共查询到20条相似文献,搜索用时 15 毫秒
1.
Incorporation of the carbocyclic analogue of (E)-5-(2-bromovinyl)-2'-deoxyuridine 5'-triphosphate into a synthetic DNA 总被引:1,自引:0,他引:1
J Sági E De Clercq A Szemz? A Csárnyi T Kovács L Otv?s 《Biochemical and biophysical research communications》1987,147(3):1105-1112
The carbocyclic analogue of (E)-5-(2-bromovinyl)-2'-deoxyuridine, C-BVDU, is a very potent and selective anti-herpes-virus compound. In order to synthesize and study the properties of a DNA that contains C-BVDU, the 5'-triphosphate, C-BVDUTP was prepared and evaluated as a potential substrate of the E. coli Klenow DNA polymerase enzyme. Although C-BVDUTP proved to be a very poor substrate also of this enzyme, it could be incorporated up to 3.6% into the synthetic DNA, poly(dA-dT, C-BVDU). This level of substitution decreased significantly the template activity for DNA and RNA polymerases, as compared to that of poly(dA-dT). 相似文献
2.
(E)-5-(2-bromovinyl)-2'-deoxyuridine 5'-triphosphate (BVdUTP), known as a specific inhibitor of herpes simplex virus (type 1)-DNA polymerase, was found to be a potent inhibitor of the activity of terminal deoxynucleotidyltransferase (TdT) from calf thymus. BVdUTP was not an efficient substrate of TdT, but it inhibited the incorporation of normal deoxynucleotide substrates in competitive fashion at the nucleotide binding site of TdT molecule. The Ki value for BVdUTP (5 microM) was much less than the Km value for dGTP (83 microM), indicating stronger affinity of the inhibitor to TdT than that of the substrate. These results indicate the usefulness of BVdUTP as a potent inhibitor of TdT for elucidation of the reaction mechanism of this enzyme. 相似文献
3.
(E)-5-(2-Bromovinyl)-2'-deoxyuridine 5'-triphosphate (BrVdUTP) and (E)-5-(2-bromovinyl)-1-beta-D-arabinofuranosyluracil 5'-triphosphate (BrVarafUTP), which are known as specific inhibitors of herpes simplex viral (type 1 and 2) DNA polymerase, were found to be strong inhibitors of DNA polymerase gamma from human KB and murine myeloma cells. In fact BrVdUTP and BrVarafUTP were found to be stronger inhibitors of DNA polymerase gamma than of other DNA polymerases having viral (herpes simplex virus or retrovirus) origin or cellular (eukaryotic alpha and beta, or prokaryotic) origin. The mode of inhibition of DNA polymerase gamma by BrVdUTP and BrVarafUTP was competitive with respect to dTTP, the normal substrate. Whereas BrVdUTP was an efficient substrate for DNA polymerase gamma and other DNA polymerases that were examined, BrVarafUTP failed to serve as a substrate for DNA synthesis. Ki values for BrVdUTP (40 nM) and BrVarafUTP (7 nM) with DNA polymerase gamma, as determined with (rA)n.(dT) as the template.primer, were much smaller than the Km values for dTTP (0.16 microM and 0.71 microM for murine and human DNA polymerase gamma, respectively). Thus, the affinity of BrVdUTP or BrVarafUTP for DNA polymerase gamma was much stronger than that of dTTP. 相似文献
4.
5.
Modified polynucleotides. VI. Properties of a synthetic DNA containing the anti-herpes agent (E)-5-(2-bromovinyl)-2''-deoxyuridine 下载免费PDF全文
A new modified polydeoxynucleotide, a copolymer of nucleotides of 2'-deoxyadenosine and the very efficacious anti-herpesvirus agent (E)-5-(2-bromovinyl)-2'-deoxyuridine was synthesized with E. coli DNA polymerase I enzyme. It is characterized by its physical (absorption and circular dichroism spectra, thermal transition, sedimentation analysis) and bioorganic (template activity, stability) properties. Compared to poly [d(A-T)], the modified polydeoxynucleotide had a lower thermal stability but exhibited higher stability against DNases and higher template activity for DNA synthesis. Template activity for RNA synthesis of this template was, however, poor and extent of AMP and UMP incorporation was limited as well. 相似文献
6.
7.
T S Godovikova D M Kolpashchikov T N Orlova V A Richter T M Ivanova S L Grochovsky T V Nasedkina L S Victorova A I Poletaev 《Bioconjugate chemistry》1999,10(3):529-537
The DNA targets may be labeled and simultaneously amplified in the polymerase chain reaction (PCR) using a pair of respective primers after elongation with nucleoside-5'-triphosphates carrying photoreactive groups. The amplified DNA may be subsequently photoactivated by irradiation above 300 nm, resulting in photo-cross-linking of the strands. For this goal 5-[3-(E)-(4-azido-2,3,5,6-tetrafluorobenzamido)propenyl-1]-, 5-{N-[N'-(4-azido-2,3,5, 6-tetrafluorobenzoyl)-3-aminopropionyl]aminomethyl}-, and 5-{N-[N'-(2-nitro-5-azidobenzoyl)-3-aminopropionyl]aminomethyl}-2'-de oxyuridine-5'-triphosphate (VII, VIa, and VIb) derivatives have been synthesized. It was found that VII is capable of efficiently elongating DNA primers with both Klenow fragment DNA polymerase I and Thermus aquaticus DNA polymerase. Thereto, it turned out to provide quantitative incorporation in DNA as revealed by the formation of the full-length amplificate by PCR in the presence of this photoreactive analogue without any dilution with natural dTTP. On the contrary, it was found, that incorporation of VIa and VIb do not permit further DNA replication. 相似文献
8.
(+)-1-[(1R, 3S, 4R)-3-hydroxy-4-hydroxymethylcyclopentyl]-5-[(E)-2- bromovinyl]-1H,3H-pyrimidin-2,4-dione 10 was synthesized starting from (+)-endo-5-norbornen-2-yl acetate. This chiral educt was obtained by enzymatic hydrolysis of racemic esters of endo-5-norbornen-2-ol. 相似文献
9.
Antiviral activity of the 3''-amino derivative of (E)-5-(2-bromovinyl)-2''-deoxyuridine. 总被引:1,自引:0,他引:1 下载免费PDF全文
E De Clercq J Descamps J Balzarini T Fukui H S Allaudeen 《The Biochemical journal》1983,211(2):439-445
3'-NH2-BV-dUrd, the 3'-amino derivative of (E)-5-(2-bromovinyl)-2'-deoxyuridine, was found to be a potent and selective inhibitor of herpes simplex virus type 1 (HSV-1) and varicella-zoster virus (VZV) replication. 3'-NH2-BV-dUrd was about 4-12 times less potent but equally selective in its anti-herpes activity as BV-dUrd. Akin to BV-dUrd, 3'-NH2-BV-dUrd was much less inhibitory to herpes simplex virus type 2 than type 1. It was totally inactive against a thymidine kinase-deficient mutant of HSV-1. The 5'-triphosphate of 3'-NH2-BV-dUrd (3'-NH2-BV-dUTP) was evaluated for its inhibitory effects on purified herpes viral and cellular DNA polymerases. Among the DNA polymerases tested, HSV-1 DNA polymerase and DNA polymerase alpha were the most sensitive to inhibition by 3'-NH2-BV-dUTP (Ki values 0.13 and 0.10 microM, respectively). The Km/Ki ratio for DNA polymerase alpha was 47, as compared with 4.6 for HSV-1 DNA polymerase. Thus, the selectivity of 3'-NH2-BV-dUrd as an anti-herpes agent cannot be ascribed to a discriminative effect of its 5'-triphosphate at the DNA polymerase level. This selectivity most probably resides at the thymidine kinase level. 3'-NH2-BV-dUrd would be phosphorylated preferentially by the HSV-1-induced thymidine kinase (Ki 1.9 microM, as compared with greater than 200 microM for the cellular thymidine kinase), and this preferential phosphorylation would confine the further action of the compound to the virus-infected cell. 相似文献
10.
Regeneration of the antiviral drug (E)-5-(2-bromovinyl)-2''-deoxyuridine in vivo 总被引:3,自引:0,他引:3 下载免费PDF全文
C Desgranges G Razaka F Drouillet H Bricaud P Herdewijn E De Clercq 《Nucleic acids research》1984,12(4):2081-2090
The highly potent and selective antiherpes drug BVdUrd [(E)-5-(2-bromovinyl)-2'-deoxyuridine] is cleared within 2-3 hours from the bloodstream upon intraperitoneal administration to rats. It is degraded to BVUra [(E)-5-(2-bromovinyl)uracil] and this inactive metabolite is cleared very slowly from the bloodstream so that 24 hours after the administration of BVdUrd, BVUra is still detectable in the plasma. This contrasts with several other 5-substituted uracils, i.e. 5-fluorouracil, 5-iodouracil, 5-trifluorothymine and thymine itself, which are, like their 2'-deoxyuridine counterparts FdUrd, IdUrd, F3dThd and dThd, cleared from the plasma within 2-3 hours. The injection of dThd or any of the other 5-substituted 2'-deoxyuridines at 3 hours after the injection of BVdUrd, that is at a time when BVdUrd has disappeared completely from the circulation, results in the re-apparition of BVdUrd in the plasma. Apparently, BVdUrd is regenerated from BVUra following the reaction catalyzed by pyrimidine nucleoside phosphorylases : BVUra + dThd----BVdUrd + Thy. BVdUrd can even be generated de novo if dThd (or FdUrd, IdUrd or F3dThd) are administered 3 hours after a preceding injection of BVUra. These findings represent a unique example of the (re)generation of an active drug from its inactive metabolite in vivo. 相似文献
11.
12.
Thymidylate synthetase-catalyzed conversions of E-5-(2-bromovinyl)-2'-deoxyuridylate 总被引:3,自引:0,他引:3
E-5-(2-Bromovinyl)-2'-deoxyuridylate (BrvdUMP), the first metabolite in the processing of the antiviral agent E-5-(2-bromovinyl)-2'-deoxyuridine (BrvdUrd), is an excellent alternate substrate for dTMP synthetase. The nucleophilic catalyst of the enzyme adds to the 6-position of the heterocycle and converts the normally inert 5-bromovinyl group of BrvdUMP to a reactive allylic bromide in which both carbons of the side chain are susceptible to nucleophilic attack. These centers react with nucleophiles in the reaction mixture, 2-mercaptoethanol and water, to give three diastereomeric products which have been isolated and characterized. Possible implications of these findings as related to the mechanism and selectivity of BrvdUrd as an antiviral agent are discussed. 相似文献
13.
14.
Lavandera I Fernández S Ferrero M De Clercq E Gotor V 《Nucleosides, nucleotides & nucleic acids》2003,22(5-8):833-836
(E)-3',5'-diamino-5-(2-bromovinyl)-2',3',5'-trideoxyuridine (5), the diamino analogue of BVDU (1), was synthesized from BVDU. In contrast with BVDU, compound 5 did not show activity against herpes simplex virus or varicella-zoster virus. 相似文献
15.
16.
17.
Inhibitory effect of E-5-(2-bromovinyl)-1-beta-D-arabinofuranosyluracil on herpes simplex virus replication and DNA synthesis. 总被引:3,自引:0,他引:3 下载免费PDF全文
The effect of E-5-(2-bromovinyl)-1-beta-D-arabinofuranosyluracil (BVaraU) on herpes simplex virus (HSV) replication was examined and compared with that of E-5-(2-bromovinyl)-2'-deoxyuridine (BVdUrd). The 50% inhibitory dose against HSV type 1 (HSV-1) was 0.1 microgram/ml compared with 0.008 microgram/ml for BVdUrd; the antimetabolic 50% inhibitory dose of BVaraU ranged from 20 to 95 micrograms/ml. The addition of 50 micrograms of BVaraU per ml to HSV-1-infected Vero cells decreased the synthesis of viral and cellular DNA by 37 and 28%, respectively. The 5'-triphosphate (BVaraUTP) competed with dTTP in DNA synthesis by the herpes-viral and cellular DNA polymerases; the apparent Ki values of HSV-1 DNA polymerase, DNA polymerase alpha, and DNA polymerase beta were 0.14, 0.32, and 5 microM, respectively. Thus, BVaraU was a less effective antiherpesvirus agent than BVdUrd; unlike BVdUrd, it did not appear to be internally incorporated into replicating DNA in virus-infected cells. 相似文献
18.
R L Momparler 《Biochemical and biophysical research communications》1969,34(4):464-471
19.
Adenosine 2',3'-riboepoxide 5'-triphosphate (epoxyATP) has been found to be a suicidal inactivator of DNA polymerase I from Escherichia coli by the following criteria. Inactivation is complete, is first order in enzyme activity, and shows saturation kinetics with an apparent KD of 30 +/- 10 micron for epoxy ATP. This KD is comparable to the KM of the substrate dATP. The t1/2 for inactivation is 1.3 min. Inactivation requires Mg2+ and the complementary template. The enzyme is protected by dATP but not by an excess of template. Gel filtration of the reaction mixture after inactivation with [3H]epoxy ATP results in the comigration of E. coli DNA polymerase I, the tritium-labeled inactivator, and the DNA template. The stoichiometry of binding approaches 1 mol of [3H]epoxy nucleotide per mol of inactivated enzyme. These results are consistent with the hypothesis that epoxy ATP initially serves as a substrate for the polymerase reaction, elongating the DNA chain by a nucleotidyl unit, and subsequently alkylates an essential base at the primer terminus binding site of the enzyme. Epoxy ATP also inactivates human and viral DNA polymerases but not E. coli RNA polymerase or rabbit muscle pyruvate kinase. Hence epoxy ATP may be a specific suicide reagent for DNA polymerases. 相似文献
20.
The highly potent and selective anti-herpesvirus agent, (E)-5-(2-bromovinyl)-2'deoxyuridine (BVdU), was examined for its inhibitory effect on the salmonid herpesviruses Oncorhynchus masou virus (OMV) and Herpesvirus salmonis (H. salmonis). Minimum inhibitory concentrations (MIC) of BVdU for OMV and H. salmonis were 1.25 and 3.0 micrograms/ml, respectively; these values were equal to or higher than those obtained for acyclovir or cytarabine. OMV DNA polymerase activity was reduced in a dose-dependent fashion by BVdU 5'-triphosphate (BVdUTP) within the concentration range of 3 to 30 microM. However, BVdUTP could also be substituted for the natural substrate, TTP, in the OMV DNA polymerase assay. It is postulated that the inhibitory action of BVdU on the salmonid herpesviruses is more or less similar to that on other herpesviruses and resides with respect to the inhibition of the virus DNA polymerase activity as well as incorporation of BVdU into the viral DNA. 相似文献