首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang N  Yu FH  Li PX  He WM  Liu FH  Liu JM  Dong M 《Annals of botany》2008,101(5):671-678
Background and Aims: Many notorious alien invasive plants are clonal, but littleis known about some roles and aspects of clonal integration.Here, the hypothesis is tested that clonal integration affectsgrowth, photosynthetic efficiency, biomass allocation and competitiveability of the exotic invasive weed Alternanthera philoxeroides(Amaranthaceae). Methods: The apical parts of Alternanthera were grown either with orwithout the lawn grass Schedonorus phoenix (tall fescue) andtheir stolon connections to the basal parts grown without competitorswere either severed or left intact. Key Results: Competition greatly reduced the maximum quantum yield of photosystemII (Fv/Fm) and growth (biomass, number of ramets and leaves,total stolon length and total leaf area) of the apical Alternanthera,but not the biomass of S. phoenix. Stolon connections significantlyincreased Fv/Fm and growth of Alternanthera. However, such effectson growth were smaller with than without competition and stolonconnections did not alter the relative neighbour effect of Alternanthera.Stolon connections increased Alternanthera's biomass allocationto roots without competition, but decreased it with competition. Conclusions: Clonal integration contributed little to Alternanthera's competitiveability, but was very important for Alternanthera to exploreopen space. The results suggest that the invasiveness of Alternantheramay be closely related to clonal integration.  相似文献   

2.
Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides''s biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits from clonal integration more than co-occurring native J. repens, suggesting that the invasiveness of A. philoxeroides may be closely related to clonal integration in heterogeneous environments.  相似文献   

3.
克隆整合有助于狗牙根抵御水淹   总被引:8,自引:1,他引:7       下载免费PDF全文
尽管国内外开展了大量的克隆整合对克隆植物抵御逆境能力影响的研究, 但整合对植物抵御水淹能力的影响研究仍比较缺乏。该文从克隆整合的角度探讨多年生草本植物狗牙根(Cynodon dactylon)对水淹胁迫的响应。试验模拟了先端分株(相对年幼的分株)分别处于0、5和15 cm三种水淹胁迫环境, 并在每个水淹梯度下实施先端分株与基端分株(相对年长的分株)之间匍匐茎连接或切断处理, 调查水淹一个月后基端分株和先端分株以及整个克隆片段在形态和生理上的表现。研究发现: 切断匍匐茎连接显著降低了狗牙根先端分株的生长, 表现在生物量下降、匍匐茎长度减短和分株数减少等方面; 水淹显著抑制了先端分株的生长, 但对基端分株的生长并未造成显著影响; 在5 cm水淹处理下, 匍匐茎保持连接时, 先端分株和整个克隆片段的生长显著增加; 连接或切断处理在不同水淹梯度下对匍匐茎平均节间长没有显著影响, 对先端分株或基端分株在光化学转化效率上也未表现显著性差异。结果表明: 克隆整合效应促进了狗牙根在水淹胁迫下分株的生长, 并有助于整个克隆片段抵御水淹胁迫。  相似文献   

4.
Some clonal plants can spread their ramet populations radially, and soil heterogeneity and clonal integration may greatly affect the establishment of these types of populations. We constructed Alternanthera philoxeroides populations with a radial ramet aggregation, allowing old ramets of clonal fragments to concentrate in central pots and younger ramets to root in peripheral pots. The peripheral pots were supplemented either with three different levels (high, medium and low) of soil nutrients to simulate a heterogeneous soil environment, or only one medium level of soil nutrients to simulate a homogeneous environment. Stolon connections between the central older ramets and the peripheral younger ramets were left intact or severed to test the effect of clonal integration. The maintenance of stolon connection could induce the division of labor between different‐aged ramets, by increasing the root investment in central ramets and the above‐ground growth in peripheral ramets. The maintenance of stolon connection could improve the growth of the central and peripheral ramets, clonal fragments and even the whole population. However, the positive consequence in peripheral ramets and whole fragments was only detected in the high‐nutrient patch of heterogeneous treatment. In sum, in the population with the radial ramet aggregation, clonal integration can play a key role in the rapid recruitment of young ramets of A. philoxeroides fragments, as well as the expansion of the whole population. The magnitude of clonal integration also became more obvious in the peripheral young ramets and whole fragments that experienced high‐nutrient patches.  相似文献   

5.
Disturbance is common in nature and disturbance-caused fragmentation of clones happens frequently in stoloniferous plants. After fragmentation storage in stolon internodes and leaves may enhance survival and growth of stoloniferous plants. We hypothesize that (1) increasing length of the internode attached to the ramet and (2) presence of leaves will increase ramet survival and growth, and that (3) internode positions (before or after the ramet or both) will also play a role. We tested these hypotheses with the stoloniferous, invasive herb Alternanthera philoxeroides. In one experiment, we measured survival and growth of the ramets either without stolon internode (0 cm in length) or attached with internodes of 2, 4, 6 and 8 cm and either with or without leaves. In the other experiment, we measured survival and growth of the ramets attached with a proximal internode (before the ramet), a distal internode (after the ramet) or both. Increasing internode length and presence of leaves significantly increased the survival rate and growth (biomass, leaf area, number of ramets, stolon length and number of leaves) of the A. philoxeroides plants. All growth measures of A. philoxeroides at harvest were larger when the ramets were attached with a distal internode than when they were attached with a proximal internode, but the survival rate was lower. These results support the hypotheses and suggest that storage in stolons and leaves may be of great significance for clonal plants in frequently disturbed habitats and may contribute greatly to the invasiveness of A. philoxeroides.  相似文献   

6.
Few studies have examined the effects of clonal integration (translocation of resources between interconnected ramets) during the expansion of amphibious clonal plants from terrestrial to aquatic habitats. We conducted a greenhouse experiment to simulate the expansion of plants from terrestrial to contaminated aquatic habitats in the amphibious stoloniferous herb Alternanthera philoxeroides (alligator weed). The proximal ramets (i.e. relatively old) of clonal fragments grown in uncontaminated soils were connected to (allowing clonal integration) or disconnected from (preventing clonal integration) distal ramets (i.e. relatively young) grown either in uncontaminated water (control, no CuSO4) or in four copper‐contaminated water treatments containing 31.25, 62.5, 125 and 250 mg/L CuSO4, respectively. When a stolon connection was severed, all distal ramets grown in the contaminated water died. When the stolon connection was intact, however, the survival rate of the distal ramets was 85–100% when they were grown at the three lower levels of contamination and 43.75% at the highest level. Moreover, the survival rate and growth of the distal ramets grown in the three lower levels of contamination treatments did not differ from those in the control (uncontaminated water). These results suggest that clonal integration could greatly improve the survival and growth of alligator weed subjected to moderate levels of copper stress. Although clonal integration could also increase the survival rate of the connected distal ramets subjected to the highest level of copper stress (250 mg/L CuSO4) compared with that of disconnected distal ramets, the survival rate and growth measures were still significantly lower than those in the control. This suggests that clonal integration plays a limited role in the survival and growth of alligator weed when it is subjected to severe stress by high levels of copper contamination.  相似文献   

7.
Effects of clonal integration on land plants have been extensively studied, but little is known about the role in amphibious plants that expand from terrestrial to aquatic conditions. We simulated expansion from terrestrial to aquatic habitats in the amphibious stoloniferous alien invasive alligator weed ( Alternanthera philoxeroides ) by growing basal ramets of clonal fragments in soils connected (allowing integration) or disconnected (preventing integration) to the apical ramets of the same fragments submerged in water to a depth of 0, 5, 10 or 15 cm. Clonal integration significantly increased growth and clonal reproduction of the apical ramets, but decreased both of these characteristics in basal ramets. Consequently, integration did not affect the performance of whole clonal fragments. We propose that alligator weed possesses a double-edged mechanism during population expansion: apical ramets in aquatic habitats can increase growth through connected basal parts in terrestrial habitats; however, once stolon connections with apical ramets are lost by external disturbance, the basal ramets in terrestrial habitats increase stolon and ramet production for rapid spreading. This may contribute greatly to the invasiveness of alligator weed and also make it very adaptable to habitats with heavy disturbance and/or highly heterogeneous resource supply.  相似文献   

8.
Physiological integration is a major ecological advantage of clonal growth in angiosperms. Clonal growth is also common in pteridophytes, but almost no study has tested whether clonal integration increases performance in ramets of pteridophytes in natural populations. To test this hypothesis and also whether the positive effect of integration is greater on smaller ramets, we severed the connecting rhizomes of individual ramets of the common, understory fern Diplopterygium glaucum in an evergreen, broadleaf forest in southeastern China. In another experiment, we severed rhizomes around the edges of small plots each containing several ramets. After 19.5 weeks, survival was 100% in intact individual ramets but only 27% in severed ones. Among surviving ramets, final dry mass and lamina mass were also less in severed than in intact ramets, though stalk, rhizome, and root mass and maximum quantum yield of PSII (Fv/Fm) were not reduced. Individual ramets with fewer stalk nodes had lower dry mass but were not more affected by severing than ramets with more stalk nodes. Severance around the edge of plots did not significantly affect the combined final mass of the ramets within a plot. We conclude that clonal integration can have significant positive effects on both survival and growth of individual ramets of ferns in natural populations.  相似文献   

9.

Background and aims

In contrast to seeds, high sensitivity of vegetative fragments to unfavourable environments may limit the expansion of clonal invasive plants. However, clonal integration promotes the establishment of propagules in less suitable habitats and may facilitate the expansion of clonal invaders into intact native communities. Here, we examine the influence of clonal integration on the morphology and growth of ramets in two invasive plants, Alternanthera philoxeroides and Phyla canescens, under varying light conditions.

Methods

In a greenhouse experiment, branches, connected ramets and severed ramets of the same mother plant were exposed under full sun and 85% shade and their morphological and growth responses were assessed.

Key results

The influence of clonal integration on the light reaction norm (connection×light interaction) of daughter ramets was species-specific. For A. philoxeroides, clonal integration evened out the light response (total biomass, leaf mass per area, and stem number, diameter and length) displayed in severed ramets, but these connection×light interactions were largely absent for P. canescens. Nevertheless, for both species, clonal integration overwhelmed light effect in promoting the growth of juvenile ramets during early development. Also, vertical growth, as an apparent shade acclimation response, was more prevalent in severed ramets than in connected ramets. Finally, unrooted branches displayed smaller organ size and slower growth than connected ramets, but the pattern of light reaction was similar, suggesting mother plants invest in daughter ramets prior to their own branches.

Conclusions

Clonal integration modifies light reaction norms of morphological and growth traits in a species-specific manner for A. philoxeroides and P. canescens, but it improves the establishment of juvenile ramets of both species in light-limiting environments by promoting their growth during early development. This factor may be partially responsible for their ability to successfully colonize native plant communities.  相似文献   

10.
Clonal plants adaptively respond to abiotic stress, but to date little is known about under what circumstanses clonal integration is beneficial, or costly. To study the costs and benefits of clonal integration on clonal growth, we cultivated Zoysia japonica under three ratios of N:P (N:P ≈ 7, 14:1 and 21:1), and four types of stolon severing treatments (connected stolon CS, light severing LS, moderate severing MS, serious severing SS). The results showed that Z. japonica performed best at a low ratio of N:P (N:P ≈ 7:1). When the stolons were connected (CS), the growth of primary A‐ramets, multiple‐nodes and stolons benefited from clonal integration; however, the growth of primary B‐ramets on the primary stolons, A and B ramets was significantly reduced (p < 0.05). In the moderate stolon severing treatment MS7:1 (N:P ≈ 7:1), clonal integration appeared more cost effective than in all other treatments. On the whole, with increasing stolon severing intensity, the cost of clonal integration increased and the clonal growth of Z. japonica declined significantly. The pattern of biomass allocation may be useful for Z. japonica to adapt to the various environments, and clonal integration plays a significant role under adverse environmental conditions.  相似文献   

11.

Background and Aims

Submergence and de-submergence are common phenomena encountered by riparian plants due to water level fluctuations, but little is known about the role of physiological integration in clonal plants (resource sharing between interconnected ramets) in their adaptation to such events. Using Alternanthera philoxeroides (alligator weed) as an example, this study tested the hypotheses that physiological integration will improve growth and photosynthetic capacity of submerged ramets during submergence and will promote their recovery following de-submergence.

Methods

Connected clones of A. philoxeroides, each consisting of two ramet systems and a stolon internode connecting them, were grown under control (both ramet systems untreated), half-submerged (one ramet system submerged and the other not submerged), fully submerged (both ramet systems submerged), half-shaded (one ramet system shaded and the other not shaded) and full-shaded (both ramet systems shaded) conditions for 30 d and then de-submerged/de-shaded for 20 d. The submerged plants were also shaded to very low light intensities, mimicking typical conditions in turbid floodwater.

Key Results

After 30 d of submergence, connections between submerged and non-submerged ramets significantly increased growth and carbohydrate accumulation of the submerged ramets, but decreased the growth of the non-submerged ramets. After 20 d of de-submergence, connections did not significantly affect the growth of either de-submerged or non-submerged ramets, but de-submerged ramets had high soluble sugar concentrations, suggesting high metabolic activities. The shift from significant effects of integration on both submerged and non-submerged ramets during the submergence period to little effect during the de-submergence period was due to the quick recovery of growth and photosynthesis. The effects of physiological integration were not found to be any stronger under submergence/de-submergence than under shading/de-shading.

Conclusions

The results indicate that it is not just the beneficial effects of physiological integration that are crucial to the survival of riparian clonal plants during periods of submergence, but also the ability to recover growth and photosynthesis rapidly after de-submergence, which thus allows them to spread.  相似文献   

12.
A greenhouse experiment examined whether clonal integration improves photosynthesis of ramets of alligator weed [Alternanthera philoxeroides (Mart.) Griseb.], a widespread invasive clonal plant in China, in heterogeneous (He) nutrient habitats. The connected pairs of ramets experienced different nutrient levels [high homogeneous (Ho) nutrient, low Ho nutrient, and two He nutrient treatments]. Clonal integration significantly improved the net photosynthetic rate, stomatal conductance, transpiration rate, and minimal and maximal chlorophyll fluorescence of ramets of alligator weed in low nutrient condition. These characteristics may contribute to the success of the ramets of alligator weed in invading contrasting habitats. The clonal integration of the invasive clonal plants may contribute significantly to their invasiveness.  相似文献   

13.
Clonal growth seems to be a common trait for many of the most aggressive invasive plant species. However, little research has been conducted to determine the role of clonality in the successful invasion of new areas by exotic species. Carpobrotus edulis (L.) N.E. Br. is a mat-forming succulent plant, native to South Africa that is invasive in coastal dunes of Australia, New Zealand, USA and Southern Europe. Although Carpobrotus edulis is a clonal plant, there is no information on the role of clonality for the invasion by this species, therefore the objective of this study was to test whether or not physiological integration improves the performance of C. edulis invading coastal sand dunes. To do that, a 6-month field experiment was designed in which the stolon connections between the apical ramets and the C. edulis mats were severed to prevent physiological integration. This treatment was applied to ramets growing under high and low competition with the native species. Apical ramets with intact stolon connections were used as control. Integration improved the survivorship and growth of apical ramets, both in high and low competition. Connected ramets showed a more pronounced increase of clonal growth (estimated as stolon length) during the experimental period and a higher total biomass and number of ramets at the completion of the experiment. In terms of survivorship, the benefit of integration was greater under high competition. Physiological integration can therefore be considered an important factor in the invasiveness of C. edulis, both in open space and in direct competition with the native plants.  相似文献   

14.
Water, minerals, nutrients, etc., can be shared by physiological integration among inter-connected ramets of clonal plants. Nitrogen plays an important role in alleviating cadmium (Cd) stress for clonal plants. But how different forms of nitrogen affect growth performance of clonal plants subjected to heterogeneous Cd stress still remains poorly understood. A pot experiment was conducted to investigate the differential effects of ammonium and nitrate on growth performance of Glechoma longituba under heterogeneous Cd stress. In the experiment, parent ramets of Glechoma longituba clonal fragments were respectively supplied with modified Hoagland solution containing 7.5 mM ammonium, 7.5 mM nitrate or the same volume of nutrient solution without nitrogen. Cd solution with different concentrations (0, 0.1 or 2.0 mM) was applied to offspring ramets of the clonal fragments. Compared with control (N-free), nitrogen addition to parent ramets, especially ammonium, significantly improved antioxidant capacity [glutathione (GSH), proline (Pro), peroxidase (POD,) superoxide dismutase (SOD) and catalase (CAT)], PSII activity [maximum quantum yield of PSII (Fv/Fm) and effective quantum yield of PSII (ΦPSII)], chlorophyll content and biomass accumulation of the offspring ramets suffering from Cd stress. In addition, negative effects of nitrate on growth performance of whole clonal fragments were observed under Cd stress with high concentration (2.0 mM). Transportation or sharing of nitrogen, especially ammonium, can improve growth performance of clonal plants under heterogeneous Cd stress. The experiment provides insight into transmission mechanism of nitrogen among ramets of clonal plants suffering from heterogeneous nutrient supply. Physiological integration might be an important ecological strategy for clonal plants adapting to heterogeneous environment stress conditions.  相似文献   

15.
Vegetative regeneration plays an important role in the adaptation of clonal plants in frequently disturbed habitats, but few studies have compared vegetative regeneration capacity of invasive clonal plants with that of their native congeners. Vegetative regeneration capacity from shoot nodes can also be affected by the position of the nodes, but this appears little studied. We conducted a greenhouse experiment with Alternanthera philoxeroides, a highly invasive species in China, and its native congener A. sessilis to test the difference in vegetative regeneration capacity of stolon nodes at five different positions (i.e. 3rd, 4th, 5th, 6th and 7th node starting from the apex of the stolon). At the end of the experiment, we counted and harvested all regenerated plants and determined their biomass and allocation. Both species could successfully regenerate from stolon fragments and node position significantly affected regeneration rate and subsequent growth. However, the vegetative regeneration capacity of A. philoxeroides was not higher than that of A. sessilis. These results suggest that vegetative regeneration from stolon fragments may not be a trait that can explain the invasiveness of A. philoxeroides.  相似文献   

16.
Many flooding‐tolerant species are clonal plants; however, the effects of physiological integration on plant responses to flooding have received limited attention. We hypothesise that flooding can trigger changes in metabolism of carbohydrates and ROS (reactive oxygen species) in clonal plants, and that physiological integration can ameliorate the adverse effects of stress, subsequently restoring the growth of flooded ramets. In the present study, we conducted a factorial experiment combining flooding to apical ramets and stolon severing (preventing physiological integration) between apical and basal ramets of Cynodon dactylon, which is a stoloniferous perennial grass with considerable flooding tolerance. Flooding‐induced responses including decreased root biomass, accumulation of soluble sugar and starch, as well as increased activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in apical ramets. Physiological integration relieved growth inhibition, carbohydrate accumulation and induction of antioxidant enzyme activity in stressed ramets, as expected, without any observable cost in unstressed ramets. We speculate that relief of flooding stress in clonal plants may rely on oxidising power and electron acceptors transferred between ramets through physiological integration.  相似文献   

17.
Plant invasion is one of the major threats to natural ecosystems. Phenotypic plasticity is considered to be important for promoting plant invasiveness. High tolerance of stress can also increase survival of invasive plants in adverse habitats. Limited growth and conservation of carbohydrate are considered to increase tolerance of flooding in plants. However, few studies have examined whether invasive species shows a higher phenotypic plasticity in response to waterlogging or a higher tolerance of waterlogging (lower plasticity) than native species. We conducted a greenhouse experiment to compare the growth and morphological and physiological responses to waterlogging of the invasive, clonal, wetland species Alternanthera philoxeroides with those of its co-occurring, native, congeneric, clonal species Alternanthera sessilis. Plants of A. philoxeroides and A. sessilis were subjected to three treatments (control, 0 and 60 cm waterlogging). Both A. philoxeroides and A. sessilis survived all treatments. Overall growth was lower in A. philoxeroides than in A. sessilis, but waterlogging negatively affected the growth of A. philoxeroides less strongly than that of A. sessilis. Alternanthera philoxeroides thus showed less sensitivity of growth traits (lower plasticity) and higher waterlogging tolerance. Moreover, the photosynthetic capacity of A. philoxeroides was higher than that of A. sessilis during waterlogging. Alternanthera philoxeroides also had higher total non-structural and non-soluble carbohydrate concentrations than A. sessilis at the end of treatments. Our results suggest that higher tolerance to waterlogging and higher photosynthetic capacity may partly explain the invasion success of A. philoxeroides in wetlands.  相似文献   

18.
很多外来入侵植物都具有克隆生长习性,探究克隆整合特性与外来克隆植物入侵性间的关系对阐明其生态适应性及入侵机制具有重要的意义。本研究以入侵植物空心莲子草及其本地同属种莲子草为研究对象,比较在生防昆虫莲草直胸跳甲的取食下,克隆整合对两种植物先端分株、基端分株及整个克隆片段生长和生物量分配的影响。结果表明: 在莲草直胸跳甲取食下,有克隆整合的空心莲子草先端分株的叶片数、茎长、分株数及整个克隆片段的地径均显著高于无克隆整合植株,其基端分株及整个克隆片段的地下生物量和总生物量相较于无克隆整合植株分别降低了78.2%、60.9%和48.7%、37.2%;有克隆整合的莲子草先端分株的地径及整个克隆片段的叶片数与无克隆整合植株相比显著增加,其基端分株数显著降低了21.7%,而其先端分株、基端分株及整个克隆片段的生物量均无显著差异。耗益分析表明,在莲草直胸跳甲取食下,空心莲子草先端分株的分株数与生物量及莲子草先端分株的分株数均能通过克隆整合显著受益,而两种植物基端的分株数、生物量的耗益则不受克隆整合处理的影响。这些结果表明,克隆整合虽能在一定程度缓解莲草直胸跳甲对于两种植物先端分株的取食压力,且空心莲子草的克隆整合作用要强于莲子草,但在整个克隆片段水平上,两种植物并不能通过克隆整合显著获益。  相似文献   

19.
Physical connection between ramets usually allows clonal plants to perform better but can have the opposite effects in some cases. Clonal integration and the effects of climate warming have been extensively studied, but to date little is known about how climate warming affects the benefits of clonal integration. We conducted a field experiment in which Alternanthera philoxeroides segments with connected and severed stolons were subject to four climate regimes (ambient, day warming, night warming and daily warming), and measured final biomass, number of ramets and total length of stolons. Across the three warming treatments, temperature rise suppressed growth of clonal fragments with connected stolons but increased growth of fragments with severed stolons; temperature rise affected the biomass of distal ramets but not proximal ramets, and had similar effects on the numbers of proximal and distal ramets. When the three warming treatments were considered separately, they had contrasting consequences for the benefits of clonal integration. Specifically, when fragments were exposed to day and night warming, physical connection evened out the advantages of clonal integration that occur under ambient conditions; when fragments were exposed to daily warming, physical connection led to smaller clonal plants. These findings suggest that physical connection between ramets may be disadvantageous to overall performance of A. philoxeroides fragments under climate warming, and also indicate that the net consequences of daily warming outweigh those of day or night warming.  相似文献   

20.

Background and Aims

Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation.

Methods

In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits.

Key Results

Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection.

Conclusions

Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号