首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital 'superbugs', as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria.  相似文献   

2.
Virus capsids mediate the transfer of viral genetic information from one cell to another, thus the origin of the first viruses arguably coincides with the origin of the viral capsid. Capsid genes are evolutionarily ancient and their emergence potentially predated even the origin of first free-living cells. But does the origin of the capsid coincide with the origin of viruses, or is it possible that capsid-like functionalities emerged before the appearance of true viral entities? We set to investigate this question by using a computational simulator comprising primitive replicators and replication parasites within a compartment matrix. We observe that systems with no horizontal gene transfer between compartments collapse due to the rapidly emerging replication parasites. However, introduction of capsid-like genes that induce the movement of randomly selected genes from one compartment to another rescues life by providing the non-parasitic replicators a mean to escape their current compartments before the emergence of replication parasites. Capsid-forming genes can mediate the establishment of a stable meta-population where parasites cause only local tragedies but cannot overtake the whole community. The long-term survival of replicators is dependent on the frequency of horizontal transfer events, as systems with either too much or too little genetic exchange are doomed to succumb to replication-parasites. This study provides a possible scenario for explaining the origin of viral capsids before the emergence of genuine viruses: in the absence of other means of horizontal gene transfer between compartments, evolution of capsid-like functionalities may have been necessary for early life to prevail.  相似文献   

3.
Genetic exchange between bacteria in the environment.   总被引:53,自引:0,他引:53  
J Davison 《Plasmid》1999,42(2):73-91
Nucleotide sequence analysis, and more recently whole genome analysis, shows that bacterial evolution has often proceeded by horizontal gene flow between different species and genera. In bacteria, gene transfer takes place by transformation, transduction, or conjugation and this review examines the roles of these gene transfer processes, between different bacteria, in a wide variety of ecological niches in the natural environment. This knowledge is necessary for our understanding of plasmid evolution and ecology, as well as for risk assessment. The rise and spread of multiple antibiotic resistance plasmids in medically important bacteria are consequences of intergeneric gene transfer coupled to the selective pressures posed by the increasing use and misuse of antibiotics in medicine and animal feedstuffs. Similarly, the evolution of degradative plasmids is a response to the increasing presence of xenobiotic pollutants in soil and water. Finally, our understanding of the role of horizontal gene transfer in the environment is essential for the evaluation of the possible consequences of the deliberate environmental release of natural or recombinant bacteria for agricultural and bioremediation purposes.  相似文献   

4.
The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.  相似文献   

5.
Insights into the evolutionary process of genome degradation   总被引:23,自引:0,他引:23  
Studies of noncoding and pseudogene sequence diversity, particularly in Rickettsia, have begun to reveal the basic principles of genome degradation in microorganisms. Increasingly, studies of genes and genomes suggest that there has been an extensive amount of horizontal gene transfer among microorganisms. As this inflow of genetic material does not seem generally to have resulted in genome size expansions, however, degenerative processes must be at the very least as widespread as horizontal gene transfer. The basic principles of gene degradation and elimination that are being explored in Rickettsia are likely to be of major importance for our understanding of how microbial genomes evolve.  相似文献   

6.
Phylogenetic trees based on gene repertoires are remarkably similar to the current consensus of life history. Yet it has been argued that shared gene content is unreliable for phylogenetic reconstruction because of convergence in gene content due to horizontal gene transfer and parallel gene loss. Here we test this argument, by filtering out as noise those orthologous groups that have an inconsistent phylogenetic distribution, using two independent methods. The resulting phylogenies do indeed contain small but significant improvements. More importantly, we find that the majority of orthologous groups contain some phylogenetic signal and that the resulting phylogeny is the only detectable signal present in the gene distribution across genomes. Horizontal gene transfer or parallel gene loss does not cause systematic biases in the gene content tree.  相似文献   

7.
横向传递是在同种或异种生物不同个体之间沿水平方向进行遗传物质的单方向转移,有多种不同的转移方式。在生物界中,遗传物质的横向传递通常是借助某种载体如病毒来完成,高等生物还可以通过有性生殖在同种生物不同个体之间或异种生物不同个体之间传递遗传物质。基因的横向传递是普遍存在的,是生物进化的重要动力之一。转基因植物是人工遗传物质横向转移的结果,人工遗传物质横向转移正在越来越明显地影响着生物的生存状态。  相似文献   

8.
Mosaic genome design, considered evidence of horizontal gene transfer, is prominent in T-even phage tail fiber genes involved in host recognition. The possibility of direct gene transfer was assessed through superinfection with two virulent phages T2 and PP01, which caused host recognition shift. Two recombinant phages designated as TPr03 and TPr04 were isolated. PCR-restriction fragment length polymorphism analysis and sequence analysis suggested that 18% of the TPr03 and 38% of the TPr04 genome derived from PP01. Both isolates showed host ranges identical to PP01. The results suggested the possibility of generating various recombinant phages by intentional dual infections and of the occasional occurrence in nature of generation of phage showing new characteristics through superinfection, followed by the genomic recombination.  相似文献   

9.
The extraordinary capacity of Agrobacterium to transfer its genetic material to host cell makes it evolve from phytopathogen to a powerful transgenic vector. Agrobacterium-mediated stable transformation is widely used as the preferred method to create transgenic plants for molecular plant biology research and crop breeding. Recent years, both mechanism and application of Agrobacterium-mediated horizontal gene transfer have made significant progresses, especially Agrobacterium-mediated transient transformation was developed for plant biotechnology industry to produce recombinant proteins. Agrobacterium strains are almost used and saved not only by each of microbiology and molecular plant labs, but also by many of plant biotechnology manufacturers. Agrobacterium is able to transfer its genetic material to a broad range of hosts, including plant and non-plant hosts. As a consequence, the concern of environmental risk associated with the accidental release of genetically modified Agrobacterium arises. In this article, we outline the recent progress in the molecular mechanism of Agrobacterium-meditated gene transfer, focus on the application of Agrobacterium-mediated horizontal gene transfer, and review the potential risk associated with Agrobacterium-meditated gene transfer. Based on the comparison between the infecting process of Agrobacterium as a pathogen and the transgenic process of Agrobacterium as a transgenic vector, we realize that chemotaxis is the distinct difference between these two biological processes and thus discuss the possible role of chemotaxis in forestalling the potential risk of Agrobacterium-meditated horizontal gene transfer to non-target plant species.  相似文献   

10.
基因水平转移的评判方法和转移方式研究进展   总被引:2,自引:0,他引:2  
李志江  李海权  刁现民 《遗传》2008,30(9):1108-1114
基因水平转移是不同物种之间或细胞器间基因的交流。基因水平转移现象在原核生物中普遍存在, 在真核生物中近年来也发现了众多例证, 说明水平转移是生物界的普遍现象。文章着重对基因水平转移的概念、评判基因水平转移的标准, 水平转移的特点和转移方式, 以及基因水平转移对基因组进化的作用等方面的研究进展进行了综述。在已有的基因水平转移研究中进化树分析法、碱基组成分析法、选择压力分析法、内含子分析法、特殊序列分析法和核苷酸组成偏向性分析法等几种是常用的方法; 转座序列是生物中最易于发生水平转移的基因类型;原核生物基因水平转移的主要方式有转化、接合和转导, 真核生物中水平转移发生方式尚不清楚。基因水平转移在基因、基因组和生物进化中有着其独特的作用。  相似文献   

11.
Horizontal gene transfer is accepted as an important evolutionary force modulating the evolution of prokaryote genomes. However, it is thought that horizontal gene transfer plays only a minor role in metazoan evolution. In this paper, I critically review the rising evidence on horizontally transferred genes and on the acquisition of novel traits in metazoans. In particular, I discuss suspected examples in sponges, cnidarians, rotifers, nematodes, molluscs and arthropods which suggest that horizontal gene transfer in metazoans is not simply a curiosity. In addition, I stress the scarcity of studies in vertebrates and other animal groups and the importance of forthcoming studies to understand the importance and extent of horizontal gene transfer in animals.  相似文献   

12.
Baculovirus-based vectors are efficient means for gene transfer into hepatocytes in vitro. However, gene transfer in vivo is hampered by inactivation of baculovirus by the complement system. In this study, we demonstrate protection of baculovirus vectors against complement-mediated inactivation through recombinant soluble complement receptor type 1 (sCR1). Blocking of only the alternative complement pathway by a mutant of sCR1 did not result in baculovirus survival in human serum. The data suggest the use of sCR1 as a potent drug to facilitate baculovirus-mediated gene transfer into hepatocytes in vivo.  相似文献   

13.
The goal of this study was to create a novel baculovirus expression system that does not require recombinant virus purification steps. Transfection of insect cells with transfer vectors containing barnase under control of the Cotesia plutellae bracovirus (CpBV) promoters ORF3004 or ORF3005 reduced cell growth. Co-transfection with bApGOZA DNA yielded no recombinant viruses and non-recombinant backgrounds. To further investigate the detrimental effects of barnase on insect cells, two recombinant bacmids harboring the barnase gene under control of the CpBV promoters, namely bAcFast-3004ProBarnase and bAcFast-3005ProBarnase, were constructed. While no viral replication was observed when only the recombinant bacmids were transfected, recombinant viruses were generated when the bacmids were co-transfected with the transfer vector, pAcUWPolh, through substitution of the barnase gene with the native polyhedrin gene by homologous recombination. Moreover, no non-recombinant backgrounds were detected from unpurified recombinant stocks using PCR analysis. These results indicate that CpBV promoters can be used to improve baculovirus expression vectors by means of lethal gene expression under the control of these promoters.  相似文献   

14.
The baculovirus expression system is one of the most popular methods used for the production of recombinant proteins but has several complex steps which have proved inherently difficult to adapt to a multi-parallel process. We have developed a bacmid vector that does not require any form of selection pressure to separate recombinant virus from non-recombinant parental virus. The method relies on homologous recombination in insect cells between a transfer vector containing a gene to be expressed and a replication-deficient bacmid. The target gene replaces a bacterial replicon at the polyhedrin loci, simultaneously restoring a virus gene essential for replication. Therefore, only recombinant virus can replicate facilitating the rapid production of multiple recombinant viruses on automated platforms in a one-step procedure. Using this vector allowed us to automate the generation of multiple recombinant viruses with a robotic liquid handler and then rapidly screen infected insect cell supernatant for the presence of secreted proteins.  相似文献   

15.
Successful host–pathogen interactions require the presence, maintenance and expression of gene cassettes called 'pathogenicity islands' (PAIs) and 'metabolic islands' (MAIs) in the respective pathogen. The products of these genes confer on the pathogen the means to recognize their host(s) and to efficiently evade host defences in order to colonize, propagate within the host and eventually disseminate from the host. Virulence effectors secreted by type III and type IV secretion systems, among others, play vital roles in sustaining pathogenicity and optimizing host–pathogen interactions. Complete genome sequences of plant pathogenic bacteria have revealed the presence of PAIs and MAIs. The genes of these islands possess mosaic structures with regions displaying differences in nucleotide composition and codon usage in relation to adjacent genome structures, features that are highly suggestive of their acquisition from a foreign donor. These donors can be other bacteria, as well as lower members of the Archaea and Eukarya. Genes that have moved from the domains Archaea and Eukarya to the domain Bacteria are true cases of horizontal gene transfer. They represent interdomain genetic transfer. Genetic exchange between distinct members of the domain Bacteria, however, represents lateral gene transfer, an intradomain event. Both horizontal and lateral gene transfer events have been used to facilitate survival fitness of the pathogen.  相似文献   

16.
Human activities have increased greenhouse gas concentrations in the atmosphere. Research has demonstrated this increased concentration will affect our climate by causing increases in temperature and altered weather patterns. The effects of climate change have been studied, including effects on some ecosystems throughout the world. There are studies that report changes in the soil due to climate change, but many did not extend their research to the microorganisms that inhabit soils. In our analysis of soil microorganisms that may be affected by climate change, two microbial outcomes emerged as having particular ecological and societal importance. Perturbations in the soil environment could lead to community shifts and altered metabolic activity in microorganisms involved in soil nutrient cycling, and to increasing or decreasing survival and virulence of soil-mediated pathogenic microorganisms. Alterations in CO2 concentrations and temperature may alter soil respiration, soil carbon dynamics, and microbial community structure. Microbial-mediated processes that play an important role in the nitrogen cycle may also be influenced as a result of climate change. The potential for an increase in frequency of horizontal gene transfer due to changing climatic factors is of concern due to possible evolutionary changes in soil-borne pathogen populations, including the spread of virulence factors and genes that aid in environmental survival. We suggest that soil microbial communities in temperate agricultural systems continue to be researched for alterations to community structure, specifically the increase or decrease of soil activity and respiration, nitrification and denitrification, pathogen survival and alterations to horizontal gene transfer.  相似文献   

17.
Various neuroprotective factors have been shown to help prevention of neuronal cell death, which is responsible for the progression of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, most of these therapeutic potentials have been tested by administration of recombinant proteins, transgenic expression or virus vector-mediated gene transfer. Therefore, it remains to be clarified whether any endogenous factors has advantage for neuroprotection in a pathological nervous system. Here we show the role of BAFF-R signaling pathway in the control of neural cell survival. Both B cell–activating factor (BAFF) and its receptor (BAFF-R) are expressed in mouse neurons and BAFF-R deficiency reduces the survival of primary cultured neurons. Although many studies have so far addressed the functional role of BAFF-R on the differentiation of B cells, impaired BAFF-R signaling resulted in accelerated disease progression in an animal model of inherited ALS. We further demonstrate that BAFF-R deficient bone marrow cells or genetic depletion of B cells does not affect the disease progression, indicating that BAFF-mediated signals on neurons, not on B cells, support neural cell survival. These findings suggest opportunities to improve therapeutic outcome for patients with neurodegenerative diseases by synthesized BAFF treatment.  相似文献   

18.

Background  

Natural acquisition of novel genes from other organisms by horizontal or lateral gene transfer is well established for microorganisms. There is now growing evidence that horizontal gene transfer also plays important roles in the evolution of eukaryotes. Genome-sequencing and EST projects of plant and animal associated nematodes such as Brugia, Meloidogyne, Bursaphelenchus and Pristionchus indicate horizontal gene transfer as a key adaptation towards parasitism and pathogenicity. However, little is known about the functional activity and evolutionary longevity of genes acquired by horizontal gene transfer and the mechanisms favoring such processes.  相似文献   

19.
The deliberate or accidental release of genetically engineered microorganisms (GEMs) in the environment has led to some questions concerning microbial survival, transfer of DNA to the indigenous microflora and environmental consequences. Amongst horizontal gene transfer mechanisms, conjugation is probably the most frequent in the environment. With the aim of evaluating risks associated with environmental release of GEMs and their engineered DNA, studies of conjugative gene transfer between a donor strain and indigenous microflora have been conducted. Such studies required the development of a donor counterselection system to prevent growth of donor cells on transconjugant selective plates. This review summarizes the known and potential donor counterselection systems.  相似文献   

20.
水平基因转移是不同于垂直基因转移的遗传物质的交流方式.在污染环境这一特异生态环境中,降解基因的水平转移有着独特的功能与作用.研究环境中污染物降解基因在微生物间的水平转移,更深入地了解微生物种群适应污染环境的机理,对于评价污染物的环境毒理、生物可降解性以及污染环境的可修复潜力具有重要参考价值.在污染物生物修复实践中,可以通过调控降解基因的水平转移,增强污染环境中微生物的降解能力,更有效地发挥生物修复作用.文章将对环境中细菌间基因交流的机制,污染物降解基因的水平转移对微生物适应污染环境的机理、水平基因转移对代谢途径的进化及其对污染物生物修复作用的影响等方面的研究进展做一综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号