首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phylogenetic analysis of mitochondrial DNA (mtDNA) restriction sites was used to examine the evolutionary history of populations of yellow warbler (Dendroica petechia) sampled from North America, Central America, South America, and the West Indies. Thirty-seven haplotypes were identified, and only one was found in more than one of these regions. Estimated sequence divergence among haplotypes ranged from 0.14 to 3.17%, and mtDNAs from North American migratory populations clearly were differentiated from those of most tropical sedentary populations. Parsimony analysis of haplotypes suggested multiple colonizations of the West Indies archipelago and of individual Caribbean islands. The inference of multiple colonizations has important implications for studies of avian ecology and evolution in this region.  相似文献   

2.
Forests of the subtropical and tropical regions of North America harbor cellular slime molds not found in the soils of temperate deciduous forests investigated previously. However, most species found in the temperate forest are common in the tropics. Although the diversity of forms is greater in the soils of tropical forests the numbers of Acrasieae per unit of soil are comparable. Characteristic of tropical and subtropical forest soils are Acrasieae bearing crampon bases, of which four new species of Dictyostelium are presently known. Also present, but less frequently isolated, are two other new species of the genus Dictyostelium and two still undescribed species of the Guttulinaceae. Occasional isolates of D. purpureum and D. discoideum were found that produce macrocysts, which seem, also, to be confined to tropical and subtropical areas. Macro-cysts were previously known only in D. mucoroides and D. minutum isolated from temperate forest soils. The occurrence and distribution of Acrasieae in warm temperate desert and mesquite-scrub, in subtropical hammock, and in tropical thorn, deciduous, seasonal evergreen, rain, and cloud forests were investigated. Acrasieae were well represented in all of these forests except desert. The number of species and the total populations were largest in seasonal evergreen forests. The composition of the cellular slime mold populations and the dominant species within these populations could be related to the soil environment as expressed by the dominant vegetation.  相似文献   

3.
Biogeography of the tropical alpine flora of South and Central America, the páramo flora, has been studied by dividing genera into tropical, temperate, and cosmopolitan chorological flora elements. Published molecular phylogenies of páramo genera are reviewed to summarize knowledge about evolutionary history of the páramo flora and to assess congruence between chorological and phylogenetic approaches. Molecular phylogenies suggest that both the tropical and temperate regions have been important source areas for evolution of the páramo flora. Conclusions derived from chorological patterns regarding origin of genera in páramo are mostly supported by phylogenetic data. Nevertheless, in Chuquiraga, Halenia, Huperzia, and Perezia the chorological scenario is rejected, and in Chusquea-Neurolepis, Elaphoglossum, Gunnera, Halenia, Jamesonia-Eriosorus, and Lasiocephalus independent colonization events from one or several source areas are suggested. Tropical and temperate genera contributed equally to modern species richness of the páramo flora. Among temperate genera, the northern hemisphere genera gave rise to more species in páramo than did genera from the southern hemisphere. So far, no unequivocal evidence has been provided for migration of páramo genera to the temperate zones.  相似文献   

4.
Aim We explore the potential role of the ‘tropical conservatism hypothesis’ in explaining the butterfly species richness gradient in North America. Its applicability can be derived from the tropical origin of butterflies and the presumed difficulties in evolving the cold tolerance required to permit the colonization and permanent occupation of the temperate zone. Location North America. Methods Digitized range maps for butterfly species north of Mexico were used to map richness for all species, species with distributions north of the Tropic of Capricorn (Extratropicals), and species that also occupy the tropics (Tropicals). A phylogeny resolved to subfamily was used to map the geographical pattern of mean root distance, a metric of the evolutionary development of assemblages. Regression models and general linear models examined environmental correlates of overall richness and for Extratropicals vs. Tropicals, patterns in summer vs. winter, and patterns in northern vs. southern North America. Results Species in more basal subfamilies dominate the south, whereas more derived clades occupy the north. There is also a ‘latitudinal’ richness gradient in Canada/Alaska, whereas in the conterminous USA richness primarily varies longitudinally. Overall richness is associated with broad‐ and mesoscale temperature gradients. The richness of Tropicals is strongly associated with temperature and distance from winter population sources. The richness of Extratropicals in the north is most strongly correlated with the pattern of glacial retreat since the more recent Ice Age, whereas in the south, richness is positively associated with the range of temperatures in mountains and the presence of forests but is negatively correlated with the broad‐scale temperature gradient. Main conclusions The tropical conservatism hypothesis provides a possible explanation for the complex structure of the species richness gradient. The Canada/Alaska fauna comprises temperate, boreal and tundra species that are nevertheless constrained by cold climates and limited vegetation, coupled with possible post‐Pleistocene recolonization lags. In the USA tropical species are constrained by temperature in winter as well as recolonization distances in summer, whereas temperate‐zone groups are richer in cooler climates in mountains and forests, where winter conditions are more suitable for diapause. The evolution of cold tolerance is key to both the evolutionary and ecological patterns.  相似文献   

5.
1. Monarch butterflies Danaus plexippus (L.) (Lepidoptera: Nymphalidae) are susceptible to infection by the obligate protozoan parasite Ophryocystis elektroscirrha (McLaughlin and Myers) (Apicomplexa: Neogregarinida). Because monarchs form resident and migratory populations in different parts of the world, this host–parasite system provides the opportunity to examine how variation in parasite prevalence relates to host movement patterns. 2. Parasite prevalence was evaluated using 14 790 adult monarchs captured between 1968 and 1997. Comparison of three populations in North America indicated that parasite prevalence is associated negatively with host dispersal distances. A continuously breeding, nonmigratory population in southern Florida showed high prevalence (over 70% heavily infected). The western population migrates moderate distances to overwintering sites on the Pacific Coast and has intermediate prevalence (30% heavily infected). The eastern migratory population, which travels the longest distance to Mexican overwintering sites, has exhibited less than 8% infection throughout the past 30 years. 3. Variation in parasite loads within North American migratory populations was investigated to determine whether the prevalence of heavy infection and average parasite loads declined during migration or overwintering. Average parasite loads of summer‐breeding adults in western North America decreased with increasing distance from overwintering sites. This suggests that heavily infected monarchs are less likely to remigrate long distances in spring. No differences in the frequency of heavily infected adults were found among eastern or western North American monarchs throughout the overwintering period, however, suggesting that this parasite does not affect overwintering mortality. 4. Changes in the prevalence of monarchs with low parasite loads demonstrate that spore transfer occurs during migration and overwintering, possibly when adult butterflies contact each other as a result of their clustering behaviour. 5. This study of geographical and temporal variation in O. elektroscirrha among populations of D. plexippus demonstrates the potential role of seasonal migration in mediating interactions between hosts and parasites, and suggests several mechanisms through which migratory behaviour may influence parasite prevalence.  相似文献   

6.
Aim We investigated the phylogeography, geographical variation in leaf morphology, freezing tolerance and climatic niches of two widespread evergreen sister oak species (Quercus) in the series Virentes. Location South‐eastern USA, Mexico and Central America. Methods Nuclear microsatellites and non‐recombining nuclear and chloroplast DNA sequences were obtained from trees throughout the range of two sister lineages of live oaks, represented by Quercus virginiana in the temperate zone and Q. oleoides in the tropics. Divergence times were estimated for the two major geographical and genetic breaks. Differentiation in leaf morphology, analysed from field specimens, was compared with the molecular data. Freezing sensitivities of Q. virginiana and Q. oleoides populations were assessed in common garden experiments. Results The geographical break between Q. virginiana and Q. oleoides was associated with strong genetic differentiation of possible early Pleistocene origin and with differentiation in freezing sensitivity, climatic envelopes and leaf morphology. A second important geographical and genetic break within Q. oleoides between Costa Rica and the rest of Central America showed a mid‐Pleistocene divergence time and no differentiation in leaf morphology. Population genetic differentiation was greater but genetic diversity was lower within the temperate Q. virginiana than within the tropical Q. oleoides, and genetic breaks largely corresponded to breaks in leaf morphology. Main conclusions Two major breaks, one between Mexico and the USA at the boundary of the two species, and a more recent one within Q. oleoides between Honduras and Costa Rica, implicate climatic changes as potential causes. The latter break may be associated with the formation of the Cordillera de Guanacaste, which was followed by seasonal changes in precipitation. In the former case, an ‘out of the tropics’ scenario is hypothesized, in which the acquisition of freezing tolerance in Q. virginiana permitted colonization of and expansion in the temperate zone, while differences in climatic tolerances between the species limited secondary contact. More pronounced Pleistocene changes in climate and sea level in the south‐eastern USA relative to coastal Mexico and Central America may explain the greater population differentiation within temperate Q. virginiana and greater genetic diversity in tropical Q. oleoides. These patterns are predicted to hold for other taxa that span temperate and tropical zones of North and Central America.  相似文献   

7.
Monarch butterflies, Danaus plexippus L. (Lepidoptera: Nymphalidae), occur world‐wide and are specialist herbivores of plants in the milkweed family (Asclepiadaceae). In North America, two monarch populations breed east and west of the continental divide in areas populated by different host plant species. To examine the population variation in monarch responses to different Asclepias species, we measured oviposition preference and larval performance among captive progeny reared from adult butterflies collected in eastern and western North America. Host plant use was evaluated using two milkweed species widely distributed in eastern North America (A. incarnata and A. syriaca), and two species common to western North America (A. fascicularis and A. speciosa). We predicted that exposure to different host plant species in their respective breeding ranges could select for divergent host use traits, so that monarchs should preferentially lay more eggs on, and larvae should perform better on, milkweed species common to their native habitats. Results showed that across all adult female butterflies, oviposition preferences were highest for A. incarnata and lowest for A. fascicularis, but mean preferences did not differ significantly between eastern and western monarch populations. Larvae from both populations experienced the highest survival and growth rates on A. incarnata and A. fascicularis, and we again found no significant interactions between monarch source population and milkweed species. Moreover, the average rank order of larval performance did not correspond directly to mean female oviposition preferences, suggesting that additional factors beyond larval performance influence monarch oviposition behavior. Finally, significant family level variation was observed for both preference and performance responses within populations, suggesting an underlying genetic variation or maternal effects governing these traits.  相似文献   

8.
The evolution of long-distance migratory behavior from sedentary populations is a central problem in studies of animal migration. Three crucial issues that remain unresolved are: (1) the biotic and abiotic factors promoting evolution of migratory behavior, (2) the geographic origin of ancestral sedentary populations, and (3) the time scale over which migration evolves. We test the role of postglacial population expansions during the Quaternary in driving the evolution of songbird migration against prevailing views favoring the role of intraspecific competition. In contrast to previous attempts to investigate these questions using interspecific phylogenies, we adopt an intraspecific approach and examine the phylogeography of a North American songbird, the chipping sparrow (Spizella passerina), which exhibits both long-distance migratory behavior in temperate North America and sedentary behavior in Mexico and Central America. We show that migratory populations descend from sedentary populations in southern Mexico and that migration has evolved as a result of a northward population expansion into temperate North America since the last glacial maximum 18,000 years ago. Migration appears to have evolved rapidly in some species as populations colonized areas of high seasonality in the temperate zone. The phylogeography of the yellow-eyed junco (Junco phaeonotus), a strictly sedentary species, provides a null model supporting the view that northward range expansions were driven solely by environmental factors and not by a predisposition to evolve migratory behavior. These results provide the strongest evidence to date that historical climate patterns can drive the rapid evolution of avian migration in natural populations, and they suggest a general mechanism for the repeated evolution of migration within and across bird lineages.  相似文献   

9.
This paper advances an hypothesis that the primary adaptive driver of seasonal migration is maintenance of site fidelity to familiar breeding locations. We argue that seasonal migration is therefore principally an adaptation for geographic persistence when confronted with seasonality – analogous to hibernation, freeze tolerance, or other organismal adaptations to cyclically fluctuating environments. These ideas stand in contrast to traditional views that bird migration evolved as an adaptive dispersal strategy for exploiting new breeding areas and avoiding competitors. Our synthesis is supported by a large body of research on avian breeding biology that demonstrates the reproductive benefits of breeding‐site fidelity. Conceptualizing migration as an adaptation for persistence places new emphasis on understanding the evolutionary trade‐offs between migratory behaviour and other adaptations to fluctuating environments both within and across species. Seasonality‐induced departures from breeding areas, coupled with the reproductive benefits of maintaining breeding‐site fidelity, also provide a mechanism for explaining the evolution of migration that is agnostic to the geographic origin of migratory lineages (i.e. temperate or tropical). Thus, our framework reconciles much of the conflict in previous research on the historical biogeography of migratory species. Although migratory behaviour and geographic range change fluidly and rapidly in many populations, we argue that the loss of plasticity for migration via canalization is an overlooked aspect of the evolutionary dynamics of migration and helps explain the idiosyncratic distributions and migratory routes of long‐distance migrants. Our synthesis, which revolves around the insight that migratory organisms travel long distances simply to stay in the same place, provides a necessary evolutionary context for understanding historical biogeographic patterns in migratory lineages as well as the ecological dynamics of migratory connectivity between breeding and non‐breeding locations.  相似文献   

10.
What makes a species able to colonize novel environments? This question is key to understand the dynamics of adaptive radiations and ecological niche shifts, but the mechanisms that underlie expansion into novel habitats remain poorly understood at a genomic scale. Lizards from the genus Anolis are typically tropical, and the green anole (Anolis carolinensis) constitutes an exception since it expanded into temperate North America from subtropical Florida. Thus, we used the green anole as a model to investigate signatures of selection associated with colonization of a new environment, namely temperate North America. To this end, we analysed 29 whole‐genome sequences, covering the entire native range of the species. We used a combination of recent methods to quantify both positive and balancing selection in northern populations, including FST outlier methods, machine learning and ancestral recombination graphs. We naively scanned for genes of interest and assessed the overlap between multiple tests. Strikingly, we identified many genes involved in behaviour, suggesting that the recent successful colonization of northern environments may have been linked to behavioural shifts as well as physiological adaptation. Using a candidate genes strategy, we determined that genes involved in response to cold or behaviour displayed more frequently signals of selection, while controlling for local recombination rate, gene clustering and gene length. In addition, we found signatures of balancing selection at immune genes in all investigated genetic groups, but also at genes involved in neuronal and anatomical development.  相似文献   

11.
Field populations of arthropods are often polymorphic for Wolbachia but the factors maintaining intermediate Wolbachia frequencies are generally not understood. In Drosophila melanogaster, Wolbachia frequencies are highly variable across the globe. We document the persistence of a Wolbachia infection frequency cline in D. melanogaster populations from eastern Australia across at least 20 years, with frequencies generally high in the tropics but lower in cool temperate regions. The results are interpreted using a model of frequency dynamics incorporating cytoplasmic incompatibility (CI), imperfect maternal transmission and Wolbachia effects on fitness. Clinal variation is less pronounced in eastern North America which may reflect annual recolonization at higher latitudes. Limited samples from Africa from latitudes matching our tropical and subtropical samples from Australia and North America show comparably high infection frequencies, but some equatorial samples show lower frequencies. Adult dormancy across cold periods may contribute to the Australian Wolbachia cline. Infected flies exposed to cold conditions for an extended period had reduced fecundity and viability, an effect not evident in unexposed controls. These fitness costs may contribute to the relatively low Wolbachia frequencies in Australian temperate areas; whereas different processes, including CI induced by young males, may contribute to higher frequencies in tropical locations.  相似文献   

12.
Origin of hummingbird faunas   总被引:6,自引:0,他引:6  
Ecological studies of hummingbird communities have emphasized the importance of local conditions and contemporary interactions in the development of these varied faunas. A time-calibrated, DNA hybridization-based phylogeny of the principal hummingbird lineages was used to examine historical aspects of hummingbird faunas in the species-rich tropical lowlands and Andes, and the relatively depauperate West Indies and temperate regions of Central and North America. Parsimony reconstructions of ancestral distributions indicate that these faunas are polyphyletic in origin, comprising several to many independent lineages. Based on the timing of geologic and cladogenic events, hummingbird faunas appear to have arisen more often by colonization than by large-scale vicariance, with multiple dispersals across water gaps, elevational gradients, and latitude. The extent to which particular lineages colonized different regions depended, however, on lineage ecology as well as on the habitat and age of the fauna. In general, the oldest extant trochilofauna, which today occupies the tropical lowlands, was the principal source of colonizing taxa. However, all regions except possibly the West Indies contributed taxa now found elsewhere, including in the tropical lowlands. The Andean fauna comprises several lineages with lowland origin (hermits, Mangoes, Brilliants, Coquettes, Emeralds) as well as at least one that arose in temperate regions outside South America (Bees). At least two lineages that colonized the West Indies gave rise to endemic genera (Mangoes to Eulampis, and Emeralds to Orthorhyncus). Even groups that diversified in the highlands (Brilliants and Bees) gave rise to taxa that subsequently reinvaded the tropical lowlands. As the result of these varied histories, hummingbird communities cannot be arranged easily with respect to organizational complexity and coevolution with nectar sources. Although the physically insular faunas in the Andes and West Indies differ markedly in diversity, both were more strongly affected by colonization than the other faunas. A high potential for coevolution between hummingbirds and plants probably facilitated the successful establishment and radiation of the several Andean-associated lineages. However, coexistence between the two most diverse Andean clades may have been favoured initially through different habitat preferences by their extra-Andean ancestors. In the tropical lowlands, by comparison, the basic separation between the forest-dwelling hermits and canopy and edge-dwelling nonhermits appears to have evolved in situ. The low species and morphologic diversity of hummingbirds breeding north of Mexico reflects the predominance there of a single relatively recent lineage. The regional coexistence of numerous unrelated lineages implies that patterns of ancestry, colonization, and extinction contribute to the make-up of contemporary species-rich hummingbird faunas and serves to qualify the view that hummingbird communities are coadapted assemblages that resist change.  相似文献   

13.
Several North American broad-leaved tree species range from the northern United States at 47°N to moist tropical montane forests in Mexico and Central America at 15–20°N. Along this gradient the average minimum temperatures of the coldest month (T Jan), which characterize annual variation in temperature, increase from –10 to 12°C and tree phenology changes from deciduous to leaf-exchanging or evergreen in the southern range with a year-long growing season. Between 30 and 45°N, the time of bud break is highly correlated with T Jan and bud break can be reliably predicted for the week in which mean minimum temperature rises to 7°C. Temperature-dependent deciduous phenology—and hence the validity of temperature-driven phenology models—terminates in southern North America near 30°N, where T Jan>7°C enables growth of tropical trees and cultivation of frost-sensitive citrus fruits. In tropical climates most temperate broad-leaved species exchange old for new leaves within a few weeks in January-February, i.e., their phenology becomes similar to that of tropical leaf-exchanging species. Leaf buds of the southern ecotypes of these temperate species are therefore not winter-dormant and have no chilling requirement. As in many tropical trees, bud break of Celtis, Quercus and Fagus growing in warm climates is induced in early spring by increasing daylength. In tropical climates vegetative phenology is determined mainly by leaf longevity, seasonal variation in water stress and day length. As water stress during the dry season varies widely with soil water storage, climate-driven models cannot predict tree phenology in the tropics and tropical tree phenology does not constitute a useful indicator of global warming.  相似文献   

14.
The temporal distribution of populations of aquatic macroinvertebrates have been extensively investigated in temperate arctic regions, but little information is available for alpine regions in North America. This paper describes phenology patterns of the aquatic macroinvertebrates of a high elevation wetland (3593 m) in the Green Lakes Valley, Colorado Front Range.Abundant taxa were Chironomidae (primarily Orthocladius and the limnephilid trichopteran Asynarchus curtus (Banks). Temperature patterns were related to the seasonal timing of life stages of most species. Phenology of most alpine aquatic macroinvertebrates appears to be controlled by seasonal climatic patterns, particularly temperature patterns. All chironomid species and Asynarchus curtus (Banks) had univoltine life cycles. Multi-year life cycles were not observed at this alpine site, although they have been observed at some arctic sites with colder temperature regimes than observed in this study.  相似文献   

15.
Aim This paper evaluates global collection records, evidence of anthropogenic transport methods, and experimental and distributional data relative to temperature requirements to understand the historical and potential dispersal of a well‐known genus of estuarine crab. Location The records analysed are from temperate and tropical coastal ocean areas. Methods The study is based primarily on literature analysis and examination of museum specimens. Results The human‐mediated successful global dispersal of the European shore crabs Carcinus maenas (Linnaeus, 1758) and C. aestuarii (Nardo, 1847) occurred in three major episodes: around 1800, in the 1850s–70s, and in the 1980s–90s. The nineteenth century introductions occurred through transport by ships (probably in hull fouling or in solid ballast), while the introductions in the 1980s could have occurred through a greater variety of dispersal mechanisms (ships’ hull fouling and seawater system fouling; fouling on semisubmersible drilling platforms; ballast water; transport with fisheries products intended for food or bait; scientific research; releases from aquaria maintained for educational or scientific purposes; or intentional non‐governmental releases for human food production). These introductions have resulted in Carcinus’ establishment in five temperate regions outside of its native Europe in Atlantic North America, Australia, South Africa, Japan and Pacific North America, while releases into tropical regions have not established populations. C. maenas’ range in both its native and introduced regions appears to be regulated by similar temperature parameters, enabling an assessment of its potential distribution. Main conclusions The second episode of Carcinus’ global dispersal, the period from the 1850s to 1870s, may be part of a broader surge of world‐wide invasions caused by an increase in shipping.  相似文献   

16.
The north temperate region was characterized by a warm climate and a rich thermophilic flora before the Eocene, but early diversifications of the temperate biome under global climate change and biome shift remain uncertain. Moreover, it is becoming clear that hybridization/introgression is an important driving force of speciation in plant diversity. Here, we applied analyses from biogeography and phylogenetic networks to account for both introgression and incomplete lineage sorting based on geno...  相似文献   

17.
Seasonal migration has been alternately proposed to promote geographic range size in some contexts and to constrain it in others, but it remains unclear if migratory behavior has a general effect on range size. Because migration involves movement, most hypotheses about the relationship between migration and range size invoke an influence of migration on the process of dispersal-mediated range expansion. Intuitively, a positive relationship between migratory behavior and dispersal ability could bolster range expansion among migratory species, yet some biogeographic patterns suggest that long-distance migration may instead impede range expansion, especially in the temperate zone. We conducted a comparative analysis of the relationship between migratory behavior and range size by testing the effect of migratory status, migration distance and morphological dispersal ability on breeding range size among all temperate North American passerines. Further, we assessed whether these traits affect range expansion into suitable habitat by analyzing their relationship with range filling (the proportion of climatically-suitable area occupied, or ‘filled’ by a species). Contrary to previous studies, we found migration and dispersal ability to be poor predictors of range size and range filling in North America. Rather, most variation in range size is explained by latitude. Our results suggest that migratory behavior does not affect range size within the scale of a continent, and furthermore, that temperate North American passerines’ breeding ranges are not influenced by their dispersal abilities. To better understand why migratory behavior appears to promote range size in some contexts and constrain it in others, future studies should investigate how migratory behavior affects dispersal at the individual level, as well as the relationship between the evolution of migratory behavior and the breadth of species’ climatic niches.  相似文献   

18.
19.
We present a first comprehensive time‐calibrated phylogeny for two Neotropical genera of bees, Centris and Epicharis, whose females collect floral oil together with pollen for larval provisioning, and that traditionally have been grouped in the tribe Centridini. Our analyses rely on a matrix of 167 taxa and 4228 aligned nucleotides for the subfamily Apinae, with denser sample of Centris and Epicharis. Centris and Epicharis are strongly supported monophyletic groups, but Centridini is paraphyletic in relation to the corbiculate bees. The inner phylogenetic relationships of Epicharis agree with the current taxonomic classification. In Centris, three main clades were recovered, namely the Centris, Trachina and Melacentris groups. Inner relationships in Centris suggest the reinstatement of some subgenera and proposition of new ones. Early diversification of Centris and Epicharis took place at the tropical regions of South America. Epicharis and the Melacentris group in Centris mostly diversified in that region, expanding over Central America and tropical North America only recently in the last 3 My. The groups Trachina and Centris present a complex biogeographic history, with expansions to the Nearctic region, the Antilles, and temperate regions of South America in the late Oligocene and Miocene.  相似文献   

20.
Before its eradication from North America, the subtropical‐tropical new world screwworm fly Cochliomyia hominivorax (Coquerel) invaded southwestern temperate areas of the U.S.A., where it caused myiasis in wildlife and livestock. Outbreaks of the fly occurred during years when adult migrants were carried northward on North American monsoon winds from the northern areas of Mexico and south Texas. We deconstruct, retrospectively, the biology and the effect of weather on the eradication of the fly in North America. Screwworm was found to be an ideal candidate for eradication using the sterile insect technique (SIT) because females mate only once, whereas males are polygynous, and, although it has a high reproductive potential, field population growth rates are low in tropical areas. In northern areas, eradication was enhanced by cool‐cold weather, whereas eradication in tropical Mexico and Central America is explained by the SIT. Despite low average efficacy of SIT releases (approximately 1.7%), the added pressure of massive SIT releases reduced intrinsically low fly populations, leading to mate‐limited extinction. Non‐autochthonous cases of myiasis occur in North America and, if the fly reestablishes, climate warming by 2045–2055 will expand the area of favourability and increase the frequency and severity of outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号