首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Some predictions of the recently proposed theory of long-distance water transport in plants (the Compensating Pressure Theory) have been verified experimentally in sunflower leaves. The xylem sap cavitates early in the day under quite small water stress, and the compensating pressure P (applied as the tissue pressure of turgid cells) pushes water into embolized vessels, refilling them during active transpiration. The water potential, as measured by the pressure chamber or psychrometer, is not a measure of the pressure in the xylem, but (as predicted by the theory) a measure of the compensating pressure P. As transpiration increases, P is increased to provide more rapid embolism repair. In many leaf petioles this increase in P is achieved by the hydrolysis of starch in the starch sheath to soluble sugars. At night P falls as starch is reformed. A hypothesis is proposed to explain these observations by pressure-driven reverse osmosis of water from the ground parenchyma of the petiole. Similar processes occur in roots and are manifested as root pressure. The theory requires a pump to transfer water from the soil into the root xylem. A mechanism is proposed by which this pump may function, in which the endodermis acts as a one-way valve and a pressure-confining barrier. Rays and xylem parenchyma of wood act like the xylem parenchyma of petioles and roots to repair embolisms in trees. The postulated root pump permits a re-appraisal of the work done by evaporation during transpiration, leading to the proposal that in tall trees there is no hydrostatic gradient to be overcome in lifting water. Some published observations are re-interpreted in terms of the theory: doubt is cast on the validity of measurements of hydraulic conductance of wood; vulnerability curves are found not to measure the cavitation threshold of water in the xylem, but the osmotic pressure of the xylem parenchyma; if measures of xylem pressure and of hydraulic conductance are both suspect, the accepted view of the hydraulic architecture of trees needs drastic revision; observations that xylem feeding insects feed faster as the water potential becomes more negative are in accord with the theory; tyloses, which have been shown to form in vessels especially vulnerable to cavitation, are seen as necessary for the maintenance of P, and to conserve the supplementary refilling water. Far from being a metastable system on the edge of disaster, the water transport system of the xylem is ultrastable: robust and self-sustaining in response to many kinds of stress.  相似文献   

3.
《植物生态学报》2016,40(8):834
To maintain long-distance water transport in woody plants is critical for their survival, growth and development. Water under tension is in a metastable state and prone to cavitation and embolism, which leads to loss of hydraulic conductance, reduced productivity, and eventually plant death. In face to water stress-induced cavitation, plants either reduce frequency of embolism occurrence through cavitation resistance with specialized anatomical struc- ture, or/and form a metabolically active embolism repair mechanism. For the xylem embolism and repair, however, there are controversies regarding the occurring frequency, conditions and underlying mechanisms. In this review paper, we first examined the process, temporal dynamics and frequency of xylem embolism and repair. Then, we summarized hypotheses for the mechanisms of the novel refilling in xylem embolism repair, including the osmotic hypothesis, the reverse osmotic hypothesis, the phloem-driven refilling hypothesis, and the phloem unloading hypothesis. We further compared differences in xylem embolism and repair between conifers and angiosperms tree species, and examined the trade-offs between cavitation resistance and xylem recovery performance. Finally, we proposed four priorities in future research in this field: (1) to improve measuring technology of xylem embolism; (2) to test hypotheses for the mechanisms of the novel refilling in xylem embolism repair and the signal triggering xylem refilling; (3) to explore species-specific trait differences related to xylem embolism and repair and their underlying trade-off relationships; and (4) to enhance studies on the relationship between the involvement of carbon metabolism and aquaporins expression in xylem embolism and repair.  相似文献   

4.
Mechanism of water stress-induced xylem embolism   总被引:40,自引:4,他引:36       下载免费PDF全文
We investigated the hypothesis that water stress-induced xylem embolism is caused by air aspirated into functional vessels from neighboring embolized ones (e.g. embolized by physical damage) via pores in intervessel pit membranes. The following experiments with sugar maple (Acer saccharum Marsh.) support the hypothesis. (a) Most vessels in dehydrating stem segments embolized at xylem pressures < −3 megapascals; at this point the pressure difference across intervessel pits between air-filled vessels at the segment's ends and internal water-filled vessels was >3 megapascals. This same pressure difference was found to be sufficient to force air across intervessel pits from air injection experiments of hydrated stem segments. This suggests air entry at pits is causing embolism in dehydrating stems. (b) Treatments that increased the permeability of intervessel pits to air injection also caused xylem to embolize at less negative xylem pressures. Permeability was increased either by perfusing stems with solutions of surface tension below that of water or by perfusion with a solution of oxalic acid and calcium. The mechanism of oxalic-calcium action on permeability is unknown, but may relate to the ability of oxalate to chelate calcium from the pectate fraction of the pit membrane. (c) Diameter of pores in pit membranes measured with the scanning electron microscope were within the range predicted by hypothesis (≤0.4 micrometer).  相似文献   

5.
Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.  相似文献   

6.
Lee SJ  Kim Y 《Annals of botany》2008,101(4):595-602
BACKGROUND AND AIMS: Xylem vessels containing gases (embolized) must be refilled with water if they are to resume transport of water through the plant, so refilling is of great importance for the maintenance of water balance in plants. However, the refilling process is poorly understood because of inadequate examination methods. Simultaneous measurements of plant anatomy and vessel refilling are essential to elucidate the mechanisms involved. In the present work, a new technique based on phase-contrast X-ray imaging is presented that visualizes, in vivo and in real time, both xylem anatomy and refilling of embolized vessels. METHODS: With the synchrotron X-ray micro-imaging technique, the refilling of xylem vessels of leaves and a stem of Phyllostachys bambusoides with water is demonstrated under different conditions. The technique employs phase contrast imaging of X-ray beams, which are transformed into visible light and are photographed by a charge coupled device camera. X-ray images were captured consecutively at every 0.5 s with an exposure time of 10 ms. KEY RESULTS: The interface (meniscus) between the water and gas phases in refilling the xylem vessels is displayed. During refilling, the rising menisci in embolized vessels showed repetitive flow, i.e. they temporarily stopped at the end walls of the vessel elements while gas bubbles were removed. The meniscus then passed through the end wall at a faster rate than the speed of flow in the main vessels. In the light, the speed of refilling in a specific vessel was slower than that in the dark, but this rate increased again after repeated periods in darkness. CONCLUSIONS: Real-time, non-destructive X-ray micro-imaging is an important, useful and novel technique to study the relationship between xylem structure and the refilling of embolized vessels in intact plants. It provides new insight into understanding the mechanisms of water transport and the refilling of embolized vessels, which are not understood well.  相似文献   

7.
During the development of many fleshy fruits, water flow becomes progressively more phloemic and less xylemic. In grape (Vitis vinifera L.), the current hypothesis to explain this change is that the tracheary elements of the peripheral xylem break as a result of berry growth, rendering the xylem structurally discontinuous and hence non-functional. Recent work, however, has shown via apoplastic dye movement through the xylem of post-veraison berries that the xylem should remain structurally intact throughout berry development. To corroborate this, peripheral xylem structure in developing Chardonnay berries was investigated via maceration and plastic sectioning. Macerations revealed that, contrary to current belief, the xylem was comprised mostly of vessels with few tracheids. In cross-section, the tracheary elements of the vascular bundles formed almost parallel radial files, with later formed elements toward the epidermis and earlier formed elements toward the centre of the berry. Most tracheary elements remained intact throughout berry maturation, consistent with recent reports of vascular dye movement in post-veraison berries.  相似文献   

8.
The water supply to leaves of 25 to 60 m tall trees (including high-salinity-tolerant ones) was studied. The filling status of the xylem vessels was determined by xylem sap extraction (using jet-discharge, gravity-discharge, and centrifugation) and by (1)H nuclear magnetic resonance imaging of wood pieces. Simultaneously, pressure bomb experiments were performed along the entire trunk of the trees up to a height of 57 m. Clear-cut evidence was found that the balancing pressure (P(b)) values of leafy twigs were dictated by the ambient relative humidity rather than by height. Refilling of xylem vessels of apical leaves (branches) obviously mainly occurred via moisture uptake from the atmosphere. These findings could be traced back to the hydration and rehydration of mucilage layers on the leaf surfaces and/or of epistomatal mucilage plugs. Xylem vessels also contained mucilage. Mucilage formation was apparently enforced by water stress. The observed mucilage-based foliar water uptake and humidity dependency of the P(b) values are at variance with the cohesion-tension theory and with the hypothesis that P(b) measurements yield information about the relationships between xylem pressure gradients and height.  相似文献   

9.
In this study xylem hydraulic resistances of peduncles (truss stalk), pedicels (fruit stalk) and the future abscission zone (AZ) halfway along the pedicel of tomato (Lycopersicon esculentum L.) plants were directly measured at different stages of fruit development, in plants grown under two levels of water availability in the root environment. The xylem hydraulic connection between shoot and fruits has previously been investigated, but contradictory conclusions were drawn about the presence of a flow resistance barrier in the pedicel. These conclusions were all based on indirect functional measurements and anatomical observations of water-conducting tissue in the pedicel. In the present study, by far the largest resistances were measured in the AZ where most individual vessels ended. Plants grown at low water availability in the root environment had xylem with higher hydraulic resistances in the peduncle and pedicel segments on both sides of the AZ, while the largest increase in hydraulic resistance was measured in the AZ. During fruit development hydraulic resistances in peduncle and pedicel segments decreased on both sides of the AZ, but tended to increase in the AZ. The overall xylem hydraulic resistance between the shoot and fruit tended to increase with fruit development because of the dominating role of the hydraulic resistance in the AZ. It is discussed whether the xylem hydraulic resistance in the AZ of tomato pedicels in response to water stress and during fruit development contributes to the hydraulic isolation of fruits from diurnal cycles of water stress in the shoot.  相似文献   

10.
Abstract This paper describes experiments to test the suggestion that developing xylem vessels are the site of exudation of ions from the root to the shoot. Electron microscopy is used to define the stage of development of xylem vessels in young barley roots along the length of the root. The amino acid analogue p-fluorophenyl-alanine (FPA) is used to inhibit ion transport from the stele to the xylem vessels at varied distances from the apex. In the presence of FPA protein synthesis is not inhibited but ineffective proteins are formed. It is shown that exudation of Cl? from the root can be inhibited in this way in parts of the root where all the xylem vessels are mature. This is in contradiction to the suggestion that root exudation is due to the activity of developing vessels. The hypothesis is thus strengthened that ion transport proceeds into the xylem vessels, which are fully mature and devoid of cytoplasm, and is due to release from the xylem parenchyma cells.  相似文献   

11.
Living Vessel Elements in the Late Metaxylem of Sheathed Maize Roots   总被引:6,自引:0,他引:6  
The two types of nodal roots of field-grown maize, sheathedand bare, were found to have such different water conductivitiesthat an investigation of the anatomy of their large metaxylemvessels was made. While the vessels of the bare roots were openfor scores of centimetres, those of the sheathed roots werefound to be not vessels but developing vessel elements, withcross walls at 1 mm intervals, and protoplasts. The cross wallsbetween the elements had several unique histochemical properties.Previous investigators have often failed to find the cross wallsbecause they are very easily dislodged during the usual methodsof tissue preparation. They are best identified by microdissectionof fresh xylem. The living elements persist in the late metaxylemup to 20 – 30 cm from the tip. As the roots become longerthan this both the cross walls and the soil sheaths disappearand there is a transition to a bare root with open vessels inthe proximal region. The soil sheath persists a little longerthan the cross walls. The two types are thus stages in a developmentalsequence through which all nodal roots pass. A fundamental differencebetween the two types is in their water status, since the estimatedconductive capacity of a bare root is about 100 times greaterthan that of a sheathed root. These observations point to theneed for a reassessment of the published work on transport ofions into the xylem of grass roots through a reinvestigationof the ‘maturity’ of their xylem vessels. Grass roots, dimorphic roots, ion secretion to xylem, soil sheaths, xylem vessels, xylem differentiation, water conduction, Zea mays L  相似文献   

12.
Petiole development and formation of xylem vessels have been investigated in Xanthium leaves from early ontogeny to maturity. Kinetics of growth was presented in terms of absolute and relative elemental rates of elongation. The process of vascularization was assessed by the number of differentiated xylem vessels. The leaf plastochron index (LPI) developed by Erickson and Michelini (1957) was used for designating the various stages of development. An exponential increase in petiole length was observed between the LPIs –3 and +4 indicating a constant relative rate of 0.20 or 20% increase per day. After cessation of lamina elongation at LPI 8, petiole elongation continued for an additional 5 day period, to LPI 9.5. Relative elemental rate analysis revealed that the basipetal pattern of elongation was maintained throughout the leaf development. At a specific plastochron age, the only growth was due to the petiole elongation. Leaves which ceased elongating had not completed their internal development, since the process of xylem formation continued for several plastochrons, or about 8 days. The highest rate of xylem formation was ten vessels per day at LPI 5. On the average, about five xylem vessels differentiated per day in the middle portion of a Xanthium petiole. Mature petioles contained an average of 218 xylem vessels. About 12 canals of schizogenous origin preceeded the development of the vascular tissue.  相似文献   

13.
植物体内水分长距离运输的生理生态学机制   总被引:8,自引:0,他引:8       下载免费PDF全文
植物体内长距离水分运输是植物生理生态学研究中的一个重要问题,长期为植物生理学家和生理生态学家所关注。木质部探针技术的问世,掀起了近年来植物生理学界最为激烈的一场争论。提出了已经有100多年,风行40年的内聚力-张力(Cohesion-Tension, C-T)学说受到质疑。随后维护派和质疑派围绕木质部探针技术、压力室技术(C-T理论的主要支撑实验技术)的可靠性展开辩论。进一步从物理学原理和各种实验上就C-T理论的3个支柱(木质部导管或管胞中巨大的张力、沿树高的压力梯度、连续水柱)进行争论。这场争论似暂告一段落,C-T理论没有被推翻,但仍留有问题期待以后的研究。  相似文献   

14.
树木树液上升机理研究进展   总被引:8,自引:0,他引:8  
何春霞  李吉跃  郭明 《生态学报》2007,27(1):329-337
水分在植物体内的运输一直是很多植物生理生态学家所关注的一个重要问题。介绍了内聚力学说的基本假设和其存在争议,总结了近年来这一研究领域的几个热点问题,主要包括:(1)木质部栓塞及其恢复机理;(2)木质部压力探针和压力室法测定的木质部张力值不一致的现象及其可能原因;(3)补偿压学说;(4)不同界面层张力以及输水管道的毛细作用力、薄壁细胞膨压和木质部渗透压、逆向蒸腾等在树木汁液上升中的贡献;(5)最近发现的存在于木质部导管伴胞和韧皮部薄壁细胞等质膜中的水孔蛋白在植物水分运输中的调控作用等。这些方面在解释树木的树液上升中都起着重要的作用。  相似文献   

15.
Methods for the analysis of water status and transport in thesoil-plant-atmosphere continuum are briefly enumerated, withsome personal comments on their reliability when used on plantsgrowing in the field. These methods have provided us with acoherent system of data essentially free from major contradictionsto the cohesion theory of water transport. It is shown thatrecent attempts at replacing the xylem tensions postulated bythis theory with hypothetical osmotic transport mechanisms inorder to accommodate data from the xylem pressure probe arenot consistent with the bulk of results and furthermore areimplausible in view of the energetic expenditure required. Key words: Soil-plant-atmosphere continuum, water relations, xylem tension  相似文献   

16.
Pseudomonas putida cells were unable to pass the inter-vessel pit membranes of the xylem system of cut roses ( Rosa hybrida cv. 'Sonia'). It was further shown that (1) the number of bacteria which infiltrated into the xylem vessels decreased with increased distance between the cutting point and sampling point; (2) the number of bacteria which infiltrated into the open xylem vessels increased with time and with increasing numbers of pseudomonas cells; (3) only a minor part of the pseudomonas cells homogeneously suspended in the vase solution was able to infiltrate into the xylem vessels of the cut roses up to a distance from the cutting point of > 1 cm; and (4) even low levels of infiltrated pseudomonas cells could be demonstrated by measurements of the water conductivity of stem segments. More research is needed to reveal which mechanisms (e.g. gumnosis) might have contributed, directly or indirectly, to the prevention of further infiltration of bacterial particles into the cut open vascular system of the Rosa cultivar.  相似文献   

17.
Tyloses and the Maintenance of Transpiration   总被引:2,自引:1,他引:1  
CANNY  M. J. 《Annals of botany》1997,80(4):565-570
During a study of transpiration and embolism-formation in petiolesof sunflower, tyloses were frequently observed in early metaxylemvessels. Tyloses were confined to the inner ends of the xylemarcs, remote from the phloem. Vessels in this position are especiallyvulnerable to embolism. All stages of the invasion of vessellumens by xylem parenchyma cells were observed, from the earlyprotuberance of a cell through a pit to the complete occlusionof the lumen by one to several cells. The lumen space not occupiedby tyloses was seen both filled with xylem sap, or embolizedand gas-filled. Thus, during the early stages of tylosis formationthe vessel remained active in carrying the transpiration stream.Thin-walled vessels of the protoxylem or early metaxylem werenot tylosed, but were squashed and disappeared. These observationsare interpreted as evidence that vessels vulnerable to embolismare decommissioned and replaced by parenchyma tissue, whilenew and less vulnerable vessels are added to the xylem arcsat the cambial side. It is proposed that tylosis formation istriggered by the frequent embolization of the vulnerable vesselsto give, ultimately, an incompressible tissue. Then tyloseswould be necessary to preserve the tissue pressure which expresseswater to refill embolisms in the remaining vessels, and maintaintranspiration, as explained by the compensating pressure theoryof water transport. Compensating pressure theory; embolisms; starch sheath; tissue pressure; transpiration; tyloses; vessel diameter  相似文献   

18.
The Winteraceae are traditionally regarded as the least-specialized descendents of the first flowering plants, based largely on their lack of xylem vessels. Since vessels have been viewed as a key innovation for angiosperm diversification, Winteraceae have been portrayed as declining relicts, limited to wet forest habitats where their tracheid-based wood does not impose a significant hydraulic constraints. In contrast, phylogenetic analyses place Winteraceae among angiosperm clades with vessels, indicating that their vesselless wood is derived rather than primitive, whereas extension of the Winteraceae fossil record into the Early Cretaceous suggests a more complex ecological history than has been deduced from their current distribution. However, the selective regime and ecological events underlying the possible loss of vessels in Winteraceae have remained enigmatic. Here we examine the hypothesis that vessels were lost as an adaptation to freezing-prone environments in Winteraceae by measuring the responses of xylem water transport to freezing for a diverse group of Winteraceae taxa as compared to Canella winterana (Canellaceae, a close relative with vessels) and sympatric conifer taxa. We found that mean percent loss of xylem water transport capacity following freeze-thaw varied from 0% to 6% for Winteraceae species from freezing-prone temperate climates and approximately 20% in those taxa from tropical (nonfreezing) climates. Similarly, conifers exhibit almost no decrease in xylem hydraulic conductivity following freezing. In contrast, water transport in Canella stems is nearly 85% blocked after freeze-thaw. Although vessel-bearing wood of Canella possesses considerably greaterhydraulic capacity than Winteraceae, nearly 20% of xylem hydraulic conductance remains, a value that is comparable to the hydraulic capacity of vesselless Winteraceae xylem, if the proportion of hydraulic flow through vessels (modeled as ideal capillaries) is removed. Thus, the evolutionary removal of vessels may not necessarily require a deleterious shift to an ineffective vascular system. By integrating Winteraceae's phylogenetic relationships and fossil history with physiological and ecological observations, we suggest that, as ancestors of modern Winteraceae passed through temperate conditions present in Southern Gondwana during the Early Cretaceous, they were exposed to selective pressures against vessel-possession and returned to a vascular system relying on tracheids. These results suggest that the vesselless condition is advantageous in freezing-prone areas, which is supported by the strong bias in the ecological abundance of Winteraceae to wet temperate and tropical alpine habitats, rather than a retained feature from the first vesselless angiosperms. We believe that vesselless wood plays an important role in the ecological abundance of Winteraceae in Southern Hemisphere temperate environments by enabling the retention of leaves and photosynthesis in the face of frequent freeze-thaw events.  相似文献   

19.
Recovery of hydraulic conductivity after the induction of embolisms was studied in woody stems of laurel (Laurus nobilis). Previous experiments confirming the recovery of hydraulic conductivity when xylem pressure potential was less than −1 MPa were repeated, and new experiments were done to investigate the changes in solute composition in xylem vessels during refilling. Xylem sap collected by perfusion of excised stem segments showed elevated levels of several ions during refilling. Stem segments were frozen in liquid N2 to view refilling vessels using cryoscanning electron microscopy. Vessels could be found in all three states of presumed refilling: (a) mostly water with a little air, (b) mostly air with a little water, or (c) water droplets extruding from vessel pits adjacent to living cells. Radiographic probe microanalysis of refilling vessels revealed nondetectable levels of dissolved solutes. Results are discussed in terms of proposed mechanisms of refilling in vessels while surrounding vessels were at a xylem pressure potential of less than −1 MPa. We have concluded that none of the existing paradigms explains the results.  相似文献   

20.
In perennial plants, freeze-thaw cycles during the winter months can induce the formation of air bubbles in xylem vessels, leading to changes in their hydraulic conductivity. Refilling of embolized xylem vessels requires an osmotic force that is created by the accumulation of soluble sugars in the vessels. Low water potential leads to water movement from the parenchyma cells into the xylem vessels. The water flux gives rise to a positive pressure essential for the recovery of xylem hydraulic conductivity. We investigated the possible role of plasma membrane aquaporins in winter embolism recovery in walnut (Juglans regia). First, we established that xylem parenchyma starch is converted to sucrose in the winter months. Then, from a xylem-derived cDNA library, we isolated two PIP2 aquaporin genes (JrPIP2,1 and JrPIP2,2) that encode nearly identical proteins. The water channel activity of the JrPIP2,1 protein was demonstrated by its expression in Xenopus laevis oocytes. The expression of the two PIP2 isoforms was investigated throughout the autumn-winter period. In the winter period, high levels of PIP2 mRNA and corresponding protein occurred simultaneously with the rise in sucrose. Furthermore, immunolocalization studies in the winter period show that PIP2 aquaporins were mainly localized in vessel-associated cells, which play a major role in controlling solute flux between parenchyma cells and xylem vessels. Taken together, our data suggest that PIP2 aquaporins could play a role in water transport between xylem parenchyma cells and embolized vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号