首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
C T Choma  H Kaplan 《Biochemistry》1990,29(49):10971-10977
The action of trypsin or papain on the 130-kDa crystal protein (protoxin) from Bacillus thuringiensis subsp. kurstaki HD-73 yields a 67-kDa proteinase-resistant toxic fragment (toxin) which is derived from the N-terminal half of the molecule. Sensitivity to proteolysis and fluorescence emission spectroscopy showed that the toxin unfolded to a much greater extent in 6 M guanidinium chloride (GuHCl) than in 8 M urea. Protoxin also unfolded extensively in 6 M GuHCl, whereas in 8 M urea only the C-terminal half of the molecule had unfolded extensively. Both unfolded protoxin and unfolded toxin refolded to their native and biologically active conformations. The biphasic unfolding observed for protoxin suggests that the C-terminal half of the molecule unfolded rapidly, whereas the N-terminal toxic moiety unfolded at a much slower rate, similar to that of the free 67-kDa toxin. A 67-kDa fragment, derived from the N-terminal half of the molecule, could be generated from the protoxin in the presence of either urea or GuHCl by treatment with proteinases. Compared to toxin in denaturants, this fragment was found to be more sensitive to proteolysis. However, on removal of the denaturants the fragment had the same proteinase resistance and cytolytic activity as native toxin. The increased proteinase sensitivity of the fragment generated in the presence of denaturants appears to be due to a perturbation in the conformation of the N-terminal toxic moiety. This perturbation is attributed to the unfolding of the C-terminal region of the protoxin prior to its proteolysis to yield the 67-kDa fragment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The aspartic acid (Asp)-induced unfolding and the salt-induced folding of arginine kinase (AK) were studied in terms of enzyme activity, intrinsic fluorescence emission spectra, 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra and far-UV circular dichroism (CD) spectra. The results showed that Asp caused inactivation and unfolding of AK with no aggregation during AK denaturation. The unfolding of the whole molecule and the inactivation of AK in different Asp concentrations were compared. Much lower Asp concentration was required to induce inactivation than to produce significant conformational changes of the enzyme molecule. However, with further addition of Asp, the molar ellipticity at 222 and 208 nm, the wavelength shift and the emission intensity of ANS hardly changed. Asp denatured AK was reactivated by dilution. In addition, potassium chloride (KCl) induced the molten globule state with a compact structure after AK was denatured with 7.5 mM Asp. These results collectively elucidate the osmotic effect of Asp anions for the molten globule formed during unfolding process. They also suggest that the effect of Asp differed from that of other denaturants such as guanidine hydrochloride or urea during AK folding. The molten globule state indicates that intermediates exist during AK folding.  相似文献   

3.
Aminoacylase is a dimeric enzyme containing one Zn(2+) ion per subunit. The arginine (Arg)-induced unfolding of Holo-aminoacylase and Apo-aminoacylase has been studied by measurement of enzyme activity, fluorescence emission spectra and 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra. Besides being the most alkaline amino acid, the arginine molecule contains a positively charged guanidine group, similar to guanidine hydrochloride, and has been used in many refolding systems to suppress protein aggregation. Our results showed that arginine caused the inactivation and unfolding of aminoacylase, with no aggregation during denaturation. A comparison between the unfolding of aminoacylase in aqueous and HCl (pH 7.5) arginine solutions indicated that the guanidine group of arginine had protein-denaturing effects similar to those of guanidine hydrochloride, which might help us understand the mechanism by which arginine suppresses incorrect refolding. The results showed that arginine-denatured aminoacylase could be reactivated and refolded correctly, indicating that arginine is as good a denaturant as the guanidine or urea for study of protein unfolding and refolding. Both the intrinsic fluorescence and the ANS fluorescence spectra showed that the arginine-unfolded aminoacylase formed a molten globule state in the presence of KCl, suggesting that intermediates exist during aminoacylase refolding. The results for the Apo-aminoacylase followed were similar to those for the Holo-enzyme, suggesting that Holo- and Apo-aminoacylase might have a similar unfolding and refolding pathway.  相似文献   

4.
The effects of dimethyl sulfoxide (DMSO) on creatine kinase (CK) conformation and enzymatic activity were studied by measuring activity changes, aggregation, and fluorescence spectra. The results showed that at low concentrations (< 65% v/v), DMSO had little effect on CK activity and structure. However, higher concentrations of DMSO led to CK inactivation, partial unfolding, and exposure of hydrophobic surfaces and thiol groups. DMSO caused aggregation during CK denaturation. A 75% DMSO concentration induced the most significant aggregation of CK. The CK inactivation and unfolding kinetics were single phase. The unfolding of CK was an irreversible process in the DMSO solutions. The results suggest that to a certain extent, an enzyme can maintain catalytic activity and conformation in water-organic mixture environments. Higher concentrations of DMSO affected the enzyme structure but not its active site. Inactivation occurred along with noticeable conformational change during CK denaturation. The inactivation and unfolding of CK in DMSO solutions differed from other denaturants such as guanidine, urea, and sodium dodecyl sulfate. The exposure of hydrophobic surfaces was a primary reason for the protein aggregation.  相似文献   

5.
The aspartate (Asp)-induced unfolding and the salt-induced folding of creatine kinase (CK) have been studied by measuring enzyme activity, fluorescence emission spectra, circular dichroism (CD) spectra, native polyacrylamide gel electrophoresis and ultraviolet difference spectra. The results showed that Asp caused inactivation and unfolding of CK, with no aggregation during CK denaturation. The kinetics of CK unfolding followed a one phase process. At higher concentrations of Asp (>2.5mM), the CK dimers were partially dissociated. Inactivation occurred before noticeable conformational change during CK denaturation. Asp denatured CK was mostly reactivated and refolded by dilution. KCl induced the molten globule state with compact structure after CK was denatured with 10mM Asp. These results suggest that the effect of Asp differed from that of other denaturants such as guanidine, HCl or urea during CK unfolding. Asp is a reversible protein denaturant and the molten globule state indicates that intermediates exist during CK folding.  相似文献   

6.
The lactic acid induced unfolding and the salt-induced folding of creatine kinase (CK) were studied by enzyme activity, fluorescence emission spectra, circular dichroism spectra, and native polyacrylamide gel electrophoresis. The results showed that the kinetics of CK inactivation was a monophase process. Lactic acid caused inactivation and unfolding of CK with no aggregation during CK denaturation. The unfolding of the whole molecule and the inactivation of CK in solutions of different concentration of lactic acid were compared. Much lower lactic acid concentration values were required to bring about inactivation than were required to produce significant conformational changes of the enzyme molecule. At higher concentrations of lactic acid (more than 0.2 mM) the CK dimers were partially dissociated, as proved by native polyacrylamide gel electrophoresis. NaCl induced the molten globule state with a compact structure after CK was denatured with 0.8 mM lactic acid, and the increasing of anions led to a tight side-chain. The above results suggest that the effect of lactic acid differed from that of other denaturants such as guanidine hydrochloride, HCI, or urea during CK folding, and the molten globule state indicates that intermediates exist during CK folding.  相似文献   

7.
Thermodynamic stability parameters and the equilibrium unfolding mechanism of His 6HodC69S, a mutant of 1 H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) having a Cys to Ser exchange at position 69 and an N-terminal hexahistidine tag (His 6HodC69S), have been derived from isothermal unfolding studies using guanidine hydrochloride (GdnHCl) or urea as denaturants. The conformational changes were monitored by following changes in circular dichroism (CD), fluorescence, and dynamic light scattering (DLS), and the resulting transition curves were analyzed on the basis of a sequential three-state model N = I = D. The structural changes have been correlated to catalytic activity, and the contribution to stability of the disulfide bond between residues C37 and C184 in the native protein has been established. A prominent result of the present study is the finding that, independent of the method used for denaturing the protein, the unfolding mechanism always comprises three states which can be characterized by, within error limits, identical sets of thermodynamic parameters. Apparent deviations from three-state unfolding can be rationalized by the inability of a spectroscopic probe to discriminate clearly between native, intermediate, and unfolded ensembles. This was the case for the CD-monitored urea unfolding curve.  相似文献   

8.
The thermal denaturation of bacteriorhodopsin in the purple membrane of Halobacterium halobium has been studied by differential scanning calorimetry (DSC) and temperature-dependent spectroscopy in the pH range from 5 to 11. Monitoring of protein fluorescence and absorbance in the near-UV and visible regions indicates that changes primarily occur in tertiary structure with denaturation. Far-UV circular dichroism shows only small changes in the secondary structure, unlike most globular water-soluble proteins of comparable molecular weight. The DSC transition can best be described as a two-state denaturation of the trimer. Thermodynamic analysis of the calorimetric transition reveals some similarity between the unfolding of bacteriorhodopsin and water-soluble proteins. Specifically, a pH dependence of the midpoint temperature of denaturation is seen as well as a temperature-dependent enthalpy of denaturation. Proteolysis experiments on denatured purple membrane suggest that bacteriorhodopsin may be partially extruded from the membrane as it denatures. Exposure of buried hydrophobic residues to the aqueous environment upon denaturation is consistent with the observed temperature-dependent enthalpy.  相似文献   

9.
The equilibrium unfolding of ElysL, a homodimeric legume lectin, was studied using different denaturing agents such as guanidinium chloride (GdnHCl), temperature and pH. Simultaneously, changes in the secondary as well as tertiary structure of lectin were followed by CD spectroscopy examination in both far and near-UV region, respectively. The hydrophobic cluster binding dye, 1-anilino-8-naphthalene sulfonate (ANS), was used to further explore intermediates and to follow the unfolding pathway of lectin. The adenine binding ability of lectin was examined and monitored via absorption spectra and the intrinsic tryptophan fluorescence. Our findings indicate that the ElysL unfolding process occurs via a three state pathway with an intermediate state. We also showed that ElysL binds adenine in a manner that involves a hydrophobic binding pocket that is independent of the carbohydrate binding sites.  相似文献   

10.
A new method for analyzing three-state protein unfolding equilibria is described that overcomes the difficulties created by direct effects of denaturants on circular dichroism (CD) and fluorescence spectra of the intermediate state. The procedure begins with a singular value analysis of the data matrix to determine the number of contributing species and perturbations. This result is used to choose a fitting model and remove all spectra from the fitting equation. Because the fitting model is a product of a matrix function which is nonlinear in the thermodynamic parameters and a matrix that is linear in the parameters that specify component spectra, the problem is solved with a variable projection algorithm. Advantages of this procedure are perturbation spectra do not have to be estimated before fitting, arbitrary assumptions about magnitudes of parameters that describe the intermediate state are not required, and multiple experiments involving different spectroscopic techniques can be simultaneously analyzed. Two tests of this method were performed: First, simulated three-state data were analyzed, and the original and recovered thermodynamic parameters agreed within one standard error, whereas recovered and original component spectra agreed within 0.5%. Second, guanidine-induced unfolding titrations of the human retinoid-X-receptor ligand-binding domain were analyzed according to a three-state model. The standard unfolding free energy changes in the absence of guanidine and the guanidine concentrations at zero free-energy change for both transitions were determined from a joint analysis of fluorescence and CD spectra. Realistic spectra of the three protein states were also obtained.  相似文献   

11.
The effects of lead ions on creatine kinase (CK) were studied by measuring activity changes, intrinsic fluorescence spectra and 8-anilo-1-naphthalenesulfonate (ANS)-binding fluorescence along with size-exclusion chromatography (SEC). Below 5 mM Pb(2+) concentration, there was nearly no change of the enzyme activity and a slight change of the ANS-binding fluorescence. The CK activity decreased significantly from 10 to 25 mM Pb(2+) concentrations. No residual activity was observed above 25 mM Pb(2+). The kinetic time courses of inactivity and unfolding were all mono-phase courses with the inactivation rate constants being greater than the unfolding rate constants for the same Pb(2+) concentration. The changes in fluorescence maximum and fluorescence intensity were relatively slow for 40-80 mM Pb(2+) as well as in the initial stage for less than 5 mM Pb(2+), showing that two transition states exist for Pb(2+) induced equilibrium-unfolding curves. The intrinsic fluorescence spectra and ANS-binding fluorescence measurements showed that even for high Pb(2+) concentrations, CK did not fully unfold. Additionally, the SEC results showed that the enzyme molecule still existed in an inactive dimeric state at 20 and 40 mM Pb(2+) solutions. All the results indicated the presence of at least one stable unfolding equilibrium intermediate of CK during Pb(2+) unfolding.  相似文献   

12.
We report here on the stability and folding of the 91 residue alpha-helical F29W N-terminal domain of chicken skeletal muscle troponin C (TnC(1-91)F29W), the thin filament calcium-binding component. Unfolding was monitored by differential scanning calorimetry, circular dichroism, and intrinsic fluorescence spectroscopy using urea, pH, and temperature as denaturants, in the absence and in the presence of calcium. The unfolding of TnC(1-91)F29W was reversible and did not follow a two-state transition, suggesting that an intermediate may be present during this reaction. Our results support the hypothesis that intermediates are likely to occur during the folding of small proteins and domains. The physiological significance of the presence of an intermediate in the folding pathway of troponin C is discussed.  相似文献   

13.
Circular dichroism was used to monitor the thermal unfolding of ribonuclease A in 50% aqueous methanol. The spectrum of the protein at temperatures below -10 degrees C (pH* 3.0) was essentially identical to that of native ribonuclease A in aqueous solution. The spectrum of the thermally denatured material above 70 degrees C revealed some residual secondary structure in comparison to protein unfolded by 5 M Gdn.HCl at 70 degrees C in the presence or absence of methanol. The spectra as a function of temperature were deconvoluted to determine the contributions of different types of secondary structure. The position of the thermal unfolding transition as monitored by alpha-helix, with a midpoint at 38 degrees C, was at a much higher temperature than that monitored by beta-sheet, 26 degrees C, which also corresponded to that observed by delta A286, tyrosine fluorescence and hydrodynamic radius (from light scattering measurements). Thus, the loss of beta-sheet structure is decoupled from that of alpha-helix, suggesting a step-wise unfolding of the protein. The transition observed for loss of alpha-helix coincides with the previously measured transition for His-12 by NMR from a partially folded state to the unfolded state, suggesting that the unfolding of the N-terminal helix in RNase A is lost after unfolding of the core beta-sheet during thermal denaturation. The thermally denatured protein was relatively compact, as measured by dynamic light scattering.  相似文献   

14.
Cyt2Aa2 is a mosquito larvicidal and cytolytic toxin produced by Bacillus thuringiensis subsp. darmstadiensis. The toxin becomes inactive when isoleucine at position 150 was replaced by alanine. To investigate the functional role of this position, Ile150 was substituted with Leu, Phe, Glu and Lys. All mutant proteins were produced at high level, solubilized in carbonate buffer and yielded protease activated product similar to those of the wild type. Intrinsic fluorescence spectra analysis suggested that these mutants retain similar folding to the wild type. However, mosquito larvicidal and hemolytic activities dramatically decreased for the I150K and were completely abolished for I150A and I150F mutants. Membrane binding and oligomerization assays demonstrated that only I150E and I150L could bind and form oligomers on lipid membrane similar to that of the wild type. Our results suggest that amino acid at position 150 plays an important role during membrane binding and oligomerization of Cyt2Aa2 toxin. [BMB Reports 2013; 46(3): 175-180]  相似文献   

15.
The conformation of calf brain tubulin has been monitored by circular dichroism, optical rotatory dispersion, and spectrophotometric titration as a function of pH, temperature, ligand concentrations, and denaturants. At pH 7, calf brain tubulin maintains its structural integrity between 5 and 37 °C as determined by circular dichroism. Furthermore, the presence of MgCl 2 up to 1.6 × 10?2m does not induce any observable changes in the circular dichroism spectra, nor does 10?4m CaCl2. With increasing pH, the spectral data can best be described as a gradual loosening of the secondary structure between pH 7 and 9. Both spectral and titrimetric data suggest a major unfolding of tubulin between pH 9 and 10. The apparent pK of tyrosine shifts from 10.85 to 9.98 upon transferring from buffer to 6 m guanidine hydrochloride, indicating that at least 14 of the 15 tyrosine groups are not fully accessible to protons in the native protein. The single disulfide bridge in calf brain tubulin helps to maintain a domain which is highly resistant to unfolding by denaturants.  相似文献   

16.
Bovine pancreatic ribonuclease A loses almost completely its activity in 2-3 M guanidine, whereas only very slight conformational changes can be detected when following its unfolding by changes in its intrinsic fluorescence at 305 nm and ultraviolet absorbance at 287 nm. Reactivation on diluting out the denaturant is a time-dependent process, indicating that the inactivation is not due to inhibition by a reversible association of the enzyme with guanidine. The kinetic method of following the substrate reaction, in the presence of the denaturant previously proposed for use in the study of rapid inactivation reactions (Tian, W.X. and Tsou, C.-L. (1982) Biochemistry 21, 1028-1032), is applied to examine the inactivation rates of this enzyme during guanidine denaturation, and these have been compared with the unfolding rates as followed by fluorescence and absorbance changes. It is shown that during the unfolding of this enzyme in guanidine, the inactivation of the enzyme occurs within the dead time of mixing in a stopped-flow apparatus and is at least several orders of magnitude faster than the unfolding reaction as detected by the optical parameters. It appears that, as in the case of creatine kinase reported previously, the active site of a small enzyme stabilized by multiple disulfide linkages, such as ribonuclease A, is also situated in a region which is much more liable to being perturbed by denaturants than is the molecule as a whole.  相似文献   

17.
Prion diseases are associated with conformational conversion of the cellular prion protein, PrPC, into a misfolded form, PrPSc. We have investigated the equilibrium unfolding of the structured domain of recombinant murine prion protein, comprising residues 121-231 (mPrP-(121-231)). The equilibrium unfolding of mPrP-(121-231) by urea monitored by intrinsic fluorescence and circular dichroism (CD) spectroscopies indicated a two-state transition, without detectable folding intermediates. The fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5-disulfonic acid (bis-ANS) binds to native mPrP-(121-231), indicating exposure of hydrophobic domains on the protein surface. Increasing concentrations of urea (up to 4 M) caused the release of bound bis-ANS, whereas changes in intrinsic fluorescence and CD of mPrP took place only above 4 M urea. This indicates the existence of a partially unfolded conformation of mPrP, characterized by loss of bis-ANS binding and preservation of the overall structure of the protein, stabilized at low concentrations of urea. Hydrostatic pressure and low temperatures were also used to stabilize partially folded intermediates that are not detectable in the presence of chemical denaturants. Compression of mPrP to 3.5 kbar at 25 degrees C and pH 7 caused a slight decrease in intrinsic fluorescence emission and an 8-fold increase in bis-ANS fluorescence. Lowering the temperature to -9 degrees C under pressure reversed the decrease in intrinsic fluorescence and caused a marked (approximately 40-fold) increase in bis-ANS fluorescence. The increase in bis-ANS fluorescence at low temperatures was similar to that observed for mPrP at 1 atm at pH 4. These results suggest that pressure-assisted cold denaturation of mPrP stabilizes a partially folded intermediate that is qualitatively similar to the state obtained at acidic pH. Compression of mPrP in the presence of a subdenaturing concentration of urea stabilized another partially folded intermediate, and cold denaturation under these conditions led to complete unfolding of the protein. Possible implications of the existence of such partially folded intermediates in the folding of the prion protein and in the conversion to the PrPSc conformer are discussed.  相似文献   

18.
We present circular dichroism (CD), steady state fluorescence and multidimensional NMR investigations on the equilibrium unfolding of monomeric dynein light chain protein (DLC8) by urea and guanidine hydrochloride (GdnHCl). Quantitative analysis of the CD and fluorescence denaturation curves reveals that urea unfolding is a two-state process, whereas guanidine unfolding is more complex. NMR investigations in the native state and in the near native states created by low denaturant concentrations enabled residue level characterization of the early structural and dynamic perturbations by the two denaturants. Firstly, (15)N transverse relaxation rates in the native state indicate that the regions around N10, Q27, the loop between beta2 and beta4 strands, and K87 at the C-terminal are potential unfolding initiation sites in the protein. Amide and (15)N chemical shift perturbations indicate different accessibilities of the residues along the chain and help identify locations of the early perturbations by the two denaturants. Guanidine and urea are seen to interact at several sites some of which are different in the two cases. Notable among the common interaction site is that around K87 which is in close proximity to W54 on the protein structure, but the interaction modes of the two denaturants are different. The secondary chemical shifts indicate that the structural perturbation by 1M urea is small, compared to that by guanidine which is more encompassing over the length of the chain. The probable (phi, psi) changes at the individual residues have been calculated using the TALOS algorithm. It appears that the helices in the protein are significantly perturbed by guanidine. Further, comparison of the spectral density functions of the native and the two near native states in the two denaturants implicate greater loosening of the structure by guanidine as compared to that by urea, even though the structures are still in the native state ensemble. These differences in the early perturbations of the native state structure and dynamics by the two denaturants might direct the protein along different pathways, as the unfolding progresses on further increasing the denaturant concentration.  相似文献   

19.
The possible role of carbohydrate moieties in the stabilization of proteins has been investigated by using bitter gourd peroxidase as a model system. A comparative study of glycosylated and non-glycosylated isoenzymes of bitter gourd peroxidase was performed at various temperatures, pH, water-miscible organic solvents, detergents and chaotropic agent like urea. The pH-optima and temperature-optima of both glycosylated and non-glycosylated isoforms of bitter gourd peroxidase remained unchanged. The probes employed were changes in the enzyme activity and fluorescence. The glycosylated form of peroxidase retained greater fraction of enzyme activity against the exposure caused by various physical and chemical denaturants. The unfolding of both forms of enzyme in the presence of high urea concentrations, studied by fluorescence, indicated greater perturbations in the conformation of non-glycosylated preparation. The different properties examined thus indicated that glycosylation plays an important role in the stabilization of native conformation of proteins against the inactivation caused by various types of denaturants.  相似文献   

20.
We present a comparative analysis of the unfolding and inactivation of three cutinases in the presence of guanidine hydrochloride (GdnHCl) and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). Previous investigations have focused on the cutinase from Fusarium solani pisi (FsC). In addition to FsC, the present study includes the cutinase from Humicola insolens (HiC) and a mutant variant of HiC (muHiC) with increased activity and decreased surfactant sensitivity. Equilibrium and time-resolved denaturation by AOT were studied in aqueous solution and reverse micelles, and were compared with GdnHCl denaturation. The far-UV CD and fluorescence denaturation profiles obtained in the aqueous solutions of the two denaturants coincide for all three cutinases, indicating that unfolding is a co-operative two-state process under these conditions. In reverse micelles, the cutinases unfold with mono-exponential rates, again indicating a two-state process. The free energy of denaturation in water was calculated by linear extrapolation of equilibrium data, yielding very similar values for the three cutinases with averages of -11.6 kcal mol(-1) and -2.6 kcal mol(-1) for GdnHCl and AOT, respectively. Hence, the AOT denatured state (D(AOT)) is less destabilised than the GdnHCl denatured state (D(GdnHCl)), relative to the native state in water. Far-UV CD spectroscopy revealed that D(AOT) retains some secondary structure, while D(GdnHCl) is essentially unstructured. Similarly, fluorescence data suggest that D(AOT) is more compact than D(GdnHCl). Activity measurements reveal that both D(AOT) and D(GdnHCl) are practically inactive (catalytic activity <1% of that of the native enzyme). The fluorescence spectrum of D(AOT) in reverse micelles did not differ significantly from that observed in aqueous AOT. NMR studies of D(AOT) in reverse micelles indicated that the structure is characteristic of a molten globule, consistent with the CD and fluorescence data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号