首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multifactorial study analyzed the effects of freezing method, cryoprotective diluent, semen to diluent ratio, and thawing velocity on post-thaw motility, progressive status, and acrosomal integrity of ram spermatozoa. Although semen to diluent ratio (1:3 vs 1:6, v/v) had no effect (P greater than 0.05), overall post-thaw spermatozoal viability was highly dependent on freezing method and cryoprotectant. Improved results were obtained by freezing semen in 0.5-ml French straws compared to dry ice pelleting. Manually freezing straws 5 cm above liquid nitrogen (LN2) was comparable to cooling straws in an automated, programmable LN2 unit. Of the two cryoprotective diluents tested, BF5F (containing the surfactant component sodium and triethanolamine lauryl sulfate) yielded approximately 50% fewer (P less than 0.05) spermatozoa with loose acrosomal caps compared to TEST. Thawing straws in a water bath at a higher velocity (60 degrees C for 8 sec) had no effect (P greater than 0.05) on spermatozoal motility, progressive status ratings, or acrosomal integrity when compared to a lower rate (37 degrees C for 20 sec). For the TEST group, thawing pellets in a dry, glass culture tube promoted (P less than 0.05) percentage sperm motility at 3 and 6 hr post-thawing, but for BF5F diluted semen this approach decreased the % of spermatozoa with normal apical ridges. The results suggest that the poor fertility rates often experienced using thawed ram semen likely result not only from reduced sperm motility, but also from compromised ultrastructural integrity. This damage is expressed by an increased loosening of the acrosomal cap, a factor which appears insensitive to freezing method but markedly influenced by the cryoprotective properties of the diluents tested.  相似文献   

2.
Electroejaculates from free-ranging, African elephants were frozen to test various seminal diluents, freezing methods and thawing media on post-thaw sperm viability and structural integrity. In Study I, each ejaculate was tested with each of 7 cryoprotective diluents. After cooling to 5 degrees C and equilibration on ice (4 degrees C) for 120 min, each aliquant was pellet frozen on solid CO2, stored in liquid nitrogen and thawed (37 degrees C) in saline or tissue culture solution. Amongst all diluents, post-thaw sperm motility, motility duration in vitro (37 degrees C) and acrosomal integrity were greatest (P less than 0.05) when diluent BF5F was used. Thawing medium had no effect on results. In Study II, the optimal diluent from Study I (BF5F) was compared with the diluent SGI. Results were not affected by a 90- or a 150-min cooling-equilibration interval in an electronic cooler (5 degrees C); however, post-thaw sperm motility rating and duration of motility in vitro were greater (P less than 0.01) with the pellet than the straw container freezing method. When the pelleting method was used, diluents BF5F and SGI provided comparable cryoprotection. Duration of post-thaw motility was enhanced 2-fold and up to 12 h by maintaining thawed semen at 21 rather than 37 degrees C (P less than 0.05). All diluents provided some protection on acrosomal integrity, but the overall proportion of intact acrosomes after thawing was markedly less in Study II, apparently as a result of the slower initial cooling rate (approximately 1.5 degrees C/min) compared to that of Study I (approximately 6.5 degrees C/min). This study demonstrates the feasibility of cryopreserving semen from free-ranging African elephants and indicates that spermatozoa must effectively survive freezing when the BF5F or SGI diluent is used in conjunction with the pelleting method.  相似文献   

3.
Five experiments evaluated the effects of processing, freezing and thawing techniques on post-thaw motility of equine sperm. Post-thaw motility was similar for sperm frozen using two cooling rates. Inclusion of 4% glycerol extender was superior to 2 or 6%. Thawing in 75 degrees C water for 7 sec was superior to thawing in 37 degrees C water for 30 sec. The best procedure for concentrating sperm, based on sperm motility, was diluting semen to 50 x 10(6) sperm/ml with a citrate-based centrifugation medium at 20 degrees C and centrifuging at 400 x g for 15 min. There was no difference in sperm motility between semen cooled slowly in extender with or without glycerol to 5 degrees C prior to freezing to -120 degrees C and semen cooled continuously from 20 degrees C to -120 degrees C. From these experiments, a new procedure for processing, freezing and thawing semen evolved. The new procedure involved dilution of semen to 50 x 10(6) sperm/ml in centrifugation medium and centrifugation at 400 x g for 15 min, resuspension of sperm in lactose-EDTA-egg yolk extender containing 4% glycerol, packaging in 0.5-ml polyvinyl chloride straws, freezing at 10 degrees C/min from 20 degrees C to -15 degrees C and 25 degrees C/min from -15 degrees C to -120 degrees C, storage at -196 degrees C, and thawing at 75 degrees C for 7 sec. Post-thaw motility of sperm averaged 34% for the new method as compared to 22% for the old method (P<0.01).  相似文献   

4.
Cryopreservation of flow-sorted bovine spermatozoa   总被引:4,自引:0,他引:4  
Schenk JL  Suh TK  Cran DG  Seidel GE 《Theriogenology》1999,52(8):1375-1391
Experiments were designed to maximize sperm viability after sorting by flow cytometry and cryopreservation. Experiments concerned staining sperm with Hoechst 33342 dye, subsequent dilution, interrogation with laser light, and postsort concentration of sperm. Concentrating sorted sperm by centrifugation to 10 to 20 x 10(6) sperm/ml reduced adverse effects of dilution. Exposing sperm to 150 mW of laser light resulted in lower percentages of progressively motile sperm after thawing than did 100 mW. Sorted sperm extended in a TRIS-based medium had higher postthaw sperm motility after incubation for 1 or 2 h than sperm extended in egg-yolk citrate (EYC) or TEST media, and equilibrating sperm at 5 degrees C for 3 or 6 h prior to freezing was superior to an equilibration time of 18 h. For sorting sperm 4 to 7 h postcollection, it was best to hold semen at 22 degrees C neat instead of at 400 x 10(6)/ml in a TALP buffer with Hoechst 33342. Current procedures for sexing sperm using flow cytometry result in slightly lower postthaw motility and acrosomal integrity compared to control sperm. However, this damage is minor compared to that caused by routine cryopreservation. Fertilizing capacity of flow-sorted sperm is quite acceptable as predicted by simple laboratory assays, and sexed bovine sperm for commercial AI may be available within 2 years.  相似文献   

5.
Chauhan MS  Anand SR 《Theriogenology》1990,34(5):1003-1013
Jamunapari goat buck semen contained both phospholipase and lysophospholipase activities which remained active during dilution (Step I) with diluents containing egg yolk, cooling to 5 degrees C (Step II), glycerolization and equilibration (Step III) and freezing and thawing (Step IV). A quantitative estimate of the phosphatidyl choline and phosphatidyl ethanolamine before and after freezing revealed that the lipids in egg yolk added to dilute goat semen were not hydrolysed to lysophospholipids and free fatty acids. Seminal plasma was, therefore, not removed and goat semen was frozen in egg yolk citrate-glucose, egg yolk-tris and skim milk-egg yolk. Dilution of goat semen 20 times with the three extenders containing 7% glycerol and an equilibration time of 3 h yielded optimum results. A comparative evaluation of freezing in the three diluents based on the assessment of sperm motility, live sperm count and acrosomal damage showed egg yolk-tris to be best extender for the successful freezing of goat semen. Insemination trials conducted with frozen semen and the number of actual kiddings yielded a fertility rate of approximately 81% in our study.  相似文献   

6.
Two experiments were conducted to investigate modifications in cushioned centrifugation of stallion semen. Specifically, the effects of tube type, centrifugation medium, cushion type, and centrifugation force on post-centrifugation sperm recovery rate and quality were evaluated. In Experiment 1, sperm recovery rate was higher (P<0.05) in conventional plastic conical-bottom tubes (103%) than in newly developed glass nipple-bottom tubes (96%) following cushioned centrifugation; however, several measures of semen quality (i.e., % total motility [MOT], % progressive motility [PMOT], curvilinear velocity, and average-path velocity) yielded higher values following centrifugation in nipple-bottom tubes (P<0.05). Sperm recovery rate following cushioned centrifugation was similar between semen previously diluted in optically clear centrifugation extender (100%) and semen diluted in opaque centrifugation extender (100%); however, MOT and PMOT were higher in semen subjected to cushioned centrifugation in opaque extender (P<0.05). An extender by tube-type interaction was not detected for recovery rate or post-centrifugation semen quality. In Experiment 2, sperm recovery rate following cushioned centrifugation in nipple-bottom tubes was similar when forces of 400xg or 600xg were applied (90 and 90%, respectively; P>0.05), and no resulting differences in semen quality were detected between these treatment groups (P>0.05). The type of iodixanol cushion medium used (i.e., OptiPrep, Eqcellsire Component B, or Cushion Fluid did not impact post-centrifugation semen quality, based on the laboratory values measured (P>0.05). In conclusion, cushioned centrifugation of stallion semen in either conical-bottom or nipple-bottom tubes yielded a high sperm harvest, while maintaining sperm function. An optically opaque extender, commonly used in the equine breeding industry, can be used to achieve this goal.  相似文献   

7.
The aims of the present study were, to assess the effects of semen centrifugation, two different diluents and two different freezing methods on post-thaw semen quality in canine semen, and to elucidate the interdependence of these parameters. For this purpose, the sperm-rich fractions of ejaculates from 12 healthy male beagles were divided into four aliquots. Two aliquots were centrifuged and resuspended with two TRIS-egg yolk based extenders: with Uppsala and Gill extender (Gill). The diluents differed in the concentration of glycerol and in the admixture of Equex STM paste (Nova Chemical Sales Inc., Scituate, MA, USA). Diluted semen was frozen either in a styrofoam box or with a computerized freezing machine and an optimized freezing curve (IceCube 1,810; Sy-Lab, Purkersdorf, A). The change in temperature inside the straws was measured during the freezing procedure. Thawed semen samples were assessed for motility and viability (SYBR-14/PI) using the computer assisted sperm analyzer SpermVision (Minitüb, G) and a modified triple staining technique (flow cytometry). Deep freezing in the machine resulted in better motility and viability than in the box. The combination centrifugation-Uppsala extender-machine was superior to all other combinations, which was most evident after storage at +5 degrees C for 7 h (motility: 53.1%, viability: 64.9%). Post-thaw longevity and progressive motility were significantly improved by the use of the here introduced freezing curve. This was shown to be partly caused by less pronounced fluctuations of temperature inside the straws when compared to box-freezing.  相似文献   

8.
The purpose of this investigation was to evaluate the use of an iodixanol cushion during centrifugation on sperm recovery and yield after centrifugation (sperm recovery, sperm motility, viability, membrane lipid disorder, acrosome reaction and ROS generation); and to investigate how this procedure affects sperm function after freezing-thawing (sperm motility, membrane lipid disorder, acrosomal status and homologous in vitro penetration test). The sperm-rich fractions from fertile boars were centrifuged under two centrifugation régimes: 800xg for 10min (standard method) and 1000xg for 20min with an iodixanol (60% w/v) cushion at the bottom of the centrifuge tubes (Cushion method). The highest recovery was achieved using the cushion method (sperm loss for cushion method was 0.50%+/-0.18 versus 2.97%+/-0.43 for standard method, P<0.01) and sperm quality was not significantly affected by the centrifugation régime. The motion parameters (% progressive motility, % motility, VCL, VSL, VAP, ALH, BCF, P<0.05) of frozen-thawed samples showed higher values using the standard method. However, a higher number of viable spermatozoa with lower lipid disorders were found in spermatozoa processed with the cushion method. The in vitro penetration assay showed that the individual boar influenced the parameters studied but there were no differences between the two centrifugation régimes used. Our results support the hypothesis that the proportion of sperm loss in frozen-thawed semen was significantly influenced by the centrifugation régime. Therefore, the iodixanol cushion method is a suitable tool for cryopreservation of boar semen in order to reduce sperm loss without affecting sperm quality.  相似文献   

9.
The effect of various thawing velocities on the motility and acrosomal maintenance of ram spermatozoa frozen at 20 degrees C/min (optimal) or 2 degrees C/min (suboptimal) was studied. The freeze-thaw motility and the percentage of intact acrosomes of spermatozoa frozen at 20 degrees C/min increased progressively with the thawing velocity. In semen frozen at 2 degrees C/min, motility of spermatozoa and the percentage of intact acrosomes declined drastically when the thawing velocity obtained in air at 20 degrees C was increased by thawing in water at 20 degrees C. Thawing at higher temperatures markedly increased both motility and acrosomal preservation, but the best results with semen frozen at 2 degrees C/min were lower than those obtained with semen frozen at 20 degrees C/min. The optimal freeze-thaw conditions for semen protected by 4% glycerol were freezing at 20 degrees C/min and thawing in water at 60 or 80 degrees C for 8 or 5 sec, respectively. Semen collected from rams exposed to a decreasing photoperiod exhibited higher motility after freezing and thawing than those exposed to an increasing photoperiod. However, there was no effect on acrosomal preservation after freezing at 20 degrees C/min.  相似文献   

10.
The post-thaw survival and fertility of ram spermatozoa frozen in pellets, 0.25- and 0.5-ml PVC straws, and 0.25-ml minitubes were examined. In 5 experiments, a freezing height of 6 cm above the level of liquid nitrogen was optimal for 0.25- and 0.5-ml straws, whereas 4 cm was best for the 0.25-ml minitubes. Post-thaw motility of spermatozoa was lower for semen frozen in straws and minitubes than in pellets (Experiment 1: 43.7 vs 53.4%, P < 0.001), but after freezing was better in 0.5-ml straws and 0.25-ml minitubes than in 0.25-ml straws (Experiment 1: 44.9 vs 41.3%, P < 0.05; Experiment 2: 49.6 vs 46.8%, P < 0.01). Sperm motility was also better for 1:8 (semen:diluent) pre-freezing dilution rate (50.5%) than for 1:4 (45.6%, P < 0.01) and 1:2 (39.8%, P < 0.001) but not the 1:16 (49.5%) dilution rate. Dry ice was a better freezing medium than liquid nitrogen vapor (49.2 vs 46.9% motile spermatozoa, P < 0.001). The post-thaw motility of spermatozoa was similar for the three freezing packages if the semen was loaded at 5 degrees C, but motility was poorer for semen loaded into 0.25-ml straws than 0.25-ml minitubes at 30 degrees C (P < 0.05). In a fertility test, pregnancy rates were influenced by rams (3 rams, P < 0.05) and freezing package (pellets vs 0.25-ml minitube vs 0.25-ml straw vs 0.5-ml straw, P < 0.05) but not freezing medium (liquid nitrogen vapor vs dry ice). More ewes were pregnant after insemination with pellet-frozen semen (106/150, 71%) than with semen frozen in 0.25-ml straws (85/150, 57%; P < 0.05) and in 0.5-ml straws (83/150, 55%; P < 0.01) but not minitubes (98/150, 65%). It was concluded that minitubes provide a useful alternative to pellets as a storage package for ram spermatozoa, allowing for individual dose identification and easier storage while maintaining a fertility rate indistinguishable from that obtained with pellet-frozen semen.  相似文献   

11.
Three ejaculates from each of eight stallions were subjected to cryopreservation in a milk/egg yolk-based freezing extender or an egg yolk-based freezing extender. Semen was exposed to a fast prefreeze cooling rate (FAST; semen immediately subjected to cryopreservation) or a slow prefreeze cooling rate (SLOW; semen pre-cooled at a controlled rate for 80 min prior to cryopreservation). Postthaw semen was diluted in initial freezing medium (FM) or INRA 96 (IMV Technologies, L'Aigle, France) prior to analysis of 10 experimental end points: total motility (MOT; %), progressive motility (PMOT; %), curvilinear velocity (VCL; μm/s), linearity (LIN; %), intact acrosomal and plasma membranes (AIMI; %), intact acrosomal membranes (AI; %), intact plasma membranes (MI; %), and DNA quality. Eight of 10 experimental endpoints (MOT, PMOT, average-path velocity [VAP], mean straight-line velocity [VSL], LIN AIMI, AI, and MI) were affected by extender type, with egg yolk-based extender yielding higher values than milk/egg yolk-based extender (P < 0.05). Exposure of extended semen to a slow prefreeze cooling period resulted in increased values for six of eight endpoints (MOT, PMOT, VCL, AIMI, AI, and MI), as compared with a fast prefreeze cooling period (P < 0.05). As a postthaw diluent, INRA 96 yielded higher mean values than FM for MOT, PMOT, VCL, average-path velocity, and mean straight-line velocity (P < 0.05). Treatment group FM yielded slightly higher values than INRA 96 for LIN and MI (P < 0.05). In conclusion, a slow prefreeze cooling rate was superior to a fast prefreeze cooling rate, regardless of freezing extender used, and INRA 96 served as a satisfactory postthaw diluent prior to semen analysis.  相似文献   

12.
Fifteen extenders were produced by adding dimethyl sulfoxide (DMSO) at 8, 10 or 12% of diluent volume to 5 diluents. All extenders were cooled to 4 degrees C. Pooled Atlantic salmon (Salmo salar ) semen with greater than 90% progressive motility was kept at 4 degrees C and added to each extender so that the semen was diluted 1:3 (semen:extender). The equilibration time was less than 5 minutes at 4 degrees C. The extended semen was loaded into 0.5-ml straws and was cooled from 4 degrees C to -90 degrees C at a rate of 30 degrees C per minute. The straws were then plunged into liquid nitrogen for storage. Fluorometry was used to determine the viability of the semen in each of the extenders after freezing and thawing. Cryopreservation of Atlantic salmon semen in Extender 3 (0.137 M NaCl, 0.011 M KCl, 0.004 M Na(2)HPO(4).7H(2)O, 7.5 g/l L-alpha-lecithin and 12% dimethyl sulfoxide) and Extender 12 (0.100 M KHCO(3), 0.0065 M reduced glutathione, 0.125 M sucrose and 12% dimethyl sulfoxide) resulted in significantly (P<0.05) lower percentages of dead spermatozoa than for the other extenders. Furthermore, there was a significantly (P<0.05) lower percentage of dead cells in Extender 3 than in Extender 12.  相似文献   

13.
Centrifugal fractionation of semen is commonly done to improve quality of human semen in assisted-reproduction laboratories, allowing sperm separation based on their isopycnic points. Sperm with morphologic abnormalities are often more buoyant, promoting their retention above defined density media, with structurally normal sperm passing through the media following centrifugation. Three experiments were conducted to evaluate the effects of density-medium type, centrifuge-tube size, sperm number, and density-medium volume (column height) on stallion sperm quality and recovery rate in sperm pellets following centrifugation. In all three experiments, equine semen was initially centrifuged to increase sperm concentration. In Experiment 1, semen was layered over continuous or discontinuous gradients. For Experiment 2, semen was layered over three column heights of continuous gradients in 15- or 50-ml conical-bottom tubes. For Experiment 3, increasing sperm numbers were layered over continuous gradient in 15- or 50-ml conical-bottom tubes. Following centrifugation, sperm pellets were evaluated for sperm morphologic quality, motility, DNA integrity, and recovery rate. Centrifugal fractionation improved (P < 0.05) sperm morphology, motility, and DNA integrity, as compared to controls. The continuous gradient increased (P < 0.05) sperm recovery rate relative to the discontinuous gradient, whereas sperm processed in 15-ml tubes yielded higher velocity and higher recovery rates (P < 0.05 for each) than that processed in 50-ml tubes. Sperm recovery rate was not affected (P > 0.05) by column height of gradient. Increasing sperm number subjected to gradient centrifugation decreased (P < 0.05) sperm recovery rate when 15-ml tubes were used.  相似文献   

14.
This is the first study where the systematic application of theories and techniques used in mammalian sperm cryopreservation have been applied to honey bee (Apis mellifera L.) semen as a means to improve postthaw viability of cryopreserved sperm. Six newly designed diluents, three cryoprotectants (dimethyl sulfoxide, DMA, glycerol), and five diluent:semen ratios (1:1, 3:1, 6:1, 9:1, and 12:1) were tested. In addition, the sperm freezing tolerance of three honey bee strains was evaluated. Specific protocols were designed to control semen freezing and thawing rates. Sperm motility was assessed visually, whereas sperm viability was assessed using SYBR-14 and propidium iodide fluorescent stains. Diluent treatments did not affect fresh (nonfrozen) sperm viability yet affected fresh sperm motility (P < 0.05). Based on these assessments, two diluents were chosen and used in all successive cryopreservation experiments. Using the selected diluents, semen was collected at various diluent:semen ratios, along with one of the three cryoprotectants. Semen collected at high dilution ratios, using a hypotonic antioxidant diluent containing catalase, in combination with dimethyl sulfoxide, provided higher postthaw sperm viability than that of all other combinations tested (68.3 ± 5.4%; P < 0.05). Using this combination of dilution ratio, diluent, and cryoprotectant, there were no differences among honey bee strains for postthaw sperm viability (P = 0.805). Nevertheless, these new semen dilution and freezing methods improved postthaw viability of sperm to levels that could theoretically sustain worker populations in colonies, thus providing potential for further optimization of cryopreservation techniques for the genetic preservation and improvement of honey bee genotypes.  相似文献   

15.
Research was conducted to develop an effective method for cryopreserving bottlenose dolphin (Tursiops truncatus) semen processed immediately after collection or after 24-h liquid storage. In each of two experiments, four ejaculates were collected from three males. In experiment 1, three cryopreservation methods (CM1, CM2, and CM3), two straw sizes (0.25 and 0.5 ml), and three thawing rates (slow, medium, and fast) were evaluated. Evaluations were conducted at collection, prefreeze, and 0-, 3-, and 6-h postthaw. A sperm motility index (SMI; total motility [TM] x % progressive motility [PPM] x kinetic rating [KR, scale of 0-5]) was calculated and expressed as a percentage MI of the initial ejaculate. For all ejaculates, initial TM and PPM were greater than 85%, and KR was five. At 0-h postthaw, differences in SMI among cryopreservation methods and thaw rates were observed (P < 0.05), but no effect of straw size was observed. In experiment 2, ejaculates were divided into four aliquots for dilution (1:1) and storage at 4 degrees C with a skim milk- glucose or a N-tris(hydroxymethyl)methyl-2-aminoethane sulfonic acid (TES)-TRIS egg yolk solution and at 21 degrees C with a Hepes-Tyrode balanced salt solution (containing bovine albumin and HEPES) (TALP) medium or no dilution. After 24 h, samples were frozen and thawed (CM3, 0.5-ml straws, fast thawing rate) at 20 x 10(6) spermatozoa ml(-1) (low concentration) or at 100 x 10(6) spermatozoa ml(-1) (standard concentration). The SMI at 0-h postthaw was higher for samples stored at 4 degrees C than for samples stored at 21 degrees C (P < 0.001), and at 6-h postthaw, the SMI was higher for samples frozen at the standard concentration than for samples frozen at the low concentration (P < 0.05). For both experiments, acrosome integrity was similar across treatments. In summary, a semen cryopreservation protocol applied to fresh or liquid-stored semen maintained high levels of initial ejaculate sperm characteristics.  相似文献   

16.
The objective of this study was to optimize interrupted slow-freezing protocols for African catfish semen. Semen diluted with methanol and extender was frozen in 1-ml vials in a programmable freezer. The temperatures of the freezer (T(chamber)) and of the semen (T(semen)) were measured simultaneously. We first tested two-step freezing protocols with different cooling rates (-2, -5, and -10 degrees C/min) and different temperatures at plunging into liquid N2. The difference between T(semen) and T(chamber) increased with faster cooling rates. In all programs, survival of spermatozoa, expressed as hatching rates, increased from near zero when T(semen) at plunging was higher than -30 degrees C to values equal to those of control when T(semen) at plunging was equal to or lower than -38 degrees C. The inclusion of an isothermal holding period before plunging into liquid N2 (three-step freezing protocols) resulted in an equilibration between T(semen) and T(chamber) and improved semen survival. Semen could be plunged at temperatures as high as -36 degrees C when cooled at -5 or -10 degrees C/min, without compromising postthaw semen survival. Cooling at -2 degrees C/min in combination with a 5-min holding period reduced postthaw survival. We conclude that with slow cooling rates of -2 to -5 degrees C/min, hatching rates can be maximized by plunging as soon as T(semen) reaches -38 degrees C. The isothermal holding period is beneficial when faster rates are used. A simple and efficient protocol for freezing African catfish semen can be obtained by cooling at a rate of -5 to -10 degrees C/min combined with a 5-min holding period in the freezer, at -40 degrees C.  相似文献   

17.
The plasma membrane of sperm can undergo lipid phase separation during freezing, resulting in irreversible damage to the cell. The objective of our study was to examine the membrane phase behavior of equine spermatozoa in the absence and presence of lipid-based cryoprotectants. Biophysical properties of sperm membranes were investigated with Fourier-transform infrared spectroscopy. Compared to fresh untreated sperm, postthaw untreated sperm showed extensive lipid phase separation and rearrangement. In contrast, postthaw sperm that were cryopreserved in egg phosphatidylcholine (egg PC)- or soy phosphatidylcholine (soy PC)-based diluents showed similar lipid phase behavior to that of fresh, untreated sperm. Studies with a deuterium-labeled PC lipid (POPCd-31) suggest that exogenous lipid from the diluents are strongly associated with the sperm membrane, and scanning electron microscopy images of treated sperm show the presence of lipid aggregates on the membrane surface. Thus, the exogenous lipid does not appear to be integrated into the sperm membrane after cryopreservation. When compared to a standard egg-yolk-based diluent (INRA 82), the soy and egg PC media preserved viability and motility equally well in postthaw sperm. A preliminary fertility study determined that sperm cryopreserved in the soy PC-based medium were capable of fertilization at the same rate as sperm frozen in the conventional INRA 82 medium. Our results show that pure lipid-based diluents can prevent membrane damage during cryopreservation and perform as well as a standard egg-yolk-based diluent in preserving sperm viability, motility, and fertility.  相似文献   

18.
19.
Five experiments were conducted to examine the effect of processing methods and diluents on survival and morphology of boar spermatozoa after freezing. Post-thawing survival of spermatozoa was better for Beltsville-F3 (BF3) than for tris-fructose-EDTA freezing diluent when the seminal plasma and glycerol were removed prior to freezing (method A). Both freezing diluents yielded similar viability results when the spermatozoa were frozen in the presence of siminal plasma and glycerol (method B). Viability of spermatozoa after thawing was better when glycerol concentration in the prefreezing diluent (method A) or in the freezing medium (method B) was 2-5 and 5-0 rather than 7-5%. Cooling of diluted semen to 5 degrees C beyond 4 h decreased the post-thawing survival of spermatozoa. The proportion of spermatozoa with undamaged acrosomes after processing and thawing by different methods was indistinguishable and relatively low. When the semen was frozen at cell concentrations ranging from 0-25 to 2-0 X 10(9)/ml, the viability of spermatozoa declined with increasing concentration following freezing in BF3, and S-1 diluents. Viability results were very similar for all cell concentrations examined when tris-fructose-EDTA diluent was used, indicating the possibility of freezing boar semen in a concentrated state.  相似文献   

20.
The interaction of glycerol concentrations of 0-10% and cooling rates from 1 to 1,500 degrees C/min with boar spermatozoa motility and acrosomal integrity (proportion of spermatozoa with normal apical ridge) was studied after thawing 0.5 ml straws at a constant rate. While increasing the glycerol concentration from 0 to 4% progressively improved motility, the percentage of spermatozoa with a normal apical ridge gradually decreased. The magnitudes of the respective changes depended on cooling rate. A peak value of 48.1% and rating 3.8 were obtained in semen protected with 4% glycerol, frozen at 30 degrees C/min. Increasing the glycerol levels above 6% resulted in a gradual decrease in motility. The proportion of spermatozoa with normal apical ridge was highest in semen protected with 0-1% glycerol after cooling at 30 degrees C/min (64.4% and 66.1%, respectively), but at these glycerol concentrations the percentage of motile spermatozoa was low. At the 30 degrees C/min cooling rate, the decline in the proportion of cells with normal apical ridge due to increasing the glycerol levels to 3 and 4% was relatively slow (57.3% and 49.4%, respectively). Cooling at 1 degrees C/min was detrimental to acrosomal integrity, which decreased with increasing glycerol concentration, in contrast to increasing motility, which even at its maximum, remained low. The direct plunging of straws into liquid nitrogen (1,500 degrees C/min) resulted in damaged acrosomes in all spermatozoa with the total loss of motility. Balancing motility and acrosomal integrity, freezing boar semen protected with 3% glycerol by cooling at 30 degrees C/min resulted in optimal survival for boar semen frozen in 0.5 ml French straws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号