首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stoichiometry of the electrocatalytical cycle of cytochrome P450 2B4 was studied in kinetic mode according to bielectrode scheme. Graphite screen-printed electrodes with immobilized cytochrome P450 2B4 were used as the operating electrode (at the potential E0′ = −450 mV) and electrodes, modified with cytochrome c (E0′ = −50 mV) or Prussian Blue (E0′ = 0), as measuring electrodes (for H2O2) and Clark-type electrode (for O2). Benzphetamine N-demethylation rate was 17 ± 3 nmol/nmol of enzyme/min, peroxide production was 4.8 ± 0.7 nmol/nmol of enzyme/min (substrate-free system), 3.3 ± 0.6 nmol/nmol of enzyme/min (0.5 mM benzphetamine), the oxygen consumption rate by Р450 2В4 was 19.4 ± 0.6 nmol/nmol of enzyme/min (in the presence of benzphetamine), 4.8 ± 0.4 nmol/nmol of enzyme/min (without substrate). Based on stoichiometry of P450 electrocatalysis adequacy of electrochemical reduction and P450-monooxygenase system was revealed.  相似文献   

2.
The dissociation kinetics of the europium(III) complex with H8dotp ligand was studied by means of molecular absorption spectroscopy in UV region at ionic strength 3.0 mol dm−3 (Na,H)ClO4 and in temperature region 25-60 °C. Time-resolved laser-induced fluorescence spectroscopy (TRLIFS) was employed in order to determine the number of water molecules in the first coordination sphere of the europium(III) reaction intermediates and the final products. This technique was also utilized to deduce the composition of reaction intermediates in course of dissociation reaction simultaneously with calculation of rate constants and it demonstrates the elucidation of intimate reaction mechanism. The thermodynamic parameters for the formation of kinetic intermediate (ΔH0 = 11 ± 3 kJ mol−1, ΔS0 = 41 ± 11 J K−1 mol−1) and the activation parameters (Ea = 69 ± 8 kJ mol−1, ΔH = 67 ± 8 kJ mol−1, ΔS = −83 ± 24 J K−1 mol−1) for the rate-determining step describing the complex dissociation were determined. The mechanism of proton-assisted reaction was proposed on the basis of the experimental data.  相似文献   

3.
Flooded paddy fields perform many ecological and conservation functions and are also reported to facilitate livestock waste disposal. Paddy field infiltration rates are important for nitrogen dynamics. A laboratory study was conducted to compare the effects of infiltration rate on nitrogen dynamics including nitrogen leaching, soil adsorption, microorganism assimilation, plant uptake and denitrification. Two infiltration rates were applied to paddy soil: 18.6 ± 10.3 mm d−1 (High Infiltration Columns: HIC) and 4.49 ± 3.15 mm d−1 (Low Infiltration Columns: LIC). Total nitrogen load was 484 kg-N ha−1, with the ammonium ion form including basal fertilizer and a double supplemental fertilizer application. A (15NH4)2SO4 tracer was applied in each infiltration rate as supplemental fertilizer.Nitrification and denitrification, plant uptake, soil adsorption, and leaching differed between infiltration rates. Compared with high nitrate concentration in HIC soil water, little nitrate appeared in the LIC, and it maintained relatively higher soil water ammonium concentrations long after application. The 15N assimilated by rice and contained in the LIC soil was higher than in the HIC, suggesting that low infiltration is beneficial to nitrogen assimilation, adsorption and fixation. Although loss of nitrogen via leaching was higher in the HIC than the LIC, it accounted for only 3.94% of total 15N input. About 69.4% of total 15N input was unaccounted for in the HIC, whereas 38.3% of total 15N input was unaccounted for in the LIC. According to the denitrification rate calculated from changes in 29N2/28N2 and 30N2/28N2 ratios, the denitrification rate after HIC application was higher than the LIC, reaching a maximum rate of 2.9 g m−2 d−1. This suggests that high infiltration rate enhances nitrification and denitrification, with most of the unaccounted inputted 15N in the HIC was probably lost through nitrification and denitrification.  相似文献   

4.
We studied the decolorization of malachite green (MG) by the fungus Cunninghamella elegans. The mitochondrial activity for MG reduction was increased with a simultaneous increase of a 9-kDa protein, called CeCyt. The presence of cytochrome c in CeCyt protein was determined by optical absorbance spectroscopy with an extinction coefficient (E550-535) of 19.7 ± 6.3 mM−1 cm−1 and reduction potential of + 261 mV. When purified CeCyt was added into the mitochondria, the specific activity of CeCyt reached 440 ± 122 μmol min−1 mg−1 protein. The inhibition of MG reduction by stigmatellin, but not by antimycin A, indicated a possible linkage of CeCyt activity to the Qo site of the bc1 complex. The RT-PCR results showed tight regulation of the cecyt gene expression by reactive oxygen species. We suggest that CeCyt acts as a protein reductant for MG under oxidative stress in a stationary or secondary growth stage of this fungus.  相似文献   

5.
The aim of this study was to compare the pharmacokinetics of baicalin and wogonoside in rats following oral administration of Xiaochaihu Tang (Minor Radix Bupleuri Decoction) and Radix scutellariae extract. Thus, a specific LC–MS method was developed and validated for the determination of these flavonoids in the plasma of rats after oral administration Xiaochaihu Tang and Radix scutellariae extract. Chromatographic separation was performed on a Zorbax SB C18 column (150 mm × 4.6 mm, i.d.: 5 μm) with 0.1% formic acid in water and acetonitrile by linear gradient elution. Baicalin, wogonoside and carbamazepine (internal standard, I.S.) were detected in select-ion-monitoring (SIM) mode with a positive electrospray ionization (ESI) interface. The following ions: m/z 447 for baicalin, m/z 461 for wogonoside and m/z 237 for the I.S. were used for quantitative determination. The calibration curves were linear over the concentration ranges from 0.1231 to 6.156 μg mL−1 for baicalin and 0.08832 to 4.416 μg mL−1 for wogonoside. The lower limit of detection (LLOD) based on a signal-to-noise ratio of 2 was 0.06155 μg mL−1 for baicalin and 0.04416 μg mL−1 for wogonoside. Intra-day and inter-day precisions (RSD%) were within 10% and accuracy (RE%) ranged from −6.4 to 4.4%. The extraction recovery at three QC concentrations ranged from 74.7 to 86.0% for baicalin and from 71.3 to 83.7% for wogonoside. The plasma concentrations of baicalin and wogonoside in rats at designated time periods after oral administration were successfully determined using the validated method, pharmacokinetic parameters were estimated by a non-compartment model. Following oral administration of Xiaochaihu Tang and Radix scutellariae extract, the t1/2 of baicalin was 3.60 ± 0.90 and 5.64 ± 1.67, the Cmax1 was 1.64 ± 0.99 and 5.66 ± 2.02, the tmax1 was 0.13 ± 0.05 and 0.20 ± 0.07, the Cmax2 was 2.43 ± 0.46 and 3.18 ± 1.66, and the tmax2 were 6.40 ± 1.67 and 5.66 ± 2.02, respectively. Following oral administration of Xiaochaihu Tang and Radix scutellariae extract, the t1/2 of wogonoside was 4.97 ± 1.68 and 7.71 ± 1.55, the Cmax1 was 1.39 ± 0.83 and 1.45 ± 0.37, the tmax1 was 0.21 ± 0.20 and 0.17 ± 0.01, the Cmax2 was 1.90 ± 0.55 and 1.42 ± 0.70, and the tmax2 was 5.60 ± 1.67 and 5.20 ± 1.79, respectively. A significant difference (p < 0.05) was observed for t1/2, and the elimination of baicalin and wogonoside in Xiaochaihu Tang was increased.  相似文献   

6.
Inter-strain variability in pH compensation point (pHc) in the cyanobacterium Microcystis aeruginosa has been investigated. The pHc allows one to discriminate whether the organism is able to take up HCO3 as inorganic carbon (Ci) source in photosynthesis. Eight subgroups were found according to the pHc value, ranging from 10.44 ± 0.22 to 11.67 ± 0.05. The high variability in pHc (and consequently, in the capacity to use HCO3 as Ci source) suggested that different HCO3 use mechanisms could occur in M. aeruginosa and, from an evolutionary point of view, this trait is not under high natural selective pressure.  相似文献   

7.
A case study on Centaurea gymnocarpa Moris & De Not., a narrow endemic species, was carried out by analyzing its morphological, anatomical, and physiological traits in response to natural habitat stress factors under Mediterranean climate conditions. The results underline that the species is particularly adapted to the environment where it naturally grows. At the plant level, the above-ground/below-ground dry mass (1.73 ± 0.60) shows its investment predominately in the above-ground structure with a resulting total leaf area per plant of 1399 ± 94 cm2. The senescent attached leaves at the base of the plant contribute to limit leaf transpiration by shading soil around the plant. Moreover, the dense C. gymnocarpa leaf pubescence, leaf rolling, the relatively high leaf mass area (LMA = 12.3 ± 1.3 mg cm−2) and leaf tissue density (LTD = 427 ± 44 mg cm−3) contribute to limit leaf transpiration, also postponing leaf death under dry conditions. At the physiological level, a relatively low respiration/photosynthesis ratio (R/PN) in spring results from high R [2.26 ± 0.59 μmol (CO2) m−2 s−1] and PN [12.3 ± 1.5 μmol (CO2) m−2 s−1]. The high photosynthetic nitrogen use efficiency [PNUE = 15.5 ± 0.4 μmol (CO2) g−1 (N) s−1] shows the large amount of nitrogen (N) invested in the photosynthetic machinery of new leaves, associated to a high chlorophyll content (Chl = 35 ± 5 SPAD units). On the contrary, the highest R/PN ratio (1.75 ± 0.19) in summer is due to a significant PN decrease and increase of R in response to drought. The low PNUE [1.5 ± 0.2 μmol (CO2) g−1 (N) s−1] in this season is indicative of a greater N investment in leaf cell walls which may contribute to limit transpiration. On the contrary, the low R/PN ratio (0.05 ± 0.02) in winter is resulting from the limited enzyme activity of the respiratory apparatus [R = 0.23 ± 0.08 μmol (CO2) m−2 s−1] while the low PNUE [3.5 ± 0.2 μmol (CO2) g−1 (N) s−1] suggests that low temperatures additionally limit plant production. The experiment of the imposed water stress confirms that the C. gymnocarpa growth capability is in conformity with the severe conditions of its natural habitat, likewise as it may be the case with others narrow endemic species that have occupied niches with similar extreme conditions.  相似文献   

8.
This work was aimed to develop water resistant biocide film from renewable resources for applications in food and water technology. Guar gum, a polymeric galactomannan, was intrinsically modified to a new guar gum benzamide. Benzoylation was carried out by benzoyl chloride reaction in water medium and a propyl amine spacer was used to impart a high degree of hydrophobicity. The new guar gum benzamide was resistant to water and soluble in non aqueous solvent like dimethyl sulfoxide. Cast films of thickness 0.162 mm had a breaking point tensile strength of 21.95 Mpa. The water vapor permeability of biomaterial film was 0.28 g mm kPa−1 h−1 m−2 and water contact angle on evaporative surface was 90.35 degree. Qualitative and quantitative biocide activity of film was established against Salmonella enterica, Escherichia coli, Staphylococcus aureus and Bacillus subtilis. The new guar gum benzamide absorbed strongly in UV region.  相似文献   

9.
Our study aimed to test the ability of aquatic plants to use bicarbonate when acclimated to three different bicarbonate concentrations. To this end, we performed experiments with the three species Ceratophyllum demersum, Egeria densa, Lagarosiphon major to determine photosynthetic rates under varying bicarbonate concentrations. We measured bicarbonate use efficiency, photosynthetic performance and respiration. For all species, our results revealed that photosynthetic rates were highest in replicates grown at low alkalinity. Thus, E. densa had approx. five times higher rates at low (264 ± 15 μmol O2 g−1 DW h−1) than at high alkalinity (50 ± 27 μmol O2 g−1 DW h−1), C. demersum had three times higher rates (336 ± 95 and 120 ± 31 μmol O2 g−1 DW h−1), and L. major doubled its rates at low alkalinity (634 ± 114 and 322 ± 119 μmol O2 g−1 DW h−1). Similar results were obtained for bicarbonate use efficiency by E. densa (136 ± 44 and 43 ± 10 μmol O2 mequiv. L−1 g−1 DW h−1) and L. major (244 ± 29 and 82 ± 24 μmol O2 mequiv. L−1 g−1 DW h−1). As to C. demersum, efficiency was high but unaffected by alkalinity, indicating high adaptation ability to varied alkalinities. A pH drift experiment supported these results. Overall, our results suggest that the three globally widespread worldwide species of our study adapt to low inorganic carbon availability by increasing their efficiency of bicarbonate use.  相似文献   

10.
Crude glycerol is a major byproduct of the biodiesel industry; previous research has proved the feasibility of producing docosahexaenoic acid (DHA, 22:6 n − 3) through fermentation of the algae Schizochytrium limacinum on crude glycerol. The objective of this work is to investigate the cell growth kinetics, substrate utilization efficiency, and DHA production of the algae through a continuous culture. Steady-state biomass yield, biomass productivity, growth yield on glycerol, specific glycerol consumption rate, and fatty acid composition were investigated within the range of dilution rate (D) from 0.2 to 0.6 day−1, and the range of feed crude glycerol concentration (S0) from 15 to 120 g/L. The maximum specific growth rate was determined as 0.692 day−1. The cells had a true growth yield of 0.283 g/g but with a relatively high maintenance coefficient (0.2216 day−1). The highest biomass productivity of 3.88 g/L-day was obtained at D = 0.3 day−1 and S0 = 60 g/L, while the highest DHA productivity (0.52 g/L-day) was obtained at D = 0.3 day−1 and S0 = 90 g/L due to the higher DHA content at S0 = 90 g/L. The biomass and DHA productivity of the continuous culture was comparable to those of batch culture, while lower than the fed-batch culture, mainly because of the lower DHA content obtained by the continuous culture. Overall, the results show that continuous culture is a powerful tool to investigate the cell growth kinetics and physiological behaviors of the algae growing on biodiesel-derived crude glycerol.  相似文献   

11.
Biological kinetic (bio-kinetic) study of the anaerobic stabilization pond treatment of palm oil mill effluent (POME) was carried out in a laboratory anaerobic bench scale reactor (ABSR). The reactor was operated at different feed flow-rates of 0.63, 0.76, 0.95, 1.27, 1.9 and 3.8 l of raw POME for a day. Chemical oxygen demand (COD) as influent substrates was selected for bio-kinetic study. The investigation showed that the growth yield (YG), specific biomass decay (b), maximum specific biomass growth rate (μmax), saturation constant (Ks) and critical retention time (Θc) were in the range of 0.990 g VSS/g CODremoved day, 0.024 day−1, 0.524 day−1, 203.433 g COD l−1 and 1.908 day, respectively.  相似文献   

12.
The ammonium (NH4+) and nitrate (NO3) uptake responses of tetrasporophyte cultures from a Portuguese population of Gracilaria vermiculophylla were studied. Thalli were incubated at 5 nitrogen (N) levels, including single (50 μM of NH4+ or NO3) and combined addition of each of the N sources. For the combined additions, the experimental conditions attempted to simulate 2 environments with high N availability (450 μM NO3 + 150 μM NH4+; 250 μM NO3 + 50 μM NH4+) and the mean N concentrations occurring at the estuarine environment of this population (30 μM NO3 + 5 μM NH4+). The uptake kinetics of NH4+ and NO3 were determined during a 4 h time-course experiment with N deprived algae. The experiment was continued up to 48 h, with media exchanges every 4 h. The uptake rates and efficiency of the two N sources were calculated for each time interval. For the first 4 h, G. vermiculophylla exhibited non-saturated uptake for both N sources even for the highest concentrations used. The uptake rates and efficiency calculated for that period (V0-4 h), respectively, increased and decreased with increasing substrate concentration. NO3 uptake rates were superior, ranging from 1.06 ± 0.1 to 9.65 ± 1.2 μM g(dw)−1 h−1, with efficiencies of 19% to 53%. NH4+ uptake rates were lower (0.32 ± 0.0 to 5.75 ± 0.08 μM g(dw)−1 h−1) but G. vermiculophylla removed 63% of the initial 150 μM and 100% at all other conditions. Uptake performance of both N sources decreased throughout the duration of the experiment and with N tissue accumulation. Both N sources were taken up during dark periods though with better results for NH4+. Gracilaria vermiculophylla was unable to take up NO3 at the highest concentration but compensated with a constant 27% NH4+ uptake through light and dark periods. N tissue accumulation was maximal at the highest N concentration (3.9 ± 0.25% dw) and superior under NH4+ (3.57 ± 0.2% dw) vs NO3 (3.06 ± 0.1% dw) enrichment. The successful proliferation of G. vermiculophylla in estuarine environments and its potential utilization as the biofilter component of Integrated Multi-Trophic Aquaculture (IMTA) are discussed.  相似文献   

13.
The Iberian Peninsula encompasses more than 80% of the species richness of European aquatic ranunculi. The floristic diversity of the phytocoenosis characterised by aquatic Ranunculus and the main physical–chemical factors of the water were studied in 43 localities of the central Iberian Peninsula. Four aquatic Ranunculus communities are found in most of the aquatic environments. These are species-poor and have an uneven distribution: three species of Batrachium are heterophyllous and their communities are distributed in different aquatic ecosystems on silicated substrates; one species is homophyllous and its community occurs in various aquatic ecosystems with carbonated waters. In the Mediterranean climate, Ranunculus species are present in different habitats, as shown by the results of all the statistical analyses. Ranunculus trichophyllus communities occur in base-rich waters with a high buffering capacity (2273.44 ± 794.57 mg CaCO3 L−1) and a high concentration of cations (Ca2+, 121 ± 33.12 mg L−1; Mg2+, 71.64 ± 82.77 mg L−1), nitrates (2.89 ± 4.80 mg L−1), ammonium (2.19 ± 1.36 mg L−1) and sulphates (216.25 ± 218.54 mg L−1). Ranunculus penicillatus communities are found in flowing waters with a high concentration of phosphates (0.48 ± 0.6 mg L−1) and intermediate buffering capacity (683.66 ± 446.76 mg CaCO3 L−1). Both Ranunculus pseudofluitans and Ranunculus peltatus communities grow in waters with low buffering capacity (R. pseudofluitans, 385.91 ± 209.2 mg CaCO3 L−1; R. peltatus, 263.3 ± 180.36 mg CaCO3 L−1), and a low concentration of cations (R. pseudofluitans: Ca2+, 12.57 ± 9.42 mg L−1; Mg2+, 3.42 ± 1.67 mg L−1; R. peltatus: Ca2+, 15 ± 18.26 mg L−1; Mg2+, 6.26 ± 8.89 mg L−1) and nutrients (R. pseudofluitans: nitrates, 0.23 ± 0.2 mg L−1; phosphates, 0.09 ± 0.1 mg L−1; R. peltatus: nitrates, 0.19 ± 0.21 mg L−1; phosphates, 0.09 ± 0.12 mg L−1); the first in flowing waters, the latter in still waters.  相似文献   

14.
The small seagrass species, Halophila stipulacea is abundant in the subtidal zone of the Bay of Eilat, Red Sea, southern Israel. Early life history characteristics of this species were investigated in summer 2002 by means of field surveys and outdoor experiments. Monospecific stands were found at depths of between 2 and 20 m. Reproduction began in late May and ripe pericarps were found for 1 month starting from the beginning of August. The ratios of female versus male plants were 0.9 at depths of between 2.5 and 10 m and 0.5 at depths of between 12.5 and 15 m. The proportion of reproductive branches was significantly larger in the shallow (2–5 m) than in the deep (7–15 m) populations, i.e., 20 ± 11% versus 6 ± 10%, respectively. Ripe seeds were predominantly produced at depths of between 2 and 5 m. Experimental studies demonstrated that full sunlight completely inhibited seedling growth at a depth of 30 cm; no macroscopic seedlings could be observed after 40-day exposure to full sunlight. If exposed to 90% photosynthetic active radiation (PAR) but protected from ultraviolet radiation (UVR), the number of macroscopic seedlings increased to 7.4 ± 2.3% of the planted seeds. If protected from both UVR and 80% of the PAR, the number of macroscopic seedlings increased to 22.5 ± 4.0% of the planted seeds. UVR exclusion and 80% PAR reduction also significantly increased the rhizome growth rates of seedlings in the first month after germination (0.14 ± 0.04 mm day−1) compared with only UVR exclusion (0.04 ± 0.02 mm day−1). The absence of H. stipulacea from the uppermost part of the subtidal zone (depths of 0–2 m) may be due to light inhibition of germling growth and uprooting by occasional storms.  相似文献   

15.
The effects of short term hypoxia on bioturbation activity and inherent solute fluxes are scarcely investigated even if increasing number of coastal areas are subjected to transient oxygen deficits. In this work dark fluxes of oxygen (O2), dissolved inorganic carbon (TCO2) and nutrients across the sediment-water interface, as well as rates of denitrification (isotope pairing), were measured in intact sediment cores collected from the dystrophic pond of Sali e Pauli (Sardinia, Italy). Sediments were incubated at 100, 70, 40 and 10% of O2 saturation in the overlying water, with both natural benthic communities, dominated by the polychaete Polydora ciliata (11.100 ± 2.500  ind. m− 2), and after the addition of individuals of the deep-burrower polychaete Hediste diversicolor. Below an uppermost oxic layer of ~ 1 mm, sediments were highly reduced, with up to 6 mM of S2− in the 5 mm layer. Flux of S2− and O2 calculated from pore water gradients were 8.61 ± 1.12 and − 2.27 ± 0.56 mmol m− 2 h− 1, respectively. However, sediment oxygen demand (SOD) calculated from core incubation was − 10.52 ± 0.33 mmol m− 2 h− 1, suggesting a major contribution of P. ciliata to O2-mediated sulphide oxidation. P. ciliata also strongly stimulated NH4+ and PO43− fluxes, with rates ~ 15 and ~ 30 folds higher, respectively, than those estimated from pore water gradients. P. ciliata activity was significantly reduced at 10% O2 saturation, coupled to decreased rates of solutes transfer. The addition of H. diversicolor further stimulated SOD, NH4+ efflux and SiO2 mobilisation. Similarly to P. ciliata, the degree of stimulation of SOD and NH4+ flux by H. diversicolor depended on the level of oxygen saturation. TCO2 regeneration, respiratory quotients, PO43− fluxes and denitrification of added 15NO3 were not affected by the addition of H. diversicolor, but depended upon the O2 levels in the water column. Denitrification rates supported by water column 14NO3 and sedimentary nitrification were both negligible (< 0.5 µmol m− 2 h− 1). They were not significantly affected by oxygen saturation nor by bioturbation, probably due to the limited availability of NO3 in the water column (< 3 µM) and O2 in the sediments. This study demonstrates for the first time the integrated short term effect of transient hypoxia and bioturbation on solute fluxes across the sediment-water interface within a simplified lagoonal benthic community.  相似文献   

16.
It is well known that efficient functioning of photosynthetic (PET) and respiratory electron transport (RET) in cyanobacteria requires the presence of either cytochrome c6 (Cytc6) or plastocyanin (PC). By contrast, the interaction of an additional redox carrier, cytochrome cM (CytcM), with either PET or RET is still under discussion. Here, we focus on the (putative) role of CytcM in cyanobacterial respiration. It is demonstrated that genes encoding the main terminal oxidase (cytochrome c oxidase, COX) and cytochrome cM are found in all 44 totally or partially sequenced cyanobacteria (except one strain). In order to check whether CytcM can act as electron donor to COX, we investigated the intermolecular electron transfer kinetics between CytcM and the soluble CuA domain (i.e. the donor binding and electron entry site) of subunit II of COX. Both proteins from Synechocystis PCC6803 were expressed heterologously in E. coli. The forward and the reverse electron transfer reactions were studied yielding apparent bimolecular rate constants of (2.4 ± 0.1) × 105 M− 1 s− 1 and (9.6 ± 0.4) × 103 M− 1 s− 1 (5 mM phosphate buffer, pH 7, 50 mM KCl). A comparative analysis with Cytc6 and PC demonstrates that CytcM functions as electron donor to CuA as efficiently as Cytc6 but more efficient than PC. Furthermore, we demonstrate the association of CytcM with the cytoplasmic and thylakoid membrane fractions by immunobloting and discuss the potential role of CytcM as electron donor for COX under stress conditions.  相似文献   

17.
The binding affinity of the two substrate–water molecules to the water-oxidizing Mn4CaO5 catalyst in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae was studied in the S2 and S3 states by the exchange of bound 16O-substrate against 18O-labeled water. The rate of this exchange was detected via the membrane-inlet mass spectrometric analysis of flash-induced oxygen evolution. For both redox states a fast and slow phase of water-exchange was resolved at the mixed labeled m/z 34 mass peak: kf = 52 ± 8 s− 1 and ks = 1.9 ± 0.3 s− 1 in the S2 state, and kf = 42 ± 2 s− 1 and kslow = 1.2 ± 0.3 s− 1 in S3, respectively. Overall these exchange rates are similar to those observed previously with preparations of other organisms. The most remarkable finding is a significantly slower exchange at the fast substrate–water site in the S2 state, which confirms beyond doubt that both substrate–water molecules are already bound in the S2 state. This leads to a very small change of the affinity for both the fast and the slowly exchanging substrates during the S2 → S3 transition. Implications for recent models for water-oxidation are briefly discussed.  相似文献   

18.
This paper introduces a multi-cylinder evapotranspirometer method, which can directly measure evapotranspiration (ET) from emergent plants in different species and states as well as simultaneously measure evaporation (EW) from an open water surface. Values of daily ET from three contrasting reed (Phragmites australis) stands, with different leaf area indexes (LAI), were obtained through in situ measurements of the Baiyangdian wetland using this method during the growing seasons in 2008 and 2009. The results showed that the ET rate of the reed belt was very high, even exceeding 20 mm d−1 under extreme weather conditions. Depending on the LAI change, the annual ET from the different reed canopies ranged from 970 to 2035 mm, whereas the ET/EW ratios ranged from 2.05 to 3.98. Accuracy analysis results showed that the errors of the measurement from this method were no more than 2 mm. The relative errors of the measurement were correspondingly from 0.04% to 0.33%. It is indicated that the accuracy of our measurement is good enough for the requirements of the ET measurement.  相似文献   

19.
Ferric human serum heme-albumin (heme-HSA) shows a peculiar nuclear magnetic relaxation dispersion (NMRD) behavior that allows to investigate structural and functional properties. Here, we report a thermodynamic analysis of NMRD profiles of heme-HSA between 20 and 60 °C to characterize its hydration. NMRD profiles, all showing two Lorentzian dispersions at 0.3 and 60 MHz, were analyzed in terms of modulation of the zero field splitting tensor for the S = 5/2 manifold. Values of correlation times for tensor fluctuation (τv) and chemical exchange of water molecules (τM) show the expected temperature dependence, with activation enthalpies of −1.94 and −2.46 ± 0.2 kJ mol−1, respectively. The cluster of water molecules located in the close proximity of the heme is progressively reduced in size by increasing the temperature, with Δ= 68 ± 28 kJ mol−1 and Δ= 200 ± 80 J mol−1 K−1. These results highlight the role of the water solvent in heme-HSA structure-function relationships.  相似文献   

20.
The pH dependence of the Fe(III) reduction potential, E0′, for yeast cytochrome c peroxidase (yCcP) and three distal pocket mutants, CcP(H52L), CcP(H52Q), and CcP(R48L/W51L/H52L), has been determined between pH 4 and 8. E0′ values at pH 7.0 for the yCcP, CcP(H52L), CcP(H52Q), and CcP(R48L/W51L/H52L) are − 189, − 170, − 224, and − 146 mV, respectively. A heme-linked ionization in the reduced enzyme affects the reduction potential for yCcP and all three mutants. Apparent pKA values for the heme-linked ionization are 7.5 ± 0.2, 6.5 ± 0.3, 6.4 ± 0.2, and 7.0 ± 0.3 for yCcP and the H52L, H52Q, and R48L/W51L/H52L mutants, respectively. A cooperative, two-proton ionization causing a spectroscopically-detectable transition was observed in the ferrous states of yCcP, CcP(H52L) and CcP(H52Q), with apparent pKA values of 7.7 ± 0.2, 7.4 ± 0.1 and 7.8 ± 0.1, respectively. These data indicate that: (1) the distal histidine in CcP is not the site of proton binding upon reduction of the ferric CcP, (2) the distal histidine is not one of the two groups involved in the cooperative, two-proton ionization observed in ferrous CcP, and (3) the proton-binding site is not involved in the cooperative, two-proton ionization observed in the reduced enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号