首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compound P1-(5'-adenosyl)-P2-N-(2-mercaptoethyl)diphosphoramidate (AMEDA) was synthesized as an ATP analogue for in situ reaction with the 4-nitro-2,1,3-[14C]benzoxadiazolyl group (NBD) in the labeled F1-ATPase (F1). AMEDA was found to reactivate O-[14C]NBD-F1 via a dual-path mechanism. The principal path involves the binding of AMEDA at a site in F1 with Kd = 14.5 microM and subsequent reaction with the [14C]NBD label. The second slower path involves the direct biomolecular reaction of AMEDA with the radioactive label on F1. The rate of reactivation of O-[14C]NBD-F1 by AMEDA was decreased by ADP or ATP which competes with the ATP analogue for binding to the labeled enzyme. The reaction product was found to contain one adenine group, two phosphate groups, and one [14C]NBD label per molecule as expected from the structure of the compound AMEDA-[14C]NBD. Purified AMEDA-[14C]NBD was found to bind to unlabeled F1 with Kd = 2 microM. These observations demonstrate the in situ reaction of bound AMEDA with the nearby [14C]NBD label attached to Tyr-beta 311 and support the assumed presence of Tyr-beta 311 near the phosphate groups of ATP bound at the hydrolytic site of F1-ATPase. The possible locations of Tyr-beta 364, His-beta 427, and Tyr-beta 345 relative to Tyr-beta 311 in F1 are discussed, and the validity of the previously proposed model for F1-ATPase with one hydrolytic site assisted by two auxiliary sites is examined and compared with that of the widely accepted alternating sites model.  相似文献   

2.
J H Wang  J Cesana  J C Wu 《Biochemistry》1987,26(17):5527-5533
Bovine heart F1-adenosinetriphosphatase (F1) was labeled specifically and precisely with 7-chloro-4-nitro-2,1,3-[14C]benzoxadiazole ([14C]NBD-Cl). The stereospecifically labeled F1 (O-beta'-[14C]-NBD-F1) was partially reactivated by LiCl treatment, which could cause rearrangement of the beta subunits to form O-beta', beta'-[14C]NBD-F1. Both labeled enzymes were used to combine with F1-deficient submitochondrial particles (ASU) to form the reconstituted particles O-beta'-NBD-F1-ASU and O-beta', beta'-NBD-F1-ASU, respectively. A comparison of the observed steady-state rates of catalytic ATP hydrolysis and oxidative phosphorylation by these specifically labeled submitochondrial particles (SMP) with those of the unlabeled control samples suggests that oxidative phosphorylation involves more active sites of F1 than catalytic ATP hydrolysis. A comparison of the observed ATPase activity of uncoupled labeled SMP and the activity for ATP-driven reverse electron transport in coupled labeled SMP with the corresponding values of the unlabeled control samples shows that the observed fractional inhibition ATP hydrolysis is the same for both the coupled SMP and uncoupled SMP and is determined only by the state of stereospecific labeling of F1. The effect of preincubation under simulated oxidative phosphorylation conditions on the ATPase activity of the unperturbed, specifically NBD-labeled submitochondrial particles was also examined. The data show that respiration-generated proton flux does not cause the beta subunits in bovine heart proton-ATPase to continue switching places with each other during oxidative phosphorylation. Samples of NBD-F1 with specific labels on its nonhydrolytic beta' subunits but none on its hydrolytic beta' subunit were prepared by a three-cycle process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The catalytically active alpha 3 beta 3 complex, assembled as described (Miwa, K., and Yoshida, M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 6484-6487) from the isolated alpha and beta subunits of the F1-ATPase of the thermophilic bacterium PS3 (TF1), is inactivated by 7-chloro-4-nitrobenzofurazan (Nbf-Cl) with characteristics very similar to those observed when TF1, which has the subunit composition, alpha 3 beta 3 gamma delta epsilon, is inactivated by the reagent under the same conditions. Both native TF1 and the alpha 3 beta 3 complex are inactivated by 200 microM Nbf-Cl with a pseudo-first order rate constant of 3.7 x 10(-2) min-1 in the presence of 0.2 M Na2SO4 at pH 7.6 and 23 degrees C. The rate of increase in absorbance at 385 nm of reaction mixtures containing 200 microM [14C]Nbf-Cl and TF1, the wild-type alpha 3 beta 3 complex, or the mutant alpha 3(beta Y307----F)3 complex, each at 18 microM was also examined. Since the alpha 3(beta y307----F)3 complex is resistant to inactivation by Nbf-Cl, difference spectrophotometry revealed that inactivation of native TF1 and the wild-type alpha 3 beta 3 complex could be correlated with formation of about 1 mol of Nbf-O-Tyr/mol of enzyme or complex. Fractionation of peptic digests of the labeled enzyme and complexes by reversed-phase high performance liquid chromatography resolved a major radioactive peptide that was common to labeled TF1 and the labeled alpha 3 beta 3 complex but was absent in the digest of the labeled alpha 3(beta Y307----F)3 complex. This labeled peptide was shown to contain Tyr-beta 307 derivatized with [14C]Nbf-Cl by automatic amino acid sequence analyses. From these results, it is concluded that one-third of the sites' reactivity of Nbf-Cl with Tyr-beta 307 in TF1 or its equivalent in other F1-ATPases is not influenced by the presence of the gamma, delta, or epsilon subunits. It has also been shown that Tyr-307 is not modified to an appreciable extent when the isolated beta subunit is treated with [14C]Nbf-Cl under conditions in which this residue is nearly completely labeled in a single beta subunit when TF1 or the alpha 3 beta 3 complex is inactivated by the reagent.  相似文献   

4.
Tyrosine residues 311 and 345 of the beta subunit of the bovine heart mitochondrial F1-ATPase (MF1) are present on the same peptide when the enzyme is fragmented with cyanogen bromide. Maximal inactivation of MF1 with 7-chloro-4-nitro[14C]benzofurazan [( 14C]Nbf-Cl) derivatizes tyrosine-311 in a single beta subunit. Cyanogen bromide digests of MF1 containing the [14C]Nbf-O-derivative of tyrosine-beta 311 were submitted to reversed-phase HPLC, with and without prior reduction of the nitro group on the incorporated reagent with dithionite. The retention time of the radioactive cyanogen bromide peptide was shifted substantially by reduction. When a cyanogen bromide digest of MF1 inactivated with 5'-p-fluorosulfonylbenzoyl[3H]inosine [( 3H]FSBI), which proceeds with derivatization of tyrosine-345 in a single beta subunit, was submitted to HPLC under the same conditions, the fragment labeled with 3H eluted with the same retention time as the [14C]Nbf-O-derivative before reduction. Doubly labeled enzyme was prepared by first derivatizing Tyr-beta 311 with [14C]Nbf-Cl and then derivatizing tyrosine-beta 345 with [3H]FSBI with and without reducing the [14C]Nbf-O-derivative of tyrosine-beta 311 with dithionite before modification with [3H]FSBI. The doubly labeled enzyme preparations were digested with cyanogen bromide and submitted to HPLC. The 14C and 3H in the cyanogen bromide digest prepared from doubly labeled enzyme not submitted to reduction eluted together. In contrast, the 14C and 3H in the digest prepared from doubly labeled enzyme which had been reduced eluted separately. From these results it is concluded that different beta subunits are derivatized when MF1 is doubly labeled with [14C]Nbf-Cl and [3H]FSBI.  相似文献   

5.
A Y Woody  C R Vader  R W Woody  B E Haley 《Biochemistry》1984,23(13):2843-2848
A photoaffinity analogue of adenosine 5'-triphosphate (ATP), 8-azidoadenosine 5'-triphosphate (8-N3ATP), has been used to elucidate the role of the various subunits involved in forming the active site of Escherichia coli DNA-dependent RNA polymerase. 8-N3ATP was found to be a competitive inhibitor of the enzyme with respect to the incorporation of ATP with Ki = 42 microM, while uridine 5'-triphosphate (UTP) incorporation was not affected. UV irradiation of the reaction mixture containing RNA polymerase and [gamma-32P]-8-N3ATP induced covalent incorporation of radioactive label into the enzyme. Analysis by gel filtration and nitrocellulose filter binding indicated specific binding. Subunit analysis by sodium dodecyl sulfate and sodium tetradecyl sulfate gel electrophoresis and autoradiography of the labeled enzyme showed that the major incorporation of radioactive label was in beta' and sigma, with minor incorporation in beta and alpha. The same pattern was observed in both the presence and absence of poly[d(A-T)] and poly[d(A-T)] plus ApU. Incorporation of radioactive label in all bands was significantly reduced by 100-150 microM ATP, while 100-200 microM UTP did not show a noticeable effect. Our results indicate major involvement of the beta' and sigma subunits in the active site of RNA polymerase. The observation of a small extent of labeling of the beta and alpha subunits, which was prevented by saturating levels of ATP, suggests that these subunits are in close proximity to the catalytic site.  相似文献   

6.
The bovine heart mitochondrial F1-ATPase (MF1) is inactivated by 5'-p'-fluorosulfonylbenzoyl-8-azidoadenosine (8-N3-FSBA) with an apparent Kd of 0.47 mM at pH 8.0 and 23 degrees C in the absence of light. Irradiation of dark-inactivated enzyme with long-wavelength UV light produced cross-linked dimers and, to a lesser extent, trimers made up of alpha and beta subunits. Two major radioactive peptides were resolved by high-performance liquid chromatography from tryptic digests of MF1 which had been inactivated with 8-N3-FSB[3H]A at pH 8.0 in the dark. Sequence analysis revealed that one contained Tyr-beta 368 and the other contained His-beta 427 which were labeled in the ratio of 18:15. Sequence analysis of radioactive tryptic peptides isolated from digests of irradiated MF1 derivatized with 8-N3-FSB[3H]A showed that photolysis induced cross-linking of His-427 to Tyr-345 within the same beta subunit in high yield. When MF1 derivatized with 8-N3-FSB[3H]A was irradiated in the presence of beta-mercaptoethanol, alpha-beta cross-links were eliminated, whereas those between His-beta 427 and Tyr-beta 345 were unaffected. Analysis of radioactive peptides in tryptic digests of MF1 derivatized with 8-N3-FSB[3H]A and then irradiated in the presence or absence of beta-mercaptoethanol showed that the nitrene generated from reagent attached to Tyr-beta 368 participates in formation of alpha-beta cross-links in the absence of beta-mercaptoethanol. Therefore, the nitrene generated from reagent tethered to His-beta 427 is shielded from solvent and reacts with the side chain of Tyr-beta 345. In contrast, the nitrene generated from reagent attached to Tyr-beta 368 is exposed to solvent, but in the absence of scavengers reacts with side chains present in the alpha subunit. Irradiation of MF1, partially inactivated with 8-N3-FSBA, led to loss of residual ATPase activity without affecting residual ITPase activity. The amount of photoinactivation was greater when partial dark inactivation was performed at pH 6.9, where modification of His-beta 427 predominates, than when performed at pH 8.0, where modification of Tyr-beta 368 predominates. This suggests that cross-linking of His-beta 427 to Tyr-beta 345, and not cross-linking of alpha and beta subunits, is responsible for the augmented inactivation induced by irradiation.  相似文献   

7.
8.
L H DeRiemer  C F Meares 《Biochemistry》1981,20(6):1612-1617
The photoaffinity probes beta-(4-azidophenyl) adenosine 5'-diphosphate (N3PhppA) and beta-(4-azidophenyl) adenylyl-(3'--5')-uridine 5'-diphosphate (N3PhppApU) were used to determine the RNA polymerase subunit contacts made by the 5' ends of three nascent RNA chains. Ternary enzyme-poly[d(A-T)].oligonucleotide complexes were prepared in which the nascent oligonucleotide contained a photoaffinity label at the 5' end and a 32P radiolabel only at the 3' end. The length of the RNA was fixed at two, three, or four nucleotides. Photolysis of the ternary complexes was followed by dissociation, polyacrylamide gel electrophoresis, autoradiography, and scintillation counting. With a dinucleotide probe, the enzyme subunits labeled were beta' (71%) and sigma (21%). Photolysis of the ternary complex containing trinucleotide RNA also resulted in labeling of the beta' (64%) and sigma (35%) subunits. With a tetranucleotide, the beta' subunit was very heavily labeled (88%), and a small amount of labeling of the beta (7%) and sigma (4%) subunits was observed. The alpha subunit was not labeled with any of the probes. These results imply that a conformational change, possibly involving dissociation of the sigma subunit, occurs in the enzyme as the ribonucleotide is elongated from a tri- to a tetranucleotide.  相似文献   

9.
Monoclonal antibodies (mAbs) raised against the beta' subunit of the Escherichia coli RNA polymerase were used to probe the structure and function of this subunit. Of the five anti-beta' monoclonal antibodies studied, only mAb 311G2 is a strong inhibitor of RNA polymerase activity. This antibody binds to an epitope which is exposed in both the assembled holoenzyme and isolated beta' subunit. In contrast, the null antibodies bind to the free beta' subunit but very weakly to native RNA polymerase. It would appear that the beta' domain in which their epitopes reside is either conformationally altered or blocked due to interaction with other subunits in native RNA polymerase. In order to locate the positions of the epitopes for these five monoclonal antibodies, a series of overlapping deletion mutants have been constructed by partial restriction and religation of the beta' gene present in pT7 beta' (Zalenskaya, K., Lee, J., Gujuluva, C. N., Shin, Y. K., Slutsky, M., nd Goldfarb, A. (1990) Gene 89, 7-12). The presence of the epitopes for each of the anti-beta' monoclonal antibodies was assessed by Western blotting. The results indicate that the epitopes for mAb 340F11, mAb 370F3, mAb 371D6, and mAb 372B2 are located between amino acids 817-876. This region may be important in enzyme assembly or subunit-subunit interaction. The epitope for the inhibitory antibody, mAb 311G2, is located between amino acids 1047-1093. This region may be involved in the catalytic function of RNA polymerase.  相似文献   

10.
1. 8-Azido-adenosine 5'-triphosphate (n83ATP) is a suitable photoaffinity label for F1 ATPase from Micrococcus luteus. The nucleotide is a substrate in the presence of bivalent cations and inhibits the enzyme irreversibly upon irradiation with ultraviolet light above 300 nm. 2. More than 80% of the label is covalently bound to the beta subunits in the presence of bivalent cations. Labeling and inactivation is decreased by protection with ADP, ATP or adenyl-5'-yl imidodiphosphate. To a much smaller degree the alpha subunits also become labeled. 3. n83AMP does not specifically bind to the beta subunits upon irradiation. Like n83ATP and n83ADP, it also labels the alpha subunits to a small extent. 4. The F1 ATPase is inactivated after a single beta subunit per F1 complex has become labeled. A cooperativity of the beta subunits carrying nucleotide binding sites is suggested.  相似文献   

11.
F Boulay  P Dalbon  P V Vignais 《Biochemistry》1985,24(25):7372-7379
2-Azidoadenosine 5'-diphosphate (2-azido-ADP) labeled with 32P in the alpha-position was prepared and used to photolabel the nucleotide binding sites of beef heart mitochondrial F1-ATPase. The native F1 prepared by the procedure of Knowles and Penefsky [Knowles, A. F., & Penefsky, H. S. (1972) J. Biol. Chem. 247, 6617-6623] contained an average of 2.9 mol of tightly bound ADP plus ATP per mole of enzyme. Short-term incubation of F1 with micromolar concentrations of [alpha-32P]-2-azido-ADP in the dark in a Mg2+-supplemented medium resulted in the rapid supplementary binding of 3 mol of label/mol of F1, consistent with the presence of six nucleotide binding sites per F1. The Kd relative to the reversible binding of [alpha-32P]-2-azido-ADP to mitochondrial F1 in the dark was 5 microM in the presence of MgCl2 and 30 microM in the presence of ethylenediaminetetraacetic acid. A linear relationship between the percentage of inactivation of F1 and the extent of covalent photolabeling by [alpha-32P]-2-azido-ADP was observed for percentages of inactivation up to 90%, extrapolating to 2 mol of covalently bound [alpha-32P]-2-azido-ADP/mol of F1. Under these conditions, only the beta subunit was photolabeled. Covalent binding of one photolabel per beta subunit was ascertained by electrophoretic separation of labeled and unlabeled beta subunits based on charge differences and by mapping studies showing one major radioactive peptide segment per photolabeled beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In this study 3'-O-[3-(4-azido-2-nitrophenyl)propionyl]-ADP was used as a photoaffinity analog for nucleotide binding sites on nucleotide-depleted F1-ATPase. Catalytic and binding properties of the labeled enzyme were investigated. The analog behaves as a competitive inhibitor in the dark (Ki = 50 microM). Photoirradiation of F1 in the presence of the analog leads to inactivation depending linearly on the incorporation of label. Complete inactivation is achieved at a stoichiometry of 3 mol/mol F1. The label is distributed between alpha and beta subunits in a ratio of 30%:70%. Although three sites were blocked covalently by photolabeling, three reversible sites of much higher affinity than the labeled sites were preserved. Mild alkaline treatment of photoinactivated enzyme leads to almost complete reactivation which is due to hydrolysis of the 3'-ester bond and release of the ADP moiety from the covalently bound analog. The conclusions drawn are as follows. The total number of sites which can be simultaneously occupied by nucleotides on F1 is six. Adopting the finding [Grubmeyer, C. & Penefsky, H. S. (1981) J. Biol. Chem. 256, 3718-3727] that the high-affinity sites are the catalytic ones which can be covalently labeled by 3'-O-[5-azidonaphthoyl(1)]-ADP [Lübben, M., Lücken, U., Weber, J. & Sch?fer, G. (1984) Eur. J. Biochem. 143, 483-490], it appears likely that azidonitrophenylpropionyl-ADP is a specific photolabel for the lower-affinity sites on nucleotide-depleted F1. This means that both types of sites can be differentiated by specific photoaffinity analogs. The labeled low-affinity sites interact with the catalytic sites, abolishing enzyme turnover, when steadily occupied by ADP kept in place by the covalently linking residue, which by itself has no inhibitory effect on the enzyme.  相似文献   

13.
The asymmetric chloronicotinyl insecticide, 1-[1-(6-chloro-3-pyridyl)ethyl]-2-nitroiminoimidazolidine, was prepared, and the absolute configurations of the enantiomers were determined by an X-ray analysis. The insecticidal activity against the housefly measured with metabolic inhibitors showed the (S) enantiomer to be slightly more active than the (R) isomer. Electrophysiological measurements on the American cockroach central nerve cord showed the compounds to elicite the impulses and subsequently blocked them. The neuroblocking potency of the (S) isomer was 5.9 microM, while that of the (R) isomer was as high as 73 microM. The molar concentrations required for 50% inhibition of the specific binding of [3H]imidacloprid to the housefly head membrane preparation were respectively 0.19 microM and 0.95 microM for the (S) and (R) isomers. This enatioselectivity ratio was smaller than 35 for nicotine isomers but greater than 2 for epibatidine isomers.  相似文献   

14.
Clathrin in coated vesicles is linked to transmembrane receptors by adaptor protein complexes. The Golgi-associated adaptor complex HA1 is a tetramer, made up of beta', gamma, 47-kDa, and 20-kDa subunits, whereas the tetrameric plasma membrane adaptor, HA2, contains alpha, beta, 50-kDa, and 16-kDa subunits (Ahle, S., Mann, A., Eichelsbacher, U., and Ungewickell, E. (1988) EMBO J. 7, 919-929). Here we report on the structural organization of adaptor subunits as revealed by proteolytic dissection. We show that the beta' and gamma subunits of HA1 are cleaved into 60-67-kDa "trunk" and 32-44-kDa "head" fragments. Interactions between adaptor subunits involve the trunk domains only. In overall organization of their domains, the Golgi and plasma membrane adaptors are very similar. The similarity encompasses also the location of phosphorylated serine residues in the alpha a, beta, beta', and gamma subunits, which are found in the head domains in all cases. In the alpha a and beta subunits they probably occur in the proline- and glycine-rich hinge region, which connects the head to the trunk. Identical adaptor fragments were obtained by controlled digestion of clathrin-coated vesicles. Under conditions that did not affect the integrity of the clathrin heavy chain, the adaptor head fragments were always quantitatively released from coated vesicles. The release of the bulk of the adaptors occurred concomitantly with the cleavage of their beta-type subunits (beta and beta') and under buffer conditions that prevent aggregation of adaptors. These observations taken together with the results of reconstitution experiments confirm and extend previous data (Ahle, S., and Ungewickell, E. (1989) J. Biol. Chem. 264, 20089-20093) which suggested that adaptors attach to clathrin through their beta-type (beta and beta') subunits. Moreover, high affinity interaction between adaptors and clathrin requires the participation of regions from both the head and trunk domains of the beta-type subunits.  相似文献   

15.
The technique of photolabeling of membrane proteins with arylazidophospholipids was applied to cytochrome c oxidase. The "deep" and "shallow" labels employed reacted with all subunits of cytochrome c oxidase except V and VI: Subunits I, III, and VII were heavily labeled, Subunit II was labeled to a lesser extent, and Subunit IV was poorly labeled. Subunit I was labeled more by the deep label and Subunit VII by the shallow one. The other subunits were equally labeled by the two probes. This technique has revealed what subunits of cytochrome c oxidase interact with the lipid and their approximate position in the membrane.  相似文献   

16.
Functionally distinct beta subunits in F1-adenosinetriphosphatase   总被引:1,自引:0,他引:1  
A method has been developed for the effective inactivation of bovine heart mitochondrial F1-ATPase (MF1) by partially dissociating its subunits with 3 M LiCl at 0 degree C and for the subsequent partial restoration of its ATPase activity by making the subunits reassociate upon the removal of LiCl by centrifugal gel filtration at room temperature through Sephadex G-25-80 which has been pre-equilibrated with buffer containing 3 mM ATP. When covalently labeled MF1 with approximately one 7-[4-nitro-2,1,3-benzoxadiazole] label/MF1 was subjected to this type of partial dissociation-reassociation treatment, its ATPase activity could be increased from 1.48 to 18.0 mumol of ATP min-1 mg-1 without losing the covalent label. The experimental results are incompatible with models for F1-ATPase with either 3 or 2 equivalent alternating catalytic sites, but are consistent with the model with 1 active catalytic site and 2 interacting regulatory sites.  相似文献   

17.
Z Hillel  C W Wu 《Biochemistry》1977,16(15):3334-3342
The quaternary structures of Escherichia coli DNA-dependent RNA polymerase holenzyme (alpha 2 beta beta' sigma) and core enzyme (alpha 2 beta beta') have been investigated by chemical cross-linking with a cleavable bifunctional reagent, methyl 4-mercaptobutyrimidate, and noncleavable reagents, dimethyl suberimidate and N,N'-(1,4-phenylene)bismaleimide. A model of the subunit organization deduced from cross-linked subunit neighbors identified by dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the large beta and beta' subunits constitute the backbone of both core and holoenzyme, while sigma and two alpha subunits interact with this structure along the contact domain of beta and beta' subunits. In holoenzyme, sigma subunit is in the vicinity of at least one alpha subunit. The two alpha subunits are close to each other in holoenzyme, core enzyme, and the isolated alpha 2 beta complex. Cross-linking of the "premature" core and holoenzyme intermediates in the in vitro reconstitution of active enzyme from isolated subunits suggests that these species are composed of subunit complexes of molecular weight lower than that of native core and holoenzyme, respectively. The structural information obtained for RNA polymerase and its subcomplexes has important implications for the enzyme-promoter recognition as well as the mechanism of subunit assembly of the enzyme.  相似文献   

18.
The rpoC1 ts mutation affecting the RNA polymerase beta' subunit accelerates synthesis of RNA polymerase beta beta' subunits at 42 degrees C, while the surplus amount of subunits degrades in an hour's time. In a Ts strain with two RNA polymerase mutations, rpoC1 and rpoB251, we obtained a ts+ reversion designated opr24 which slows down degradation of surplus beta beta' subunits. The slowing down of degradation and the resulting accumulation of beta beta' subunits does not affect the kinetics of beta beta' subunit synthesis after the transfer to 42 degrees C. The effects of the opr24 are allele non-specific. The mutation also slows down degradation of beta' subunit and the amber fragment of beta subunit in the strain with subunit amber mutation rpoB22. Besides, the opr24 mutation reduces proteolysis of anomalous proteins containing canavanine. The opr24 mutation has been mapped between 17 and 21 minutes on the Escherichia coli map.  相似文献   

19.
The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl)ADP ether (FDNP-ADP) and 3'-O-(5-fluoro-2,4-dinitrophenyl)ATP ether (FDNP-ATP) were synthesized and characterized. FDNP[14C]ADP was found to label the active site of mitochondrial F1-ATPase slowly at room temperature but with high specificity. F1 was effectively protected from the labeling reagent by ATP or ADP. An average number of 1.3 covalent label per F1 is sufficient for 100% inhibition of the ATPase. About 73% of the radioactive label was found covalently attached to beta subunits, 9% on alpha, practically none on gamma, delta, and epsilon. Cleavage of the labeled enzyme by pepsin and sequencing of the major radioactive peptide showed that the labeled amino acid residue in beta subunit was Lys beta 162. These results show that Lys beta 162 is indeed at the active site of F1 as assumed in the recently proposed models (Fry, D. C., Kuby, S. A., and Mildvan, A. S. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 907-911; Duncan, I. M., Parsonage, D., and Senior, A. E. (1986) FEBS Lett. 208, 1-6).  相似文献   

20.
The photoreactive nucleotides [2-3H]8-azido-ATP and [2-3H]8-azido-ADP could be used to label the nucleotide binding sites on isolated mitochondrial F1-ATPase to a maximum of 4 mol of nucleotide per mol F1, also when the F1 was depleted of tightly bound nucleotides. At a photolabel concentration of 300-1000 microM, label was found on both alpha and beta subunits in a typically 1:3 ratio, independent of the total amount bound. Under these conditions the covalent binding of two nucleotides is needed for full inactivation (Wagenvoord, R.J., Van der Kraan, I. and Kemp, A. (1977) Biochim. Biophys. Acta 460, 17-24). At lower concentrations of [2-3H]8-azido-ATP (20 microM), it was found that covalent binding of only 1 mol of nucleotide per mole F1 was required for complete inactivation to take place indicating catalytic site cooperativity in the mechanism of ATP hydrolysis. Under those conditions, radioactivity was only found on the beta subunits, which would indicate that the catalytic site is located on a beta subunit and that a second site is located on the alpha/beta interface. It is found that four out of the six nucleotide binding sites are exchangeable and can be labelled with 8-azido-AT(D)P, i.e., two catalytic sites and two non-catalytic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号