首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The alkylation of cysteine residue by different classes of carbonium ions, derived from the cleavage of side chain protective groups in anhydrous HF, was investigated. It was found that side chain protection as beta-2,4-dimethylpent-3-yl ester (Dmp) or 2,4-dimethylpent-3-yloxycarbonyl (Doc) groups resulted in more than seven-fold lower level of alkylated byproducts. This makes Dmp and Doc protection of amino acid side chain during solid phase synthesis particularly valuable in the synthesis of peptides containing cysteine residues or other functional groups prone to alkylation by carbonium ions.  相似文献   

2.
Vig BS  Murray TF  Aldrich JV 《Biopolymers》2003,71(6):620-637
Novel N-terminus-to-side-chain cyclic analogs of the opioid peptide dynorphin (Dyn) A-(1-11)NH(2) were prepared that retain the basicity of the N-terminal amine and restrict the backbone conformation around the important Tyr(1) residue. Cyclic peptides were synthesized in which the N-terminal amine and the N(epsilon)-amine of a Lys at position 3 or 5 were attached to the alpha-carbon and carbonyl of an acetyl group, respectively. Several synthetic strategies were explored with detailed analysis of the side reactions in order to obtain the desired cyclic peptides. One of the side reactions observed involved premature loss of the N-terminal 9-fluorenylmethoxycarbonyl (Fmoc) group during the neutralization step following deprotection of the Mtt (4-methyltrityl) protecting group from the side chain of Lys. The successful strategy involved the synthesis of the linear peptide up through Gly(2) and functionalization through the N(epsilon)-amine of Lys. A linear N-terminal alkylated analog was prepared by alkylation of the peptide on the resin with an equimolar amount of bromoacetamide, followed by treatment of the peptide with Fmoc-OSu prior to cleavage from the resin to facilitate separation by reversed phase high performance liquid chromatography of unreacted peptide from the desired alkylated product. The novel N-terminal cyclic Dyn A analogs and the linear analog were evaluated for their opioid receptor affinities. These peptides exhibited large losses in affinity for opioid receptors; the low affinity of the linear N-terminal alkylated peptide suggested that the alpha-acetamide group on the N-terminal amine resulted in unfavorable interactions with opioid receptors.  相似文献   

3.
1. Propylene oxide reacts with DNA in aqueous buffer solution at about neutral pH to yield two principal products, identified as 7-(2-hydroxypropyl)guanine and 3-(2-hydroxypropyl)adenine, which hydrolyse out of the alkylated DNA at neutral pH values at 37 degrees C. 2. These products were obtained in quantity by reactions between propylene oxide and guanosine or adenine respectively. 3. The reactions between propylene oxide and adenine in acetic acid were parallel to those between dimethyl sulphate and adenine in neutral aqueous solution; the alkylated positions in adenine in order of decreasing reactivity were N-3, N-1 and N-9. A method for separating these alkyladenines is described. 4. Deoxyguanylic acid sodium salt was alkylated at N-7 by propylene oxide in neutral aqueous solution. 5. The nature of the side chain in the principal alkylation products was established by mass spectrometry, and the nature of the products is consistent with their formation by the bimolecular reaction mechanism.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) are a large class of organic chemicals typically found as mixtures in the aquatic environment from natural, petrogenic, and pyrogenic sources. People can be exposed to PAHs through ingestion or dermal contact with contaminated sediments or through ingestion of finfish and shellfish exposed to contaminated sediments. Although more than 100 PAHs have been identified, human exposure and risk are commonly evaluated for 18 individual PAHs. Other PAHs, such as alkylated PAHs, likely contribute to biological activity of environmental PAH mixtures; however, insufficient toxicity data are available to quantify their potential risk. This article presents an initial evaluation of the potential for human health risk from exposure to alkylated PAHs in sediment and fish. Individual alkylated PAHs have been observed to have potentially mutagenic, tumor-promoting, or carcinogenic activity. However, except for 1-and 2-methylnaphthalene, insufficient toxicity data are available to quantify toxicity or cancer risk from exposure to individual alkylated PAHs or mixtures of alkylated PAHs. This article describes a proposed strategy to better understand the potential human health risk from exposure to alkylated PAHs. Implementation of this strategy will contribute to evaluations of human exposure to complex PAH mixtures in the environment.  相似文献   

5.
Abstract

A number of acyclic nucleosides have been prepared. 5-substituted-6-azauracils were persilylated with HMDS and then alkylated with aliphatic side chains e.g., (2-acetoxyethoxy)methyl bromide, 1,3-dibenzuloxy-2-chloromethoxypropane, (1-benzyloxy-3-phthalimido-2-propoxy)methyl chloride, and 1-benzyloxy-2-chloro-methoxybutane to yield protected acyclic nucleosides which were deprotected by Lewis acid or palladium to give various 6-azauracil acyclonucleosides.  相似文献   

6.
T P Brent 《Biochemistry》1979,18(5):911-916
A DNA glycosylase was purified about 30-fold from cultured human lymphoblasts (CCRF-CEM line) and was found to cleave 3-methyladenine from DNA alkylated with methyl methanesulfonate. The enzyme did not promote the release of 1-methyladenine, 7-methyladenine, or 7-methylguanine from DNA nor did it act on denatured methylated DNA. It produced apurinic sites in DNA alkylated with N-methyl-N-nitrosourea and ethyl methane-sulfonate as well as methyl methanesulfonate but not in untreated DNA or in DNA alkylated with nitrogen mustard or irradiated with ultraviolet light or X-rays. The glycosylase was free of detectable endonuclease activity in experiments with untreated DNA or DNA exposed to ultraviolet light; low levels of endonuclease activity, obtained when X-irradiated, alkylated, or depurinated DNA was the substrate, were attributed to contaminant apurinic endonuclease activity. This 3-methyladenine-DNA glycosylase has an estimated molecular weight of 34,000, is not dependent on divalent metal ions, and shows optimal activity at pH 7.5--8.5.  相似文献   

7.
The specific recognition mechanisms of DNA repair glycosylases that remove cationic alkylpurine bases in DNA are not well understood partly due to the absence of structures of these enzymes with their cognate bases. Here we report the solution structure of 3-methyladenine DNA glycosylase I (TAG) in complex with its 3-methyladenine (3-MeA) cognate base, and we have used chemical perturbation of the base in combination with mutagenesis of the enzyme to evaluate the role of hydrogen bonding and pi-cation interactions in alkylated base recognition by this DNA repair enzyme. We find that TAG uses hydrogen bonding with heteroatoms on the base, van der Waals interactions with the 3-Me group, and conventional pi-pi stacking with a conserved Trp side chain to selectively bind neutral 3-MeA over the cationic form of the base. Discrimination against binding of the normal base adenine is derived from direct sensing of the 3-methyl group, leading to an induced-fit conformational change that engulfs the base in a box defined by five aromatic side chains. These findings indicate that base specific recognition by TAG does not involve strong pi-cation interactions, and suggest a novel mechanism for alkylated base recognition and removal.  相似文献   

8.
Summary Permethylated C-sugars affect the stability and solubility of their carbohydrate precursors and may represent an important group of bioconjugates. When properly functionalized, these units can be appended to the N- and C-termini or to the side chains of peptides or other therapeutic candidates. In this report, we describe the synthesis of an amine-functionalized alkylated mannose derivative and confirm the configuration by determining the X-ray crystal structure of its nitrile precursor. An acid functionalized counterpart, when attached to the N-terminus of a NR box peptide analog, improved binding to estrogen receptor β (ERβ) but not to ERα.  相似文献   

9.
3-methyladenine DNA glycosylases initiate repair of cytotoxic and promutagenic alkylated bases in DNA. We demonstrate by comparative modelling that Bacillus cereus AlkD belongs to a new, fifth, structural superfamily of DNA glycosylases with an alpha-alpha superhelix fold comprising six HEAT-like repeats. The structure reveals a wide, positively charged groove, including a putative base recognition pocket. This groove appears to be suitable for the accommodation of double-stranded DNA with a flipped-out alkylated base. Site-specific mutagenesis within the recognition pocket identified several residues essential for enzyme activity. The results suggest that the aromatic side chain of a tryptophan residue recognizes electron-deficient alkylated bases through stacking interactions, while an interacting aspartate-arginine pair is essential for removal of the damaged base. A structural model of AlkD bound to DNA with a flipped-out purine moiety gives insight into the catalytic machinery for this new class of DNA glycosylases.  相似文献   

10.
Turner BT  Sabo TM  Wilding D  Maurer MC 《Biochemistry》2004,43(30):9755-9765
The transglutaminase Factor XIII (FXIII) catalyzes the formation of covalent cross-links between adjacent noncovalently associated fibrin chains in blood coagulation. The resulting covalently cross-linked hard clot is much more mechanically stable and resistant to proteolytic degradation. FXIII is activated by the serine protease thrombin in the presence of calcium ions. Protein modification experiments involving the labeling of cysteine and lysine side chains of the enzyme were performed before and after activation of the enzyme in an effort to gain further insight into structural changes occurring during the activation of FXIII. The experiments revealed differences in the labeling patterns of nonactivated and activated FXIII. These differences result from the exposure or sequestration of specific cysteine or lysine residues when the enzyme is activated, either physiologically with thrombin or nonproteolytically by exposure to calcium. Of note is the acetylation of Lys 73 and Lys 221 upon activation. Both of these residues lie within possible substrate recognition regions of FXIII. The active site Cys 314 is consistently alkylated in the activated enzyme, as is Cys 409, located near the dimer interface. Within the beta-barrel 2 domain of FXIII, Cys 695 becomes alkylated in activated FXIII. Within the same domain, an acetylated Lys (677 or 678), which is observed in the zymogen, cannot be found in the activated enzyme. The results provide a more extensive view of FXIII activation than has been previously available.  相似文献   

11.
Abstract

Human placenta transferrin receptor has been encapsulated into liposomes in its native form or in the reduced and alkylated one. The binding capacity of the reconstituted reduced and alkylated receptor decreased of about 30% with respect to the native dimeric one, but the dissociation constant for human serum transferrin did not change significantly, being around 0.9 μM. Electron microscopy measurements showed that the encapsulation efficiency of reduced and alkylated receptor was 70-75% with respect to the native one.

As a first conclusion our results suggested that the disulfide bridges between the receptorial subunits did not play an important role on the interaction between transferrin and its specific membrane receptorial system and that the lesser binding capacity of the reduced and alkylated reconstituted receptor was due to the decreased encapsulation ability.  相似文献   

12.
Beef heart cytochrome oxidase (EC 1.9.3.1) prepared in this laboratory consistently presents 10 Coomassie blue staining zones on SDS-polyacrylamide gel electrophoresis. At pH 7.0 only two of these polypeptides (III and VIa) are labelled by radioactive N-ethyl maleimide (NEM). The labelling of VIa is variable and correlates with activity of particular oxidase preparations. When cytochrome oxidase is isolated from alkylated membranes, either mitochrondria or electron transport particles, polypeptide VIa is found not to be labelled; polypeptide III is more strongly labelled than when isolated oxidase is alkylated, and label now appears in polypeptide I which is not alkylated upon treatment of isolated oxidase with NEM.  相似文献   

13.
An endonuclease partially purified from human lymphoblasts, and active against ultraviolet-irradiated DNA, was found to act additionally on DNA damaged by either x-radiation or methylmethanesulfonate. To determine if these activities were truly endonucleolytic, the reaction products were analyzed under conditions that prevented conversion of apurinic or apyrimidinic sites to single-strand breaks. With either ultraviolet- or x-irradiated DNA, strand breakage remained maximal, hence confirming the endonucleolytic character of the enzyme. By contrast, with DNA alkylated with methylmethanesulfonate, strand breakage was sharply reduced. Additional experiments indicated that the activity for alkylated DNA induces strand breaks only in concert with a purified endonuclease specific for apurinic sites, suggesting that it is an N-glycosidase that depurinates alkylated bases. This enzyme was separated from the endonuclease specific for irradiated DNA, by chromatography on DNA-agarose.  相似文献   

14.
The Escherichia coli AlkA protein is a base excision repair glycosylase that removes a variety of alkylated bases from DNA. The 2.5 A crystal structure of AlkA complexed to DNA shows a large distortion in the bound DNA. The enzyme flips a 1-azaribose abasic nucleotide out of DNA and induces a 66 degrees bend in the DNA with a marked widening of the minor groove. The position of the 1-azaribose in the enzyme active site suggests an S(N)1-type mechanism for the glycosylase reaction, in which the essential catalytic Asp238 provides direct assistance for base removal. Catalytic selectivity might result from the enhanced stacking of positively charged, alkylated bases against the aromatic side chain of Trp272 in conjunction with the relative ease of cleaving the weakened glycosylic bond of these modified nucleotides. The structure of the AlkA-DNA complex offers the first glimpse of a helix-hairpin-helix (HhH) glycosylase complexed to DNA. Modeling studies suggest that other HhH glycosylases can bind to DNA in a similar manner.  相似文献   

15.
Vitamin K is an essential cofactor of γ-glutamylcarboxylase as related to blood coagulation and bone formation. Menaquinone-4, one of the vitamin K homologues, is biosynthesized in the body and has various biological activities such as being a ligand for steroid and xenobiotic receptors, protection of neuronal cells from oxidative stress, and so on. From this background, we focused on the role of menaquinone in the differentiation activity of progenitor cells into neuronal cells and we synthesized novel vitamin K derivatives with modification of the ω-terminal side chain. We report here new vitamin K analogues, which introduced an alkylated phenyl group at the ω-terminal side chain. These compounds exhibited potent differentiation activity as compared to control.  相似文献   

16.
The enzymatic methylation of chemically alkylated DNA and of poly(dG-dC) X poly(dG-dC) by beef brain DNA(cytosine-5-)-methyltransferase have been tested. The alkylation by dimethylsulfate, which yields mostly 7 methylguanine (m7G) and 3 methyladenine (m3A) do not affect the enzymatic methylation. The dimethylsulfate alkylated poly(dG-dC) X poly(dG-dC) converted into the Z-form in the presence of MgCl2, is just as well methylated as the native or the alkylated polynucleotide in the B-form. The alkylation of DNA or of poly(dG-dC) X poly(dG-dC) by methylnitrosourea yields, in addition to the above base modifications described for dimethylsulfate, methylphosphotriesters and O6-methylguanine. The enzymatic methylation of these substrates modified by methylnitrosourea is decreased. This decrease is proportional to the extent of the chemical alkylation of the substrate.  相似文献   

17.
Platelet membrane sulfhydryls essential for phospholipase A2 activity were alkylated by [3H]N-ethylmaleimide after the non-essential sulfhydryls were cross-linked by azodicarboxylic acid bis(di-methylamide) (DA) or alkylated by N-ethylmaleimide. A 24.5K da protein labeled under phospholipase inhibitory conditions was not labeled under non-inhibitory conditions. The polypeptide, which had neither endogenous nor DA induced disulfides, may be a platelet membrane phospholipase A2 or a lipase regulatory protein.  相似文献   

18.
Sterol methyltransferase 1 controls the level of cholesterol in plants   总被引:10,自引:0,他引:10  
The side chain in plant sterols can have either a methyl or ethyl addition at carbon 24 that is absent in cholesterol. The ethyl addition is the product of two sequential methyl additions. Arabidopsis contains three genes-sterol methyltransferase 1 (SMT1), SMT2, and SMT3-homologous to yeast ERG6, which is known to encode an S-adenosylmethionine-dependent C-24 SMT that catalyzes a single methyl addition. The SMT1 polypeptide is the most similar of these Arabidopsis homologs to yeast Erg6p. Moreover, expression of Arabidopsis SMT1 in erg6 restores SMT activity to the yeast mutant. The smt1 plants have pleiotropic defects: poor growth and fertility, sensitivity of the root to calcium, and a loss of proper embryo morphogenesis. smt1 has an altered sterol content: it accumulates cholesterol and has less C-24 alkylated sterols content. Escherichia coli extracts, obtained from a strain expressing the Arabidopsis SMT1 protein, can perform both the methyl and ethyl additions to appropriate sterol substrates, although with different kinetics. The fact that smt1 null mutants still produce alkylated sterols and that SMT1 can catalyze both alkylation steps shows that there is considerable overlap in the substrate specificity of enzymes in sterol biosynthesis. The availability of the SMT1 gene and mutant should permit the manipulation of phytosterol composition, which will help elucidate the role of sterols in animal nutrition.  相似文献   

19.
Properties of 3-methyladenine-DNA glycosylase from Escherichia coli.   总被引:21,自引:0,他引:21  
S Riazuddin  T Lindahl 《Biochemistry》1978,17(11):2110-2118
An Escherichia coli enzyme that releases 3-methyladenine and 3-ethyladenine in free form from alkylated DNA has been purified 2800-fold in 7% yield. The enzyme does not liberate several other alkylation products from DNA, including 7-methylguanine,O6-methylguanine, 7-methyladenine, N6-methyladenine, 7-ethylguanine, O6-ethylguanine, and the arylalkylated purine derivatives obtained by treatment of DNA with 7-bromomethyl-12-methylbenz[a]anthracene. The reaction of the enzyme with alkylated DNA leads to the introduction of apurinic sites but no chain breaks (less than one incision per ten apurinic sites), and there is no detectable nuclease activity with native DNA, depurinated DNA, ultraviolet-irradiated DNA, or X-irradiated DNA as potential substrates. The enzyme is termed 3-methyladenine-DNA glycosylase. It is a small protein, Mr = 19 000, that does not require divalent metal ions, phosphate, or other cofactors in order to cleave base-sugar bonds in alkylated DNA.  相似文献   

20.
Monofunctional alkylating agent-induced S-phase-dependent DNA damage   总被引:8,自引:0,他引:8  
Alkylating agents are S-phase-dependent clastogenic agents: Chromosome aberrations are not observed unless the treated cells have first undergone a replicative DNA synthesis. While DNA gaps resulting from misreplication of the alkylated template are believed to underlie aberration formation, the specific alkylated DNA lesions that produce these DNA gaps are not known. To quantitate the DNA strand break induction that results from replication of an alkylated DNA template and attempt to identify those alkylated lesions which underlie DNA strand breakage. [14C]thymidine-labeled Chinese hamster ovary (CHO) cells were treated with either N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or methyl methanesulfonate (MMS) in G1 and then allowed to progress through S phase in the presence of [3H]thymidine. When analyzed at the subsequent mitosis, DNA strand breaks were found in the nonalkylated ([3H]thymidine-labeled) DNA strand. This did not appear to be the consequence of any recombinational or endonuclease-mediated event and was more likely due to DNA gaps produced by incomplete replication off the alkylated template. A portion of these breaks probably result from a failure to replicate past 3-methyladenine. Differences between MNNG and MMS in the frequency of S-phase-dependent breaks they produce relative to the overall alkylation damage suggest that the O6-methylguanine lesion might also be involved in S-phase-dependent DNA strand breakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号