absence of any acceptor, but reached average rates of 21, 65 and 145 μmol × (mg chlorophyll × h)?1 upon additions of 5 mM KNO3, KNO2 and KHCO3, respectively. The apparent rate of photophosphorylation in transition experiments was only a few percent of the rate calculated from CO2-dependent O2 evolution. Blocking non-cyclic electron transport with DCMU inhibited phosphate assimilation, but acceleration of non-cyclic electron flow by addition of NO3? or NO2? did not stimulate phosphate assimilation as compared to the situation without an acceptor. A functional non-cyclic system might primarily be needed for an efficient shuttle transfer of ATP from the chloroplast to the cytoplasm. An inhibition of the non-cyclic system due to lack of reducible substrates accelerates the cyclic system and thus indicates a regulation mechanism between the two systems.  相似文献   

16.
Controls on chlorophyll synthesis in barley   总被引:24,自引:18,他引:6       下载免费PDF全文
In 7- to 10-day-old leaves of etiolated barley (Hordeum vulgare), all of the enzymes that convert δ-aminolevulinic acid to chlorophyll are nonlimiting during the first 6 to 12 hours of illumination, even in the presence of inhibitors of protein synthesis. The limiting activity for chlorophyll synthesis appears to be a protein (or proteins) related to the synthesis of δ-aminolevulinic acid, presumably δ-aminolevulinic acid synthetase. Protein synthesis in both the cytosol and plastids may be required to produce nonlimiting amounts of δ-aminolevulinic acid. The half-life of a limiting protein controlling the synthesis of δ-aminolevulinic acid appears to be about 1½ hours, when determined with inhibitors of protein synthesis. Acceleration of chlorophyll synthesis by light is not inhibited by inhibitors of nucleic acid synthesis, but is inhibited by inhibitors of protein synthesis. A model for control of chlorophyll synthesis is proposed, based on a light-induced activation at the translational level of the synthesis of proteins forming δ-aminolevulinic acid, as well as the short half-life of these proteins. Evidence is presented confirming the idea that the holochrome on which protochlorophyllide is photoreduced to chlorophyllide functions enzymatically.  相似文献   

17.
The pool size of protochlorophyllide in wheat leaves irradiated for 5 minutes to 6 hours was studied. Protochlorophyllide then accumulated in the dark, but the pool size of regenerated protochlorophyllide was considerably smaller in leaves irradiated for six hours than in leaves irradiated for 5 minutes. The decrease in pool size of regenerated protochlorophyllide was found to take place at the time when the chlorophyll formation had accelerated and reached the linear phase. The protochlorophyllide accumulated is the form with absorption maximum at 650 nm, which is phototransformed to chlorophyllide with maximum absorption at 684 nm. This species goes through the Shibata shift when formed even after 6 hours of irradiation. If leaves, irradiated for 1 or 6 hours, were fed with δ-amino-levulinic acid the protochlorophyllide synthesis was only 1.2 times faster in the leaves irradiated for 6 hours than in those irradiated for 1 hour. In the case of leaves fed with δ-amino-levulinic acid the absorption maximum of protochlorophyllide is at 636 nm and the absorption maximum of the chlorophyllide formed is at 672 nm.  相似文献   

18.
The kinetics of prenyl chain formation (C20 phytyl in chlorophylls, vitamin KI and α-tocopherol; C40 carotenoids and C45 in plastoquinone-9) in plastids of etiolated Hordeum seedlings was compared in continuous darkness and after far-red and white light treatments:
  • 1 Continuous far-red (via phytochrome Pfr) enhances the synthesis rate of all prenyl chains, but does practically not change the dark pattern of prenyl chain accumulation. Free C20 phytyl chains could not be detected by means of thin layer chromatography.
  • 2 White light induces a much stronger enhancement of prenyl chain formation than does far-red. It also changes the pattern of prenyl chain synthesis by a particularly strong promotion of the synthesis of phytyl chains, which get bound to chlorophyll a. The rate of chlorophyllide formation seems to determine the rate of enhanced phytyl formation.
  • 3 It is assumed that the enzyme, which esterifies chlorophyllide a with the phytyl chain, is formed or activated by far-red treatment, but only starts working in white light, when the protochlorophyllide holochrome is re-arranged to the chlorophyllide holochrome.
  相似文献   

19.
In this study, the response of N2 fixation to elevated CO2 was measured in Scirpus olneyi, a C3 sedge, and Spartina patens, a C4 grass, using acetylene reduction assay and 15N2 gas feeding. Field plants grown in PVC tubes (25 cm long, 10 cm internal diameter) were used. Exposure to elevated CO2 significantly (P < 0·05) caused a 35% increase in nitrogenase activity and 73% increase in 15N incorporated by Scirpus olneyi. In Spartina patens, elevated CO2 (660 ± 1 μ mol mol 1) increased nitrogenase activity and 15N incorporation by 13 and 23%, respectively. Estimates showed that the rate of N2 fixation in Scirpus olneyi under elevated CO2 was 611 ± 75 ng 15N fixed plant 1 h 1 compared with 367 ± 46 ng 15N fixed plant 1 h 1 in ambient CO2 plants. In Spartina patens, however, the rate of N2 fixation was 12·5 ± 1·1 versus 9·8 ± 1·3 ng 15N fixed plant 1 h 1 for elevated and ambient CO2, respectively. Heterotrophic non-symbiotic N2 fixation in plant-free marsh sediment also increased significantly (P < 0·05) with elevated CO2. The proportional increase in 15N2 fixation correlated with the relative stimulation of photosynthesis, in that N2 fixation was high in the C3 plant in which photosynthesis was also high, and lower in the C4 plant in which photosynthesis was relatively less stimulated by growth in elevated CO2. These results are consistent with the hypothesis that carbon fixation in C3 species, stimulated by rising CO2, is likely to provide additional carbon to endophytic and below-ground microbial processes.  相似文献   

20.
Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2‐fixing system. We studied the effects of Trifolium repens (an N2‐fixing legume) and Lolium perenne on soil N and C sequestration in response to 9 years of elevated CO2 under FACE conditions. 15N‐labeled fertilizer was applied at a rate of 140 and 560 kg N ha?1 yr?1 and the CO2 concentration was increased to 60 Pa pCO2 using 13C‐depleted CO2. The total soil C content was unaffected by elevated CO2, species and rate of 15N fertilization. However, under elevated CO2, the total amount of newly sequestered soil C was significantly higher under T. repens than under L. perenne. The fraction of fertilizer‐N (fN) of the total soil N pool was significantly lower under T. repens than under L. perenne. The rate of N fertilization, but not elevated CO2, had a significant effect on fN values of the total soil N pool. The fractions of newly sequestered C (fC) differed strongly among intra‐aggregate soil organic matter fractions, but were unaffected by plant species and the rate of N fertilization. Under elevated CO2, the ratio of fertilizer‐N per unit of new C decreased under T. repens compared with L. perenne. The L. perenne system sequestered more 15N fertilizer than T. repens: 179 vs. 101 kg N ha?1 for the low rate of N fertilization and 393 vs. 319 kg N ha?1 for the high N‐fertilization rate. As the loss of fertilizer‐15N contributed to the 15N‐isotope dilution under T. repens, the input of fixed N into the soil could not be estimated. Although N2 fixation was an important source of N in the T. repens system, there was no significant increase in total soil C compared with a non‐N2‐fixing L. perenne system. This suggests that N2 fixation and the availability of N are not the main factors controlling soil C sequestration in a T. repens system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号