首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Several fish species belonging to the family Haemulidae present a karyotype consisting of 48 acrocentric chromosomes (FN = 48), and apparently similar chromosomal microstructure, especially in genus Haemulon, representing a striking example of intrafamiliar chromosomal conservation. In this study, a more detailed cytogenetic analysis of the species Conodon nobilis and Pomadasys corvinaeformis was performed using C-banding, Ag-NOR, DAPI/CMA3 staining, in situ digestion by distinct endonucleases and double-FISH to map the 18S and 5S ribosomal genes. Both species showed a similar karyotypic macrostructure with 2n = 48 acrocentric chromosomes and active ribosomal sites at interstitial position on long arms of chromosomal pair 18 and 24 in P. corvinaeformis and C. nobilis, respectively. These sites were the only CMA3+/DAPI-regions in the karyotype. Digestion with restriction enzymes revealed a low number of digestion sites in the heterochromatic segments of both species. The data indicate some degree of interspecific evolutionary diversification At the microstructural level, incorporated in a general pattern of extensive karyotypic conservatism. Thus, the interspecific reproductive isolation leading to phyletic diversification apparently occurred without the contribution of conspicuous karyotypic changes.  相似文献   

2.
A male owl monkey, probably belonging to Aotus trivirgatus nigriceps, was found to have 51 chromosomes. Since the Y chromosome is lacking, the odd diploid number probably is the result of a Y-autosome translocation. However, there are two autosomes from different pairs that theoretically could contain the Y. This specimen produced a male young with a female A. trivirgatus griseimembra, having a karyotype with 54 chromosomes. The diploid number of the hybrid is 52, including 28 paired and 24 unpaired elements. Comparison of the paternal, maternal and hybrid karyotypes using Q- and C-banding techniques permit conclusions on the rearrangements (fusions, reciprocal translocations, inversions and insertions) that could possibly have led to the karyological differences between both subspecies.  相似文献   

3.
Genetic variation in 55 accessions of Cynodon dactylon was estimated using inter-simple sequence repeat (ISSR) markers. The plant materials used in this study originated from 17 countries. A total of 236 ISSR fragments were generated with 14 primers. Fragment sizes ranged from 200 to 3000 bp. All scorable bands were polymorphic in nature and none of the primers used produced monomorphic bands, indicating a high level of genetic variation in this grass. The accessions were found to be clustered into eight major groups through the unweighted pair-group method with arithmetic averages. Genetic similarity coefficients (GSC) among the 55 accessions ranged from 0.52 to 0.95. The results clearly indicate that a high level of variation exists in Cynodon accessions. This study shows that the ISSR technique is a reliable tool for differentiating Cynodon accessions and for determining the genetic relationships among them.  相似文献   

4.
Reciprocal translocations between chromosomes XVI and VIII were revealed in eight Saccharomyces cerevisiae strains (mostly wine ones) using pulse-field electrophoresis of native chromosomal DNAs and their hybridizations with the CUP1 and GAL4 probes. New and reciprocal translocations of at least the gene CUP1 occur at the expense of crossing-over in the hybrids of such strains with the genetic lines of normal karyotype during meiosis. Relationship between these reciprocal translocations and the sulfite (Na2SO3) resistance gene SSU1-R is discussed.  相似文献   

5.
High-resolution chromosome analysis of eight Palaearctic and Oriental species of white-toothed shrews reveals almost complete chromosomal homology between the karyotypes studied, and extensive G-band homology is demonstrated even between species of the genera Crocidura and Suncus . Robertsonian translocations, tandem fusions, fissions, whole-arm reciprocal translocations, centromeric shifts, heterochromatin additions, and inversions are identified as the main mechanisms of chromosomal evolution. The evolutionary relationships of the Eurasian crocidurines under study are reconstructed and a hypothetical ancestral karyotype with 44 chromosomes is proposed.  相似文献   

6.
The wide variation in chromosome number found in species of the genus Linum (2n = 16, 18, 20, 26, 28, 30, 32, 36, 42, 72, 84) indicates that chromosomal mutations have played an important role in the speciation of this taxon. To contribute to a better understanding of the genetic diversity and species relationships in this genus, comparative studies of karyotypes and genomes of species within section Syllinum Griseb. (2n = 26, 28) were carried out. Elongated with 9-aminoacridine chromosomes of 10 species of section Syllinum were investigated by C- and DAPI/С-banding, CMA and Ag-NOR-staining, FISH with probes of rDNA and of telomere repeats. RAPD analysis was also performed. All the chromosome pairs in karyotypes of the studied species were identified. Chromosome DAPI/C-banding patterns of 28-chromosomal species were highly similar. Two of the species differed from the others in chromosomal location of rDNA sites. B chromosomes were revealed in all the 28-chromosomal species. Chromosomes of Linum nodiflorum L. (2n = 26) and the 28-chromosomal species were similar in DAPI/C-banding pattern and localization of several rDNA sites, but they differed in chromosomal size and number. The karyotype of L. nodiflorum was characterized by an intercalary site of telomere repeat, one additional 26S rDNA site and also by the absence of B chromosomes. Structural similarities between different chromosome pairs in karyotypes of the studied species were found indicating their tetraploid origin. RAPD analysis did not distinguish the species except L. nodiflorum. The species of section Syllinum probably originated from a common tetraploid ancestor. The 28-chromosomal species were closely related, but L. nodiflorum diverged significantly from the rest of the species probably due to chromosomal rearrangements occurring during evolution.  相似文献   

7.
8.
Several aspects of the biology of Cycloramphus species of the Atlantic Forest are still poorly known, which makes it difficult to understand their historical relationships. Therefore, we were stimulated to promote a comparative cytogenetic analysis of several species of the genus Cycloramphus. The study of Cycloramphus acangatan, C. boraceiensis, C. brasiliensis, C. carvalhoi, C. eleutherodactylus, C. fuliginosus, C. lutzorum, and C. rhyakonastes, revealed that these eight species share a diploid number 2n = 26. Cycloramphus fuliginosus presented the most distinct karyotype, due to the presence of subtelocentric chromosomes in pairs 1 and 4. The main diagnostic feature observed in the other species was the presence of one pair of telocentric chromosomes in C. boraceiensis, C. carvalhoi, and C. eleutherodactylus, while the remaining species presented karyotypes composed exclusively of biarmed chromosomes. Constitutive heterochromatin was predominantly located in pericentromeric regions in all species, although additional C-bands detected on telomeric and/or interstitial regions were partially species-specific. Silver staining revealed Ag-NORs located on the pair 6 in six species, whereas C. acangatan presented it on pair 1 and a multiple pattern was observed in C. fuliginosus with three Ag-NOR bearing chromosomes. Fluorescent in situ hybridization using rDNA probe was performed in specimens of C. eleutherodactylus from Paraná, C. lutzorum, and C. rhyakonastes, which did not reveal inactive NOR. Despite the apparent highly conserved diploid number, data on the karyotype microstructure characterize the cytogenetic profile of the genus and may contribute to clarify the phylogenetic relationships among Cycloramphus, the Cycloramphinae, or even the family Cycloramphidae.  相似文献   

9.
By using genome in situ hybridization (GISH) on root somatic chromosomes of allotetraploid derived from the cross Gossypium arboreum × G. bickii with genomic DNA (gDNA) of G. bickii as a probe, two sets of chromosomes, consisting of 26 chromosomes each, were easily distinguished from each other by their distinctive hybridization signals. GISH analysis directly proved that the hybrid GarboreumxG. bickii is an allotetraploid amphiploid. The karyotype formula of the species was 2n = 4x = 52 = 46m (4sat) + 6sm (4sat). We identified four pairs of satellites with two pairs in each sub-genome. FISH analysis using 45S rDNA as a probe showed that the cross G. arboreumxG. bickii contained 14 NORs. At least five pairs of chromosomes in the G sub-genome showed double hybridization (red and blue) in their long arms, which indicates that chromatin introgression from the A sub-genome had occurred.  相似文献   

10.
The fungus Ascochyta rabiei is the causal agent of Ascochyta blight of chickpea and the most serious threat to chickpea production. Little is currently known about the genome size or organization of A. rabiei. Given recent genome sequencing efforts, characterization of the genome at a population scale will provide a framework for genome interpretation and direction of future resequencing efforts. Electrophoretic karyotype profiles of 112 isolates from 21 countries revealed 12–16 chromosomes between 0.9 Mb and 4.6 Mb with an estimated genome size of 23 Mb–34 Mb. Three general karyotype profiles A, B, and C were defined by the arrangement of the largest chromosomes. Approximately one-third of isolates (group A) possessed a chromosome larger than 4.0 Mb that was absent from group B and C isolates. The ribosomal RNA gene (rDNA) cluster was assigned to the largest chromosome in all except four isolates (group C) whose rDNA cluster was located on the second largest chromosome (3.2 Mb). Analysis of progeny from an in vitro sexual cross between two group B isolates revealed one of 16 progeny with an rDNA-encoding chromosome larger than 4.0 Mb similar to group A isolates, even though a chromosome of this size was not present in either parent. No expansion of the rDNA cluster was detected in the progeny, indicating the increase in chromosome size was not due to an expansion in number of rDNA repeats. The karyotype of A. rabiei is relatively conserved when compared with published examples of asexual ascomycetes, but labile with the potential for large scale chromosomal rearrangements during meiosis. The results of this study will allow for the targeted sequencing of specific isolates to determine the molecular mechanisms of karyotype variation within this species.  相似文献   

11.
Previous studies have shown a dynamic karyotype evolution and the presence of complex sex chromosome systems in three cryptic Leptidea species from the Western Palearctic. To further explore the chromosomal particularities of Leptidea butterflies, we examined the karyotype of an Eastern Palearctic species, Leptidea amurensis. We found a high number of chromosomes that differed between the sexes and slightly varied in females (i.e. 2n = 118–119 in females and 2n = 122 in males). The analysis of female meiotic chromosomes revealed multiple sex chromosomes with three W and six Z chromosomes. The curious sex chromosome constitution [i.e. W1–3/Z1–6 (females) and Z1–6/Z1–6 (males)] and the observed heterozygotes for a chromosomal fusion are together responsible for the sex‐specific and intraspecific variability in chromosome numbers. However, in contrast to the Western Palearctic Leptidea species, the single chromosomal fusion and static distribution of cytogenetic markers (18S rDNA and H3 histone genes) suggest that the karyotype of L. amurensis is stable. The data obtained for four Leptidea species suggest that the multiple sex chromosome system, although different among species, is a common feature of the genus Leptidea. Furthermore, inter‐ and intraspecific variations in chromosome numbers and the complex meiotic pairing of these multiple sex chromosomes indicate the role of chromosomal fissions, fusions, and translocations in the karyotype evolution of Leptidea butterflies.  相似文献   

12.
In this paper, the karyotype and G-banding pattern of the chromosomes of cultured peripheral blood lymphocytes in R. r. roxellanae were investigated. The chromosome number of this species is 44 in both sexes. In R. r. roxellanae, as in other monkeys, sex is determined by specific sex chromosomes, i.e. the male is XY and the female is XX. The 21 pairs of autosomes consist of 7 pairs of metacentric chromoomes, 13 pairs of submetacentric chromosomes and one acrocentric pair. Chromosome measurements were made from highly enlarged photographic prints. They included the relative length, arm ratio and centromere index of each chromosome. Both chromosomal and chromatid aberrations were observed. They were 0·67 and 2%, respectively. Finally, G-banding pattern analysis of chromosomes of R. r. roxellanae were carried out. The results show that each homologous pair has its own special banding pattern, so that each of them is easily recognizable. Idiograms of chromosome complements with the Giemsa banding pattern are constructed.  相似文献   

13.
Thirteen wild species of Passiflora were analyzed using conventional and CMA/DA/DAPI staining to evaluate the karyotype diversity between and within the subgenus Decaloba and Passiflora. The karyotypic features indicate that both subgenera have a conserved chromosome number, as reported before for several species. Submetacentric (sm) chromosomes were found in species from both subgenera, suggesting that sm chromosomes are not restricted to a particular subgenus. The analysis of the karyotypic heterogeneity enabled to distribute the species in three groups, but with no support to phylogenetic and taxonomic levels. The application of fluorochromes allowed for the visualization of CMA+/DAPI blocks, which in our studies always correlated with the occurrence of satellites, showing that occurrence of two chromosome pairs with satellites per cell is a characteristic shared by some species from both subgenera. This feature does not always have relationship with the basic chromosome number. The data found in this study will help to understand the phylogeny, cytotaxonomy, and evolution of the genus Passiflora showing that karyotypic variation can be seen between and within the subgenus Decaloba and Passiflora.  相似文献   

14.
Anoles are a clade of iguanian lizards that underwent an extensive radiation between 125 and 65 million years ago. Their karyotypes show wide variation in diploid number spanning from 26 (Anolis evermanni) to 44 (A. insolitus). This chromosomal variation involves their sex chromosomes, ranging from simple systems (XX/XY), with heterochromosomes represented by either micro- or macrochromosomes, to multiple systems (X1X1X2X2/X1X2Y). Here, for the first time, the homology relationships of sex chromosomes have been investigated in nine anole lizards at the whole chromosome level. Cross-species chromosome painting using sex chromosome paints from A. carolinensis, Ctenonotus pogus and Norops sagrei and gene mapping of X-linked genes demonstrated that the anole ancestral sex chromosome system constituted by microchromosomes is retained in all the species with the ancestral karyotype (2n?=?36, 12 macro- and 24 microchromosomes). On the contrary, species with a derived karyotype, namely those belonging to genera Ctenonotus and Norops, show a series of rearrangements (fusions/fissions) involving autosomes/microchromosomes that led to the formation of their current sex chromosome systems. These results demonstrate that different autosomes were involved in translocations with sex chromosomes in closely related lineages of anole lizards and that several sequential microautosome/sex chromosome fusions lead to a remarkable increase in size of Norops sagrei sex chromosomes.  相似文献   

15.
Rheum tanguticum is an important but endangered traditional Chinese medicine endemic to China. The wild resources have been declining. Establishing the genetic diversity of the species would assist in its conservation and breeding program. Inter-simple sequence repeats (ISSR) markers were used to assess the genetic diversity and population genetic structure in 13 wild populations of R. tanguticum from Qinghai Province. Thirteen selected primers produced 329 discernible bands, with 326 (92.94%) being polymorphic, indicating high genetic diversity at the species level. The Nei's gene diversity (He) was estimated to be 0.1724 within populations (range 0.1026–0.2104), and 0.2689 at the species level. Analysis of molecular variance (AMOVA) showed that the genetic variation was found mainly within populations (71.02%), but variance among populations was only 28.98%. In addition, Nei's differentiation coefficients (Gst) was found to be high (0.3585), confirming the relatively high level of genetic differentiation among populations. Mantel test revealed a significant correlation between genetic and geographic distances (r = 0.573, P = 0.002), and the unweighted pair-group method using arithmetic average (UPGMA) clustering and Principal coordinates analysis (PCoA) demonstrated similar results. Meanwhile, the genetic diversity of R. tanguticum positively correlated with altitude and annual mean precipitation, but negatively correlated with latitude and annual mean temperature. This result might be an explanation that the natural distribution of R. tanguticum is limited to alpine cold areas. We propose conservation strategy and breeding program for this plant.  相似文献   

16.
Quantitatively evaluated C-banding karyograms and further observations on karyotype structure are presented forScilla persica, 7 species of theScilla hohenackeri group, andPuschkinia scilloides. Within theS. hohenackeri group very diverse and species-specific banding patterns are found. On the basis of karyology,S. bisotunensis andS. furseorum should be closely grouped together, whileS. persica andPuschkinia scilloides appear quite isolated.  相似文献   

17.
The fresh water snail Biomphalaria glabrata (2n = 36) belongs to the taxonomic class Gastropoda (family Planorbidae) and is integral to the spread of the human parasitic disease schistosomiasis. The importance of this mollusc is such that it has been selected as a model molluscan organism for whole genome sequencing. In order to understand the structure and organisation of the B. glabrata’s genome it is important that gene mapping studies are established. Thus, we have studied the genomes of two B. glabrata embryonic (Bge) cell line isolates 1 and 2 grown in separate laboratories, but both derived from Eder L. Hansen’s original culture from the 1970s. This cell line continues to be an important tool and model system for schistosomiasis and B. glabrata. Using these cell line isolates, we have investigated the genome content and established a revised karyotype based on chromosome size and centromere position for these cells. Unlike the original karyotype (2n = 36) established for the cell line, our investigations now show the existence of extensive aneuploidy in both cell line isolates to the extent that the total complement of chromosomes in both greatly exceeds the original cell line’s diploid number of 36 chromosomes. The isolates, designated Bge 1 and 2, had modal chromosome complements of 64 and 67, respectively (calculated from 50 metaphases). We found that the aneuploidy was most pronounced, for both isolates, amongst chromosomes of medium metacentric morphology. We also report, to our knowledge for the first time using Bge cells, the mapping of single-copy genes peroxiredoxin (BgPrx4) and P-element induced wimpy testis (piwi) onto Bge chromosomes. These B. glabrata genes were mapped onto pairs of homologous chromosomes using fluorescence in situ hybridization (FISH). Thus, we have now established a FISH mapping technique that can eventually be utilized for physical mapping of the snail genome.  相似文献   

18.
Harttia is a genus of the subfamily Loricariinae that posses a broad chromosomal variation. In addition to interspecific karyotype diversity within this group, a multiple sex chromosome system, XX/XY1Y2, has been described for Harttia carvalhoi. Thus, this study aimed to determine the role of chromosomal rearrangements in karyotype differentiation in Harttia by classical and molecular cytogenetic procedures. The results show that Robertsonian rearrangements have a prominent role in the chromosomal diversification of the species analysed, which initially leads to hypothesize a diploid number reduction in Harttia torrenticola and H. carvalhoi. The metacentric chromosome 1, shared between H. torrenticola and H. carvalhoi, could have originated from centric fusions from the ancestral karyotype. A centric fission event associated with the first metacentric pair allowed for the origination of a multiple sex chromosome system XX/XY1Y2, specific to H. carvalhoi. This study highlights the relevance of Robertsonian rearrangements in karyotypic differentiation of the species studied and demonstrates that the occurrence of a centric fission, as opposed to a previously hypothesised chromosome fusion, is directly implicated in the origin of the sex chromosome system of H. carvalhoi.  相似文献   

19.
The karyology of species of sturgeon from the Russian Far East demonstrates that the karyotype of the Sakhalin sturgeon (Acipenser mikadoi) includes 262 ± 4 chromosomes with 80 biarmed chromosomes and the number of chromosome arms (NF) 342 ± 4, the karyotype of the Amur sturgeon (A. schrenckii) includes 266 ± 4 chromosomes with 92 biarmed chromosomes and NF 358 ± 4, and the karyotype of the kaluga (A. dauricus) consists of 268 ± 4 chromosomes with 100 biarmed chromosomes and NF 368 ± 4. These results prove that all western Pacific sturgeon species are from a tetraploid origin, based on a recent ploidy scale. This suggests that at least three polyploidization events have occurred during the evolution of Acipenseridae. However, if polyploid species originated by hybridization between diploid species, there may have been more polyploidization events in this group of fishes.  相似文献   

20.
In order to investigate the levels of genetic diversity of the endangered species Kirengeshoma palmata (Saxifragaceae), four extant populations were sampled and analyzed using inter-simple sequence repeats (ISSR) markers. We expected a low genetic diversity level, but our results revealed a high level of intraspecific genetic diversity, probably resulting from this species being in a refuge during the last glaciation (at population level: P = 63.25%, Ae = 1.47, HE = 0.26 and HO = 0.37; at species level: P = 79.00%, A = 1.5538, HT = 0.2586 and Hsp = 0.3104). A low level of genetic differentiation among populations was detected based on Nei's genetic diversity analysis (16.69%) and AMOVA (19.36%). Populations shared high levels of genetic identity. Insect pollination and seed dispersal by wind may have facilitated extensive gene flow and are likely responsible for this present structure of genetic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号