首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome scan-based tests for selection are directly applicable to natural populations to study the genetic and evolutionary mechanisms behind phenotypic differentiation. We conducted AFLP genome scans in three distinct geographic colour morphs of the cichlid fish Tropheus moorii to assess whether the extant, allopatric colour pattern differentiation can be explained by drift and to identify markers mapping to genomic regions possibly involved in colour patterning. The tested morphs occupy adjacent shore sections in southern Lake Tanganyika and are separated from each other by major habitat barriers. The genome scans revealed significant genetic structure between morphs, but a very low proportion of loci fixed for alternative AFLP alleles in different morphs. This high level of polymorphism within morphs suggested that colour pattern differentiation did not result exclusively from neutral processes. Outlier detection methods identified six loci with excess differentiation in the comparison between a bluish and a yellow-blotch morph and five different outlier loci in comparisons of each of these morphs with a red morph. As population expansions and the genetic structure of Tropheus make the outlier approach prone to false-positive signals of selection, we examined the correlation between outlier locus alleles and colour phenotypes in a genetic and phenotypic cline between two morphs. Distributions of allele frequencies at one outlier locus were indeed consistent with linkage to a colour locus. Despite the challenges posed by population structure and demography, our results encourage the cautious application of genome scans to studies of divergent selection in subdivided and recently expanded populations.  相似文献   

2.
Murray MC  Hare MP 《Molecular ecology》2006,15(13):4229-4242
The degree of population structure within species often varies considerably among loci. This makes it difficult to determine whether observed variance reflects neutral-drift stochasticity or locus-specific selection at one or more loci. This uncertainty is exacerbated when evolutionary equilibrium cannot be assumed and/or admixture potentially inflates genomic variance. Thus, the value of a 'genome scan', where locus-specific summary statistics are compared with a simulated neutral distribution among loci, may be limited in secondary contact zones if the null distribution is sensitive to the timing of secondary contact. Of particular interest here is the wide variance previously observed in locus-specific patterns of population structure between Atlantic and Gulf of Mexico populations of eastern oyster, Crassostrea virginica. To test the robustness of an equilibrium null model, we compared among-locus distributions of F(ST) simulated under migration-drift equilibrium and several nonequilibrium secondary contact histories. We then tested for evidence of divergent selection between two oyster populations on either side of a secondary contact zone using 215 amplified fragment length polymorphism (AFLP) loci. Constant-migration equilibrium and nonequilibrium secondary-contact simulations produced equivalent distributions of F(ST) when anchored by the global mean F(ST) observed in oysters, 0.0917. The 99th quantile of simulated neutral F(ST) encompassed most of the variation among oyster loci. Three AFLP loci exhibited F(ST) values higher than this threshold. Although no locus was significant after correcting for multiple tests, our results show in geographically clinal organisms: AFLPs can efficiently characterize the genomic distribution of F(ST); equilibrium models can be used to evaluate outliers; these procedures help focus research on genomic regions of interest.  相似文献   

3.
Microsatellites have gained wide application for elucidating population structure in nonmodel organisms. Since they are generally noncoding, neutrality is assumed but rarely tested. In Atlantic cod (Gadus morhua L.), microsatellite studies have revealed highly heterogeneous estimates of genetic differentiation among loci. In particular one locus, Gmo 132, has demonstrated elevated genetic differentiation. We investigated possible hitch-hiking selection at this and other microsatellite loci in Atlantic cod. We employed 11 loci for analysing samples from the Baltic Sea, North Sea, Barents Sea and Newfoundland covering a large part of the species' distributional range. The 'classical' Lewontin-Krakauer test for selection based on variance in estimates of F(ST) and (standardized genetic differentiation) revealed only one significant pairwise test (North Sea-Barents Sea), and the source of the elevated variance could not be ascribed exclusively to Gmo 132. In contrast, different variants of the recently developed ln Rtheta test for selective sweeps at microsatellite loci revealed a high number of significant outcomes of pair-wise tests for Gmo 132. Further, the presence of selection was indicated in at least one other locus. The results suggest that many previous estimates of genetic differentiation in cod based on microsatellites are inflated, and in some cases relationships among populations are obscured by one or more loci being the subject to hitch-hiking selection. Likewise, temporal estimates of effective population sizes in Atlantic cod may be flawed. We recommend, generally, to use a higher number of microsatellite loci to elucidate population structure in marine fishes and other nonmodel species to allow for identification of outlier loci that are subject to selection.  相似文献   

4.
Disentangling the relative importance and potential interactions of selection and genetic drift in driving phenotypic divergence of species is a classical research topic in population genetics and evolutionary biology. Here, we evaluate the role of stochastic and selective forces on population divergence of a colour polymorphism in seven damselfly species of the genus Ischnura, with a particular focus on I. elegans and I. graellsii. Colour-morph frequencies in Spanish I. elegans populations varied greatly, even at a local scale, whereas more similar frequencies were found among populations in eastern Europe. In contrast, I. graellsii and the other five Ischnura species showed little variation in colour-morph frequencies between populations. F(ST)-outlier analyses revealed that the colour locus deviated strongly from neutral expectations in Spanish populations of I. elegans, contrasting the pattern found in eastern European populations, and in I. graellsii, where no such discrepancy between morph divergence and neutral divergence could be detected. This suggests that divergent selection has been operating on the colour locus in Spanish populations of I. elegans, whereas processes such as genetic drift, possibly in combination with other forms of selection (such as negative frequency-dependent selection), appear to have been present in other regions, such as eastern Europe. Overall, the results indicate that both selective and stochastic processes operate on these colour polymorphisms, and suggest that the relative importance of factors varies between geographical regions.  相似文献   

5.
Local adaptation is a dynamic process driven by selection that can vary both in space and time. One important temporal adaptation for migratory animals is the time at which individuals return to breeding sites. Chinook salmon (Oncorhynchus tshawytscha) are excellent subjects for studying the genetic basis of temporal adaptation because their high seasonal homing fidelity promotes reproductive isolation leading to the formation of local populations across diverse environments. We tested for adaptive genetic differentiation between seasonal runs of Chinook salmon using two candidate loci; the circadian rhythm gene, OtsClock1b, and Ots515NWFSC, a microsatellite locus showing sequence identity to three salmonid genes central to reproductive development. We found significant evidence for two genetically distinct migratory runs in the Feather River, California (OtsClock1b: F(ST)=0.042, P=0.02; Ots515NWFSC: F(ST)=0.058, P=0.003). In contrast, the fall and threatened spring runs are genetically homogenous based on neutral microsatellite data (F(ST)=-0.0002). Similarly, two temporally divergent migratory runs of Chinook salmon from New Zealand are genetically differentiated based on polymorphisms in the candidate loci (OtsClock1b: F(ST)=0.083, P-value=0.001; Ots515NWFSC: F(ST)=0.095, P-value=0.000). We used an individual-based assignment method to confirm that these recently diverged populations originated from a single source in California. Tests for selective neutrality indicate that OtsClock1b and Ots515NWFSC exhibit substantial departures from neutral expectations in both systems. The large F(ST )estimates could therefore be the result of directional selection. Evidence presented here suggests that OtsClock1b and Ots515NWFSC may influence migration and spawning timing of Chinook salmon in these river systems.  相似文献   

6.
The existence and mode of selection operating on heritable adaptive traits can be inferred by comparing population differentiation in neutral genetic variation between populations (often using F(ST) values) with the corresponding estimates for adaptive traits. Such comparisons indicate if selection acts in a diversifying way between populations, in which case differentiation in selected traits is expected to exceed differentiation in neutral markers [F(ST )(selected) > F(ST )(neutral)], or if negative frequency-dependent selection maintains genetic polymorphisms and pulls populations towards a common stable equilibrium [F(ST) (selected) < F(ST) (neutral)]. Here, we compared F(ST) values for putatively neutral data (obtained using amplified fragment length polymorphism) with estimates of differentiation in morph frequencies in the colour-polymorphic damselfly Ischnura elegans. We found that in the first year (2000), population differentiation in morph frequencies was significantly greater than differentiation in neutral loci, while in 2002 (only 2 years and 2 generations later), population differentiation in morph frequencies had decreased to a level significantly lower than differentiation in neutral loci. Genetic drift as an explanation for population differentiation in morph frequencies could thus be rejected in both years. These results indicate that the type and/or strength of selection on morph frequencies in this system can change substantially between years. We suggest that an approach to a common equilibrium morph frequency across all populations, driven by negative frequency-dependent selection, is the cause of these temporal changes. We conclude that inferences about selection obtained by comparing F(ST) values from neutral and adaptive genetic variation are most useful when spatial and temporal data are available from several populations and time points and when such information is combined with other ecological sources of data.  相似文献   

7.
Miller KM  Kaukinen KH  Beacham TD  Withler RE 《Genetica》2001,111(1-3):237-257
Balancing selection maintains high levels of polymorphism and heterozygosity in genes of the MHC (major histocompatibility complex) of vertebrate organisms, and promotes long evolutionary persistence of individual alleles and strongly differentiated allelic lineages. In this study, genetic variation at the MHC class II DAB-beta1 locus was examined in 31 populations of sockeye salmon (Oncorhynchus nerka) inhabiting the Fraser River drainage of British Columbia, Canada. Twenty-five percent of variation at the locus was partitioned among sockeye populations, as compared with 5% at neutral genetic markers. Geographic heterogeneity of balancing selection was detected among four regions in the Fraser River drainage and among lake systems within regions. High levels of beta1 allelic diversity and heterozygosity, as well as distributions of alleles and allelic lineages that were more even than expected for a neutral locus, indicated the presence of balancing selection in populations throughout much of the interior Fraser drainage. However, proximate populations in the upper Fraser region, and four of six populations from the lower Fraser drainage, exhibited much lower levels of genetic diversity and had beta1 allele frequency distributions in conformance with those expected for a neutral locus, or a locus under directional selection. Pair-wise FST values for beta1 averaged 0.19 and tended to exceed the corresponding values estimated for neutral loci at all levels of population structure, although they were lower among populations experiencing balancing selection than among other populations. The apparent heterogeneity in selection resulted in strong genetic differentiation between geographically proximate populations with and without detectable levels of balancing selection, in stark contrast to observations at neutral loci. The strong partitioning and complex structure of beta1 diversity within and among sockeye populations on a small geographic scale illustrates the value of incorporating adaptive variation into conservation planning for the species.  相似文献   

8.
Loci targeted by directional selection are expected to show elevated geographical population structure relative to neutral loci, and a flurry of recent papers have used this rationale to search for genome regions involved in adaptation. Studies of functional mutations that are known to be under selection are particularly useful for assessing the utility of this approach. Antimalarial drug treatment regimes vary considerably between countries in Southeast Asia selecting for local adaptation at parasite loci underlying resistance. We compared the population structure revealed by 10 nonsynonymous mutations (nonsynonymous single-nucleotide polymorphisms [nsSNPs]) in four loci that are known to be involved in antimalarial drug resistance, with patterns revealed by 10 synonymous mutations (synonymous single-nucleotide polymorphisms [sSNPs]) in housekeeping genes or genes of unknown function in 755 Plasmodium falciparum infections collected from 13 populations in six Southeast Asian countries. Allele frequencies at known nsSNPs underlying resistance varied markedly between locations (F(ST) = 0.18-0.66), with the highest frequencies on the Thailand-Burma border and the lowest frequencies in neighboring Lao PDR. In contrast, we found weak but significant geographic structure (F(ST) = 0-0.14) for 8 of 10 sSNPs. Importantly, all 10 nsSNPs showed significantly higher F(ST) (P < 8 x 10(-5)) than simulated neutral expectations based on observed F(ST) values in the putatively neutral sSNPs. This result was unaffected by the methods used to estimate allele frequencies or the number of populations used in the simulations. Given that dense single-nucleotide polymorphism (SNP) maps and rapid SNP assay methods are now available for P. falciparum, comparing genetic differentiation across the genome may provide a valuable aid to identifying parasite loci underlying local adaptation to drug treatment regimes or other selective forces. However, the high proportion of polymorphic sites that appear to be under balancing selection (or linked to selected sites) in the P. falciparum genome violates the central assumption that selected sites are rare, which complicates identification of outlier loci, and suggests that caution is needed when using this approach.  相似文献   

9.
Although many studies confirm long-term small isolated populations (e.g. island endemics) commonly sustain low neutral genetic variation as a result of genetic drift, it is less clear how selection on adaptive or detrimental genes interplay with random forces. We investigated sequence variation at two major histocompatibility complex (Mhc) class II loci on a porpoise endemic to the upper Gulf of California, México (Phocoena sinus, or vaquita). Its unique declining population is estimated around 500 individuals. Single-strand conformation polymorphism analysis revealed one putative functional allele fixed at the locus DQB (n = 25). At the DRB locus, we found two presumed functional alleles (n = 29), differing by a single nonsynonymous nucleotide substitution that could increase the stability at the dimer interface of alphabeta-heterodimers on heterozygous individuals. Identical trans-specific DQB1 and DRB1 alleles were identified between P. sinus and its closest relative, the Burmeister's porpoise (Phocoena spinipinnis). Comparison with studies on four island endemic mammals suggests fixation of one allele, due to genetic drift, commonly occurs at the DQA or DQB loci (effectively neutral). Similarly, deleterious alleles of small effect are also effectively neutral and can become fixed; a high frequency of anatomical malformations on vaquita gave empirical support to this prediction. In contrast, retention of low but functional polymorphism at the DRB locus was consistent with higher selection intensity. These observations indicated natural selection could maintain (and likely also purge) some crucial alleles even in the face of strong and prolonged genetic drift and inbreeding, suggesting long-term small populations should display low inbreeding depression. Low levels of Mhc variation warn about a high susceptibility to novel pathogens and diseases in vaquita.  相似文献   

10.
Hitchhiking and associative overdominance at a microsatellite locus   总被引:6,自引:2,他引:4  
The possible effects of a selected locus on a closely linked microsatellite locus are discussed and analyzed in terms of coalescent theory and models of the mutation process. Background selection caused by recurrent deleterious mutations will reduce the variance of allele size at a microsatellite locus. The occasional substitution of advantageous alleles (genetic hitchhiking) will also reduce the variance, but a high mutation rate at a microsatellite locus can restore the variance relatively rapidly. Overdominance at the selected locus will increase the variance at the microsatellite locus and create partitioning of the variation in allele size among gametes carrying one or the other of the overdominant alleles. These results suggest that neutral microsatellite loci can provide indicators of selective processes at closely linked loci.   相似文献   

11.
We analyzed the spatiotemporal genetic structure of Farfantepenaeus notialis populations using five microsatellites loci in order to understand the influence of natural events such as hurricanes on the genetic drift/migration balance as the main cause for the variation of allele frequencies over time. The results were compared with the previous ones obtained from allozymes and mtDNA. High and stable genetic diversity levels (He=0.879+/-0.0015) were found over eight years for the populations that inhabit the south Cuban platform, however significant changes of allele frequencies were detected over time. The F(ST) estimates, albeit low, revealed significant differences among populations inside the Ana Maria Gulf for 1995 but not for the 1999 and 2003 samples. The F(ST), AMOVA and the genetic distance analysis revealed the instability of the genetic structure over time in accordance with allozymes results. The correspondence of the microsatellite results with those obtained from allozymes confirm the effects of migration enhanced by natural events as the main cause of the temporal variation of allele frequencies. The genetic drift effect was discarded through the evaluation of Ne and the M ratio, while natural selection effects were rejected because of the lowest probability of microsatellite loci being under selective pressures. The microsatellite data are also consistent with the results obtained with mtDNA in detecting significant and persistent genetic differences between the Gulfs of Ana María and Batabanó for the years 1995 and 2003.  相似文献   

12.
Period homologue 3 (PER3) is a component of the mammalian circa-dian system, although its precise role is unknown. A biallelic variable number tandem repeat (VNTR) polymorphism exists in human PER3, consisting of 4 or 5 repeats of a 54-bp sequence in a region encoding a putative phosphorylation domain. This polymorphism has previously been reported to associate with diurnal preference ("morningness" and "eveningness") and delayed sleep-phase syndrome. We have investigated the global allele frequencies of this variant in ethnically distinct indigenous populations. All populations were polymorphic, with the shorter (4-repeat) allele ranging in frequency from 0.19 (Papua New Guinea) to 0.89 (Mongolia). To investigate if allele frequency has been influenced by natural selection, the authors 1) tested for a correlation with latitude and mean annual insolation (incident sunlight energy), using classical markers to correct for historical population differentiation; and they 2) compared allele-frequency difference between European American, African American, and East Asian populations, as measured using F(ST), to an empirical null distribution of F(ST)values based on a genome-wide dataset of single nucleotide polymorphisms (SNPs) of presumed neutral loci that were previously typed by The SNP Consortium. The variation in allele frequencies between indigenous populations did not show a pattern that would indicate selective pressure on PER3resulting from day-length variation or mean annual insolation, and the allele-frequency difference between European Americans, African Americans, and East Asians was not an outlier when compared to the distribution for presumed neutral SNPs. We therefore find no evidence for differential or balancing selection in the contemporary pattern of global PER3allele frequencies.  相似文献   

13.
Huang SW  Yu HT 《Genetica》2003,119(2):201-218
Major histocompatibility complex (MHC) genes are the most polymorphic loci known for vertebrates. Here we employed five microsatellite loci closely linked to the MHC region in an attempt to study the amount of genetic variation in 19 populations of the southeast Asian house mouse (Mus musculus castaneus) in Taiwan. The overall polymorphism at the five loci was high (He = 0.713), and the level of polymorphism varied from locus to locus. Furthermore, in order to investigate if selection is operating on MHC genes in natural mouse populations, we compared the extent and pattern of genetic variation for the MHC-linked microsatellite loci (the MHC loci) with those for the microsatellite loci located outside the MHC region (the non-MHC loci). The number of alleles and the logarithm of variance in repeat number were significantly higher for the MHC loci than for the non-MHC loci, presumably reflecting linkage to a locus under balancing selection. Although three statistical tests used do not provide support for selection, their lack of support may be due to low statistical power of the tests, to weakness of selection, or to a profound effect of genetic drift reducing the signature of balancing selection. Our results also suggested that the populations in the central and the southwestern regions of Taiwan might be one part of a metapopulation structure.  相似文献   

14.
There is increasing evidence of segregating sexually antagonistic (SA) genetic variation for fitness in laboratory and wild populations, yet the conditions for the maintenance of such variation can be restrictive. Epistatic interactions between genes can contribute to the maintenance of genetic variance in fitness and we suggest that epistasis between SA genes should be pervasive. Here, we explore its effect on SA genetic variation in fitness using a two locus model with negative epistasis. Our results demonstrate that epistasis often increases the parameter space showing polymorphism for SA loci. This is because selection in one locus is affected by allele frequencies at the other, which can act to balance net selection in males and females. Increased linkage between SA loci had more marginal effects. We also show that under some conditions, large portions of the parameter space evolve to a state where male benefit alleles are fixed at one locus and female benefit alleles at the other. This novel effect of epistasis on SA loci, which we term the ‘equity effect’, may have important effects on population differentiation and may contribute to speciation. More generally, these results support the suggestion that epistasis contributes to population divergence.  相似文献   

15.
The Spirit (or Kermode) bear is a white-phased black bear found on the northwest coast of British Columbia, and is one of the most striking color polymorphisms found in mammals. A single nucleotide polymorphism at the melanocortin 1 receptor gene (mc1r) locus is the cause of this recessive w variant. Recently, evidence suggests that the white color provides a selective advantage during salmon hunting. Here we examine the effects of favorable selection, gene flow, genetic drift, and positive-assortative mating in an effort to understand the establishment and maintenance of this polymorphism and the observed heterozygote deficiency for mc1r but not for microsatellite loci. It appears that genetic drift was important in the establishment of the w allele and that the selective advantage was important to counteract immigration from populations without the w allele. Positive-assortative mating can result in a deficiency of heterozygotes but needs to be quite high to result in the large deficiency of heterozygotes observed, suggesting that other factors must also be contributing. Examination of population genetic factors, singly and jointly, provides insight into the establishment and maintenance of this unusual polymorphism.  相似文献   

16.
Investigations of heterozygosity-fitness correlations (HFCs) are central to the understanding how genetic diversity is maintained in natural populations. Advanced genome-wide approaches will enrich the number of functional loci to be tested. We argue that a combined analysis of the genetic mechanisms of HFCs and selection signals at single loci will allow researchers to better understand the micro-evolutionary basis of HFCs. Different dominance relationships among the alleles at the locus can lead to positive, negative or null HFCs depending on the allele frequency distribution. These scenarios differ in the temporal stability of the HFCs and in the patterns of allele frequency changes over time. Here, we describe a simple theoretical framework that links the analyses of heterozygosity-fitness associations (ecological timescale) with tests for selection signals (evolutionary timescale). Different genomic footprints of selection can be expected for the different underlying genetic mechanisms of HFCs, and this information can be independently used for the classification of HFCs. We suggest that in addition to inbreeding and single-locus overdominant effects also loci under directional selection could play a significant role in the development of heterozygosity-fitness effects in large natural populations under recent or fluctuating ecological changes.  相似文献   

17.
Four natural Greek populations of Mediterranean fruit fly, Ceratitis capitata (Wiedemann), was studied for genetic variability at 25 enzyme loci. The comparison of polymorphism within and between populations shows two loci with high between-population heterozygosity (HT) and very high fixation index (F(ST)) values, suggesting the presence of balancing selection. The gradual decline of common allele frequency of the polymorphic loci tested indicated that latitudinal clines are present in Greece. Indirect estimates of gene flow based both on Wright's method (Nm*) and on the Slatkin's method (Nm*), which depends on the frequencies of rare alleles found in only one population, revealed a substantial amount of gene flow (Nm = 3.493 and Nm* = 3.197). These estimates of gene flow may well explain why the "introduced" Greek populations of C. capitata, in spite of their low genetic variability, display the same polymorphic loci. Gene flow in combination with natural selection and genetic drift may have played an important role to genetic differentiation in this species in Greece.  相似文献   

18.
Three measures of divergence, estimated at nine putatively neutral microsatellite markers, 14 quantitative traits, and seven quantitative trait loci (QTL) were compared in eight populations of the three-spined stickleback (Gasterosteus aculeatus L.) living in the Scheldt river basin (Belgium). Lowland estuarine and polder populations were polymorphic for the number of lateral plates, whereas upland freshwater populations were low-plated. The number of short gill rakers and the length of dorsal and pelvic spines gradually declined along a coastal-inland gradient. Plate number, short gill rakers and spine length showed moderate to strong signals of divergent selection between lowland and upland populations in comparison between P(ST) (a phenotypic alternative for Q(ST)) and neutral F(ST). However, such comparisons rely on the unrealistic assumption that phenotypic variance equals additive genetic variance, and that nonadditive genetic effects and environmental effects can be minimized. In order to verify this assumption and to confirm the phenotypic signals of divergence, we tested for divergent selection at the underlying QTL. For plate number, strong genetic evidence for divergent selection between lowland and upland populations was obtained based on an intron marker of the Eda gene, of which the genotype was highly congruent with plate morph. Genetic evidence for divergent selection on short gill rakers was limited to some population pairs where F(ST) at only one of two QTL was detected as an outlier, although F(ST) at both loci correlated significantly with P(ST). No genetic confirmation was obtained for divergent selection on dorsal spine length, as no outlier F(ST)s were detected at dorsal spine QTL, and no significant correlations with P(ST) were observed.  相似文献   

19.
We have studied genetic variation at 30-32 loci coding for enzymes in natural populations of five species of Drosophila. The average proportion of heterozygous loci per individual is 17.7 +/- 0.4%. The average proportion of polymorphic loci per population is 69.2 +/- 2.6% or 49.8 +/- 2.2%, depending on what criterion of polymorphism is used. The following generalizations are advanced: (1) The amount of genetic polymorphism varies considerably from locus to locus. (2) At a given locus, populations of the same species are very similar in the amount and pattern of genetic variation. (3) However, at some loci large differences sometimes occur between local populations of the same species. (4) The amount of variation at a given locus is approximately the same in all five species. (5) When different species are compared, the pattern of the variation is either essentially identical or totally different at a majority of loci. We have tested the hypothesis that protein polymorphisms are selectively neutral by examining four predictions derived from the hypothesis. Our results are at variance with every one of the predictions. We have measured the amount of genetic differentiation, D, between taxa of various degrees of evolutionary divergence. The average value of D is 0.033 for local populations, 0.228 for subspecies, 0.226 for semispecies, 0.538 for sibling species, and 1.214 for morphologically distinguishable species. Our results indicate that a substantial degree of genetic differentiation (22.8 allelic substitutions for every 100 loci) occurs between allopatric populations that have diverged to the point where they might become different species if they were to become sympatric. However, very little additional genetic change is required for the development of complete reproductive isolation. After the speciation process is completed, species continue to diverge genetically from each other.  相似文献   

20.
The origins of extant Glossina pallidipes Austen (Diptera: Glossinidae) populations in the ecologically well-studied Lambwe and Nguruman valleys in Kenya are controversial because populations have recovered after seemingly effective attempts to achieve high levels of control. The microgeographical breeding structure of the tsetse fly, G. pallidipes, was investigated by analysing spatial and temporal variation at eight microsatellite loci to test hypotheses about endemism and immigration. Samples were obtained at seasonal intervals from trap sites separated by 200 m to 14 km and arranged into blocks. G. pallidipes populations nearest to Lambwe and Nguruman also were sampled. Spatial analysis indicated that genetic differentiation by genetic drift was much less among trapping sites within Lambwe and Nguruman (F(ST) < or = 0.049) than between them (F(ST) = 0.232). F(ST) between Serengeti and Nguruman was 0.16 and F(ST) between Kodera Forest and Lambwe was 0.15. The genetic variance in G. pallidipes explained by dry and wet seasons (0.33%) was about one-fifth the variance among collection dates (1.6%), thereby indicating reasonable temporal stability of genetic variation. Gene frequencies in Kodera and Serengeti differed greatly from Lambwe and Nguruman, thereby falsifying the hypothesis that Lambwe and Nguruman were repopulated by immigrants. Harmonic mean effective (= breeding) population sizes were 180 in Lambwe and 551 in Nguruman. The genetic data suggest that G. pallidipes in Lambwe and Nguruman have been endemic for long intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号