首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Association of nascent polypeptide with 30S ribosomal subunits   总被引:1,自引:1,他引:0  
1. Crude extracts of Escherichia coli were used to synthesize nascent peptides under the direction of endogenous mRNA and in the presence of radioactive amino acids. Analysis of such extracts by sucrose-gradient centrifugation in low Mg2+ concentration has shown that after 2min of incubation approximately 14% of the total labelled protein recovered on the gradient, in association with whole ribosomes, sediments with 30S ribosomal subunits; this value rises to approximately 24% after 30min of incubation. The labelled protein associated with 30S ribosomal subunits is insoluble in hot trichloroacetic acid. 2. Similar results were also obtained in extracts that synthesized polypeptides under the direction of either of the synthetic polyribonucleotides poly(A) or poly(A,G,C,U). In contrast, however, analysis of crude extracts programmed in protein synthesis by poly(U) has indicated that under these conditions 30S ribosomal subunits have no associated polyphenylalanine; similarly there is little associated peptide after programming of extracts by poly(U,C).  相似文献   

2.
Muth GW  Hennelly SP  Hill WE 《Biochemistry》2000,39(14):4068-4074
Determining the detailed tertiary structure of 16S rRNA within 30S ribosomal subunits remains a challenging problem. The particular structure of the RNA which allows tRNA to effectively interact with the associated mRNA during protein synthesis remains particularly ambiguous. This study utilizes a chemical nuclease, 1, 10-o-phenanthroline-copper, to localize regions of 16S rRNA proximal to the decoding region under conditions in which tRNA does not readily associate with the 30S subunit (inactive conformation), and under conditions which optimize tRNA binding (active conformation). By covalently attaching 1,10-phenanthroline-copper to a DNA oligomer complementary to nucleotides in the decoding region (1396-1403), we have determined that nucleotides 923-929, 1391-1396, and 1190-1192 are within approximately 15 A of the nucleotide base-paired to nucleotide 1403 in inactive subunits, but in active subunits only cleavages (1404-1405) immediately proximal to the 5' end of the hybridized probe remain. These results provide evidence for dynamic movement in the 30S ribosomal subunit, reported for the first time using a targeted chemical nuclease.  相似文献   

3.
In Escherichia coli cultures limited for phosphate, the number of ribosomal particles was reduced to a small percentage of its earlier peak value by the time the viable cell count began to drop; the 30S subunits decreased more than the 50S subunits. Moreover, the ribosomal activity was reduced even more: these cells no longer synthesized protein, and their extracts could not translate phage RNA unless ribosomes were added. The translation initiation factors also disappeared, suggesting that they become less stable when released from their normal attachment to 30S subunits. In contrast, elongation factors, aminoacyl-tRNA synthetases, and tRNA persisted. During further incubation, until viability was reduced to 10(-5), the ribosomal particles disappeared altogether, while tRNA continued to be preserved. These results suggest that an excessive loss of ribosomes (and of initiation factors) may be a major cause of cell death during prolonged phosphate starvation.  相似文献   

4.
Studies of newly synthesized ribosomal ribonucleic acid of Escherichia coli   总被引:6,自引:2,他引:4  
1. RNA synthesized by Escherichia coli during one-hundredth of the generation time contains two fractions distinguishable by hybridization with homologous DNA. One fraction, approximately 30% of the newly synthesized RNA, did not compete with ribosomal RNA, being apparently messenger RNA. The other fraction, approximately 70% of the newly made RNA, hybridized as ribosomal RNA. These values are comparable with previous estimates (McCarthy & Bolton, 1964; Pigott & Midgley, 1968). 2. Hybridization-competition experiments showed that the newly made RNA associated with 70s ribosomes and larger ribosome aggregates was a mixture of ribosomal RNA and messenger RNA, whereas that associated with nascent ribosomal subunits consisted exclusively of ribosomal RNA. This observation provides means by which newly synthesized ribosomal RNA can be isolated free from messenger RNA. 3. Newly made ribosomal RNA in nascent ribosomal subunits was sensitive to shear under conditions where ribosomal RNA in mature ribosomes was shear-resistant. Thus, when RNA was extracted from cells of E. coli disrupted by mechanical means, newly made ribosomal RNA appeared heterogeneous in size, sedimenting as a broad peak extending from 8s to 16s. 4. Newly synthesized ribosomal RNA in nascent ribosomal subunits was rapidly degraded in the presence of actinomycin D and during glucose starvation. 5. Newly synthesized ribosomal RNA stimulated amino acid incorporation in a system synthesizing protein in vitro to the same extent as the RNA which contained the messenger RNA fraction.  相似文献   

5.
Footprinting mRNA-ribosome complexes with chemical probes.   总被引:11,自引:3,他引:8       下载免费PDF全文
We footprinted the interaction of model mRNAs with 30S ribosomal subunits in the presence or absence of tRNA(fMet) or tRNA(Phe) using chemical probes directed at the sugar-phosphate backbone or bases of the mRNAs. When bound to the 30S subunits in the presence of tRNA(fMet), the sugar-phosphate backbones of gene 32 mRNA and 022 mRNA are protected from hydroxyl radical attack within a region of about 54 nucleotides bounded by positions -35 (+/- 2) and +19, extending to position +22 when tRNA(Phe) is used. In 70S ribosomes, protection is extended in the 5' direction to about position -39 (+/- 2). In the absence of tRNA, the 30S subunit protects only nucleotides -35 (+/- 2) to +5. Introduction of a stable tetraloop hairpin between positions +10 and +11 of gene 32 mRNA does not interfere with tRNA(fMet)-dependent binding of the mRNA to 30S subunits, but results in loss of protection of the sugar-phosphate backbone of the mRNA downstream of position +5. Using base-specific probes, we find that the Shine-Dalgarno sequence (A-12, A-11, G-10 and G-9) and the initiation codon (A+1, U+2 and G+3) of gene 32 mRNA are strongly protected by 30S subunits in the presence of initiator tRNA. In the presence of tRNA(Phe), the same Shine-Dalgarno bases are protected, as are U+4, U+5 and U+6 of the phenylalanine codon. Interestingly, A-1, immediately preceding the initiation codon, is protected in the complex with 30S subunits and initiator tRNA, while U+2 and G+3 are protected in the complex with tRNA(Phe) in the absence of initiator tRNA. Additionally, specific bases upstream from the Shine-Dalgarno region (U-33, G-32 and U-22) as well as 3' to the initiation codon (G+11) are protected by 30S subunits in the presence of either tRNA. These results imply that the mRNA binding site of the 30S subunit covers about 54-57 nucleotides and are consistent with the possibility that the ribosome interacts with mRNA along its sugar-phosphate backbone.  相似文献   

6.
A cell-free system from cultured Chinese hamster ovary cells has been developed, which translates endogenous mRNAs, exogenous natural mRNAs, and synthetic polynucleotide templates. The analysis of most of the reactions involved in initiation, elongation, and termination of protein synthesis can be carried out in this system. The postmitochondrial fraction, containing ribosomal 40 and 60 S subunits, 80 S ribosomes, polysomes, and cytosol proteins, incorporates amino acids into protein. The preparation is capable of recycling endogenous mRNA by initiating protein synthesis on polysomal mRNA, and of initiating protein synthesis on exogenous templates. When endogenous mRNA is degraded with micrococcal nuclease, polysomes are no longer evident and protein synthesis is markedly depended on added mRNA, ATP, GTP, and a nucleoside triphosphate-generating system. Amino acid incorporation is linear for over 2 h, polysomes containing nascent polypeptide chains are reformed and, with time, most of the protein synthesized is released into the media. Gel electrophoretic analysis of the product formed in response to globin mRNA indicates that most of the radioactivity migrates as a single peak, in the region corresponding to globin. Comparison of the electrophoretic pattern obtained from labeled Chinese hamster ovary cells with that from incubations of cell extract and Chinese hamster ovary mRNA indicates that essentially all of the polypeptides formed by the intact cell are synthesized by the cell-free system. Sucrose gradient centrifugation of incubations containing mRNA-depleted extract and [35S]methionine, in the absence of added mRNA, is used to detect initiation intermediates in the formation of the [40 S Met-tRNAf] complex and, with added natural mRNA plus cycloheximide, to detect intermediates in the formation of the 80 S initiation complex. Chain elongation reactions are measured by the incorporation of [3H]phenylalanine into polyphenylalanine in extracts supplemented with poly(U), or by the formation of nascent polypeptide chains on polysomes with natural mRNA. Chain termination is measured by analyzing the amount of radioactive protein released into the cytosol.  相似文献   

7.
In Neurospora, one protein associated with the mitochondrial small ribosomal subunit (S-5, Mr 52,000) is synthesized intramitochondrially and is assumed to be encoded by mtDNA. When mitochondrial protein synthesis is inhibited, either by chloramphenicol or by mutation, cells accumulate incomplete mitochondrial small subunits (CAP-30S and INC-30S particles) that are deficient in S-5 and several other proteins. To gain additional insight into the role of S-5 in mitochondrial ribosome assembly, the structures of Neurospora mitochondrial ribosomal subunits, CAP-30S particles, and INC-30S particles were analyzed by equilibrium centrifugation in CsCl gradients containing different concentrations of Mg+2. The results show (a) that S-5 is tightly associated with small ribosomal subunits, as judged by the fact that it is among the last proteins to be dissociated in CsCl gradients as the Mg+2 concentration is decreased, and (b) that CAP-30S and INC-30S particles, which are deficient in S-5, contain at most 12 proteins that are bound as tightly as in mature small subunits. The CAP-30S particles isolated from sucrose gradients contain a number of proteins that appear to be loosely bound, as judged by dissociation of these proteins in CsCl gradients under conditions in which they remain associated with mature small subunits. The results suggest that S-5 is required for the stable binding of a subset of small subunit ribosomal proteins.  相似文献   

8.
A primer extension inhibition (toeprint) assay was developed using ribosomes and ribosomal subunits from Streptomyces lividans. This assay allowed the study of ribosome binding to streptomycete leaderless and leadered mRNA. Purified 30S subunits were unable to form a ternary complex on aph leaderless mRNA, whereas 70S ribosomes could form ternary complexes on this mRNA. 30S subunits formed ternary complexes on leadered aph and malE mRNA. The translation initiation factors (IF1, IF2, and IF3) from S. lividans were isolated and included in toeprint and filter binding assays with leadered and leaderless mRNA. Generally, the IFs reduced the toeprint signal on leadered mRNA; however, incubation of IF1 and IF2 with 30S subunits that had been washed under high-salt conditions promoted the formation of a ternary complex on aph leaderless mRNA. Our data suggest that, as reported for Escherichia coli, initiation complexes with leaderless mRNAs might use a novel pathway involving 70S ribosomes or 30S subunits bound by IF1 and IF2 but not IF3. Some mRNA-ribosome-initiator tRNA reactions that yielded weak or no toeprint signals still formed complexes in filter binding assays, suggesting the occurrence of interactions that are not stable in the toeprint assay.  相似文献   

9.
10.
Identification of three 30S proteins contributing to the ribosomal A site   总被引:6,自引:0,他引:6  
Summary When 30S ribosomal subunits from E. coli are incubated with unfractionated 30S protein, the protein synthetic activity of the ribosomes is enhanced. Part of this effect is due to the stimulation of mRNA binding by S1 (Van Duin and Kurland, 1970). In addition, three other proteins (S2, S3 and S14) increase the number of tRNA binding sites. The enhancing effect of S2, S3 and S14 on the tRNA binding capacity of the ribosomes is seen both in the presence and absence of T factor. S2, S3 and S14 do not seem to stimulate mRNA binding. The aminoacyl-tRNA bound in response to S2, S3 and S14 is associated with the 70S ribosome and it can donate amino acid residues for polypeptide synthesis. We conclude that S2, S3 and S14 are part of the 30S A site.  相似文献   

11.
Elongation factor G (EF‐G) promotes the movement of two tRNAs and the mRNA through the ribosome in each cycle of peptide elongation. During translocation, the tRNAs transiently occupy intermediate positions on both small (30S) and large (50S) ribosomal subunits. How EF‐G and GTP hydrolysis control these movements is still unclear. We used fluorescence labels that specifically monitor movements on either 30S or 50S subunits in combination with EF‐G mutants and translocation‐specific antibiotics to investigate timing and energetics of translocation. We show that EF‐G–GTP facilitates synchronous movements of peptidyl‐tRNA on the two subunits into an early post‐translocation state, which resembles a chimeric state identified by structural studies. EF‐G binding without GTP hydrolysis promotes only partial tRNA movement on the 50S subunit. However, rapid 30S translocation and the concomitant completion of 50S translocation require GTP hydrolysis and a functional domain 4 of EF‐G. Our results reveal two distinct modes for utilizing the energy of EF‐G binding and GTP hydrolysis and suggest that coupling of GTP hydrolysis to translocation is mediated through rearrangements of the 30S subunit.  相似文献   

12.
R Brandt  C O Gualerzi 《Biochimie》1991,73(12):1543-1549
Two model mRNAs, one with and one without the Shine-Dalgarno (SD) sequence, were bound to Escherichia coli 30S ribosomal subunits in the presence and absence of initiation factors and initiator tRNA and then cross-linked by diepoxybutane. The distribution of the cross-linked mRNA among rRNA and ribosomal proteins (r-proteins) and the extent to which individual r-proteins react was found to be affected by the presence or absence of the SD sequence and by the initiation factors and initiator tRNA. The results are consistent with the hypothesis that the position of the 30S-bound mRNA is shifted under the influence of the initiation factors and fMet-tRNA from a stand-by position towards a second site where the decoding of the initiation triplet by the initiator tRNA occurs.  相似文献   

13.
The RimM protein in Escherichia coli is associated with free 30S ribosomal subunits but not with 70S ribosomes and is important for efficient maturation of the 30S subunits. A mutant lacking RimM shows a sevenfold-reduced growth rate and a reduced translational efficiency. Here we show that a double alanine-for-tyrosine substitution in RimM prevents it from associating with the 30S subunits and reduces the growth rate of E. coli approximately threefold. Several faster-growing derivatives of the rimM amino acid substitution mutant were found that contain suppressor mutations which increased the amount of the RimM protein by two different mechanisms. Most of the suppressor mutations destabilized a secondary structure in the rimM mRNA, which previously was shown to decrease the synthesis of RimM by preventing the access of the ribosomes to the translation initiation region on the rimM mRNA. Three other independently isolated suppressor mutations created a fusion between rpsP, encoding the ribosomal protein S16, and rimM on the chromosome as a result of mutations in the rpsP stop codon preceding rimM. A severalfold-higher amount of the produced hybrid S16-RimM protein in the suppressor strains than of the native-sized RimM in the original substitution mutant seems to explain the suppression. The S16-RimM protein but not any native-size ribosomal protein S16 was found both in free 30S ribosomal subunits and in translationally active 70S ribosomes of the suppressor strains. This suggests that the hybrid protein can substitute for S16, which is an essential protein probably because of its role in ribosome assembly. Thus, the S16-RimM hybrid protein seems capable of carrying out the important functions that native S16 and RimM have in ribosome biogenesis.  相似文献   

14.
Previous studies have shown that iodination of 30 S subunits causes inactivation for both enzymatic fMet-tRNA and non-enzymatic phe-tRNA binding activities. This inactivation was shown to be due to the modification of three to five ribosomal proteins [1]. In this report the role of these proteins in tRNA binding activity has been further studied. Purified ribosomal proteins, isolated from modified subunits, are re-assembled into otherwise unmodified 30 S ribosomes and assayed for tRNA binding capacity. The presence of modified S 3, S 14 and S 19 (S 15) in the reconstituted particle results in substantial reduction of both fMet-tRNA and phe-tRNA binding activities. This reduction in tRNA binding activity does not appear to be due to an assembly defect.  相似文献   

15.
Previous studies have shown that Rose Bengal-sensitized photo-oxidation of 30 S ribosomal subunits causes inactivation of tRNA binding and partial loss of poly(U) binding activities (Noller et al., 1971). The present studies, reconstitution of 30 S subunits from 16 S RNA, total protein from modified subunits, and purified proteins from untreated subunits, show that proteins S2 and S3 together completely restore these activities to the reconstituted subunits. The modified proteins are capable of in vitro assembly, and give rise to particles with normal sedimentation constants, showing that restoration of activity is not simply due to correction of an assembly defect.Protein S3 restores poly(U) binding and tRNA binding to the same extent, accounting for the lowered mRNA binding activity of the modified particles as well as a corresponding fraction of the tRNA binding activity. Protein S2 restores the remaining fraction of the tRNA binding activity, but has no effect on poly (U) binding. In 50 S-stimulated tRNA binding, proteins S1 and S5 are required in addition to S2 and S3 for full activity.  相似文献   

16.
Two Escherichia coli mutants lacking ribosomal protein L1, previously shown to display 40 to 60% reduced capacity for in vitro protein synthesis (Subramanian, A. R., and Dabbs, E. R. (1980) Eur. J. Biochem. 112, 425-430), have been used to study partial reactions of protein biosynthesis. Both the binding of N-acetyl-Phe-tRNA to ribosomes and the 6 to 8-fold stimulation of the elongation factor G (EF-G)-dependent GTPase reaction by mRNA plus tRNA, assayed in the presence of wild type 30 S subunits, were low with L1-deficient 50 S subunits. Addition of pure protein L1 to the assay restored both reactions to 100% of the control. By contrast, the basic EF-G GTPase reaction in the absence of mRNA and tRNA was not at all affected (mRNA alone had no effect). None of the following partial reactions were more than moderately modified by the lack of protein L1: binding to ribosomes of EF-G.GDP plus fusidic acid; the translocation reaction catalyzed by EF-G plus GTP; poly(U)-dependent binding to ribosomes of Phe-tRNAPhe (whether dependent on elongation factor Tu plus GTP or not); and the EF-Tu-dependent GTPase activity. It is concluded that protein L1 is involved in the interaction between ribosomes and peptidyl-tRNA (or tRNA) in the peptidyl site and consequently in the ribosomal GTPase activity depending on the simultaneous action of tRNA and EF-G.  相似文献   

17.
Mild ribonuclease treatment of the membrane fraction of P3K cells released three types of membrane-bound ribosomal particles: (a) all the newly made native 40S subunits detected after 2 h of [3H]uridine pulse. Since after a 3-min pulse with [35S]methionine these membrane native subunits appear to contain at least sevenfold more Met-tRNA per particle than the free native subunits, they may all be initiation complexes with mRNA molecules which have just become associated with the membranes; (b) about 50% of the ribosomes present in polyribosomes. Evidence is presented that the released ribosomes carry nascent chains about two and a half to three times shorter than those present on the ribosomes remaining bound to the membranes. It is proposed that in the membrane-bound polyribosomes of P3K cells, only the ribosomes closer to the 3' end of the mRNA molecules are directly bound, while the latest ribosomes to enter the polyribosomal structures are indirectly bound through the mRNA molecules; (c) a small number of 40S subunits of polyribosomal origin, presumably initiation complexes attached at the 5' end of mRNA molecules of polyribosomes. When the P3K cells were incubated with inhibitors acting at different steps of protein synthesis, it was found that puromycin and pactamycin decreased by about 40% the proportion of ribosomes in the membrane fraction, while cycloheximide and anisomycin had no such effect. The ribosomes remaining on the membrane fraction of puromycin-treated cells consisted of a few polyribosomes, and of an accumulation of 80S and 60S particles, which were almost entirely released by high salt treatment of the membranes. The membrane-bound ribosomes found after pactamycin treatment consisted of a few polyribosomes, with a striking accumulation of native 60S subunits and an increased number of native 40S subunits. On the basis of the observations made in this and the preceding papers, a model for the binding of ribosomes to membranes and for the ribosomal cycle on the membranes is proposed. It is suggested that ribosomal subunits exchange between free and membrane-bound polyribosomes through the cytoplasmic pool of free native subunits, and that their entry into membrane-bound ribosomes is mediated by mRNA molecules associated with membranes.  相似文献   

18.
The polypeptides of the subunits of 70S ribosomes isolated from rye (Secale cereale L.) leaf chloroplasts were analyzed by two-dimensional polyacrylamide gel electrophoresis. The 50S subunit contained approx. 33 polypeptides in the range of relative molecular mass (Mr) 13000–36000, the 30S subunit contained approx. 25 polypeptides in the range of Mr 13000–40500. Antisera raised against the individual isolated ribosomal subunits detected approx. 17 polypeptides of the 50S and 10 polypeptides of the 30S subunit in the immunoblotting assay. By immunoblotting with these antisera the major antigenic ribosomal polypeptides (r-proteins) of the chloroplasts were clearly and specifically visualized also in separations of leaf extracts or soluble chloroplast supernatants. In extracts from rye leaves grown at 32° C, a temperature which is non-permissive for 70S-ribosome formation, or in supernatants from ribosome-deficient isolated plastids, six plastidic r-proteins were visualized by immunoblotting with the anti-50S-serum and two to four plastidic r-proteins were detected by immunoblotting with the anti-30S-serum, while other r-proteins that reacted with our antisera were missing. Those plastidic r-proteins that were present in 70S-ribosome-deficient leaves must represent individual unassembled ribosomal polypeptides that were synthesized on cytoplasmic 80S ribosomes. For the biogenesis of chloroplast ribosomes the mechanism of coordinate regulation appear to be less strict than those known for the biogenesis of bacterial ribosomes, thus allowing a marked accumulation of several unassembled ribosomal polypeptides of cytoplasmic origin.Abbreviations L polypeptide of large ribosomal subunit - Mr relative molecular mass - r-protein ribosomal polypeptide - S polypeptide of small ribosomal subunit - SDS sodium dodecyl sulfate  相似文献   

19.
Concentrated extracts of Halobacterium cutirubrum were prepared at 0 C by gently disrupting cells with a nonionic detergent in a medium containing 3.0 m KCl, 0.5 m NH(4)Cl, and 0.04 m (or more) magnesium acetate and then treating the gelatinous mass with deoxyribonuclease. On KCl-sucrose gradients containing 0.5 m NH(4)Cl and 0.04 m magnesium acetate, these extracts showed 30S and 50S ribosomal subunits plus a flat profile of faster-sedimenting material up to high S values. Only after frozen storage or brief incubation of the extract were 70S ribosomes and distinct classes of small polyribosomes detected. Digestion with ribonuclease converted faster-sedimenting material to 70S particles. The presence of chloramphenicol during preparation of the extracts did not affect these results. The evidence suggests that ribosomal particles exist in these cells as subunits or as polyribosomes but not as 70S ribosomes. To investigate the function of Mg(++) and NH(4) (+) ions in ribosomal complexes from this halophile, concentrated cell extracts and extracts incubated with (14)C-leucine were examined on KCl-sucrose gradients containing different concentrations of these ions. Polyribosomes and the bulk of 70S ribosomes dissociated reversibly to subunits at about 0.01 m Mg(++), whereas a small fraction of the 70S particles, including those which in vitro incorporated (14)C-leucine into nascent protein, dissociated only below 1 mm Mg(++). Below this concentration of Mg(++), nascent protein remained attached to the 50S subunit even at 0.04 mm Mg(++) in the presence of 0.35 to 0.5 m NH(4)Cl. Nascent protein, presumably as peptidyl-transfer ribonucleic acid, dissociated reversibly from 50S subunits only at 0.04 mm Mg(++) and 0.1 m or less NH(4) (+). Thus, the stability of polyribosomes from H. cutirubrum depends specifically on both Mg(++) and NH(4) (+) ions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号