首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxisome proliferation occurs through enlargement, elongation and division of pre-existing peroxisomes. In the Arabidopsis apem mutant, apem3, peroxisomes are dramatically enlarged and reduced in number, revealing a defect in peroxisome proliferation. The APEM3 gene was found to encode peroxisomal membrane protein 38 (PMP38). To examine the relative role of PMP38 during proliferation, a double mutant was constructed consisting of apem3 and the peroxisome division mutant, apem1, in which a defect in dynamin-related protein 3A (DRP3A) results in elongation of peroxisomes. In the double mutant, almost all peroxisomes were predominantly enlarged but not elongated. DRP3A is still able to localize at the peroxisomal membrane on enlarged peroxisomes in the apem3 mutants. PMP38 is revealed to be capable of interacting with itself, but not with DRP3A. These results indicate that PMP38 has a role at a different step that requires APEM1/DRP3A. PMP38 is expressed in various tissues throughout the plant, indicating that PMP38 may participate in multiple unidentified functions in these tissues. PMP38 belongs to a mitochondrial carrier family (MCF) protein. However, unlike Arabidopsis nucleotide carrier protein 1 (AtPNC1) and AtPNC2, two other peroxisome-resident MCF proteins that function as adenine nucleotide transporters, PMP38 has no ATP or ADP transport activity. In addition, unlike AtPNC1 and AtPNC2 knock-down plants, apem3 mutants do not exhibit any gross morphological abnormalities. These results demonstrate that APEM3/PMP38 plays a role distinct from that of AtPNC1 and AtPNC2. We discuss possible mechanism of enlargement of peroxisomes in the apem3 mutants.  相似文献   

2.
In order to clarify the peroxisomal membrane proteins (PMPs), we characterized one of the major PMPs, PMP38. The deduced amino acid sequence for its cDNA in Arabidopsis thaliana contained polypeptides with 331 amino acids and had high similarity with those of Homo sapiens PMP34 and Candida boidinii PMP47 known as homologues of mitochondrial ATP/ADP carrier protein. We expected PMP38 to be localized on peroxisomal membranes, because it had the membrane peroxisomal targeting signal. Cell fractionation and immunocytochemical analysis using pumpkin cotyledons revealed that PMP38 is localized on peroxisomal membranes as an integral membrane protein. The amount of PMP38 in pumpkin cotyledons increased and reached the maximum protein level after 6 d in the dark but decreased thereafter. Illumination of the seedlings caused a significant decrease in the amount of the protein. These results clearly showed that the membrane protein PMP38 in glyoxysomes changes dramatically during the transformation of glyoxysomes to leaf peroxisomes, as do the other glyoxysomal enzymes, especially enzymes of the fatty acid beta-oxidation cycle, that are localized in the matrix of glyoxysomes.  相似文献   

3.
Human 34-kDa peroxisomal membrane protein (PMP34) consisting of 307 amino acids was previously identified as an ortholog of, or a similar protein (with 27% identity) to the, 423-amino acid-long PMP47 of the yeast Candida boidinii. We investigated membrane topogenesis of PMP34 with six putative transmembrane segments, as a model peroxisomal membrane protein. PMP34 was characterized as an integral membrane protein of peroxisomes. Transmembrane topology of PMP34 was determined by differential permeabilization and immunofluorescent staining of HeLa cells ectopically expressing PMP34 as well as of Chinese hamster ovary-K1 expressing epitope-tagged PMP34. As opposed to PMP47, PMP34 was found to expose its N- and C-terminal parts to the cytosol. Various deletion variants of PMP34 and their fusion proteins with green fluorescent protein were expressed in Chinese hamster ovary-K1 and were verified with respect to intracellular localization. The loop region between transmembrane segments 4 and 5 was required for the peroxisome-targeting activity, in which Ala substitution for basic residues abrogated the activity. Three hydrophobic transmembrane segments linked in a flanking region of the basic loop were essential for integration of PMP34 to peroxisome membranes. Therefore, it is evident that the intervening basic loop plus three transmembrane segments of PMP34 function as a peroxisomal targeting and topogenic signal.  相似文献   

4.
Targeting sequences on peroxisomal membrane proteins have not yet been identified. We have attempted to find such a sequence within PMP47, a protein of the methylotrophic yeast, Candida boidinii. This protein of 423 amino acids shows sequence similarity with proteins in the family of mitochondrial carrier proteins. As such, it is predicted to have six membrane-spanning domains. Protease susceptibility experiments are consistent with a six-membrane-spanning model for PMP47, although the topology for the peroxisomal protein is inverted compared with the mitochondrial carrier proteins. PMP47 contains two potential peroxisomal targeting sequences (PTS1), an internal SKL (residues 320- 322) and a carboxy terminal AKE (residues 421-423). Using a heterologous in vivo sorting system, we show that efficient sorting occurs in the absence of both sequences. Analysis of PMP47- dihydrofolate reductase (DHFR) fusion proteins revealed that amino acids 1-199 of PMP47, which contain the first three putative membrane spans, do not contain the necessary targeting information, whereas a fusion with amino acids 1-267, which contains five spans, is fully competent for sorting to peroxisomes. Similarly, a DHFR fusion construct containing residues 268-423 did not target to peroxisomes while residues 203-420 appeared to sort to that organelle, albeit at lower efficiency than the 1-267 construct. However, DHFR constructs containing only amino acids 185-267 or 203-267 of PMP47 were not found to be associated with peroxisomes. We conclude that amino acids 199-267 are necessary for peroxisomal targeting, although additional sequences may be required for efficient sorting to, or retention by, the organelles.  相似文献   

5.
Using a combination of in vivo and in vitro assays, we characterized the sorting pathway and molecular targeting signal for the Arabidopsis 22-kD peroxisome membrane protein (PMP22), an integral component of the membrane of all peroxisomes in the mature plant. We show that nascent PMP22 is sorted directly from the cytosol to peroxisomes and that it is inserted into the peroxisomal boundary membrane with its N- and C-termini facing the cytosol. This direct sorting of PMP22 to peroxisomes contrasts with the indirect sorting reported previously for cottonseed (Gossypium hirsutum) ascorbate peroxidase, an integral PMP that sorts to peroxisomes via a subdomain of the endoplasmic reticulum. Thus, at least two different sorting pathways for PMPs exist in plant cells. At least four distinct regions within the N-terminal one-half of PMP22, including a positively charged domain present in most peroxisomal integral membrane-destined proteins, functions in a cooperative manner in efficient peroxisomal targeting and insertion. In addition, targeting with high fidelity to peroxisomes requires all four membrane-spanning domains in PMP22. Together, these results illustrate that the PMP22 membrane peroxisomal targeting signal is complex and that different elements within the signal may be responsible for mediating unique aspects of PMP22 biogenesis, including maintaining the solubility before membrane insertion, targeting to peroxisomes, and ensuring proper assembly in the peroxisomal boundary membrane.  相似文献   

6.
Peroxisomal proteins are synthesized on free polysomes and then transported from the cytoplasm to peroxisomes. This process is mediated by two short well-defined targeting signals in peroxisomal matrix proteins, but a well-defined targeting signal has not yet been described for peroxisomal membrane proteins (PMPs). One assumption in virtually all prior studies of PMP targeting is that a given protein contains one, and only one, distinct targeting signal. Here, we show that the metabolite transporter PMP34, an integral PMP, contains at least two nonoverlapping sets of targeting information, either of which is sufficient for insertion into the peroxisome membrane. We also show that another integral PMP, the peroxin PEX13, also contains two independent sets of peroxisomal targeting information. These results challenge a major assumption of most PMP targeting studies. In addition, we demonstrate that PEX19, a factor required for peroxisomal membrane biogenesis, interacts with the two minimal targeting regions of PMP34. Together, these results raise the interesting possibility that PMP import may require novel mechanisms to ensure the solubility of integral PMPs before their insertion in the peroxisome membrane, and that PEX19 may play a central role in this process.  相似文献   

7.
The 70-kDa peroxisomal membrane protein (PMP70) is one of the major components of rat liver peroxisomal membranes and belongs to a superfamily of proteins known as ATP binding cassette transporters. PMP70 is markedly induced by administration of hypolipidemic agents in parallel with peroxisome proliferation and induction of peroxisomal fatty acid beta-oxidation enzymes. To characterize the role of PMP70 in biogenesis and function of peroxisomes, we transfected the cDNA of rat PMP70 into Chinese hamster ovary cells and established cell lines stably expressing PMP70. The content of PMP70 in the transfectants increased about 5-fold when compared with the control cells. A subcellular fractionation study showed that overexpressed PMP70 was enriched in peroxisomes. This peroxisomal localization was confirmed by immunofluorescence and immunoelectron microscopy. The number of immuno-gold particles corresponding to PMP70 on peroxisomes increased markedly in the transfectants, but the size and the number of peroxisomes were essentially the same in both the transfectants and the control cells. beta-Oxidation of palmitic acid increased about 2-3-fold in the transfectants, whereas the oxidation of lignoceric acid decreased about 30-40%. When intact peroxisomes prepared from both the cell lines were incubated with palmitoyl-CoA, oxidation was stimulated with ATP, but the degree of the stimulation was higher in the transfectants than in the control cells. Furthermore, we established three Chinese hamster ovary cell lines stably expressing mutant PMP70. In these cells, beta-oxidation of palmitic acid decreased markedly. These results suggest that PMP70 is involved in metabolic transport of long chain acyl-CoA across peroxisomal membranes and that increase of PMP70 is not associated with proliferation of peroxisomes.  相似文献   

8.
The 70-kDa peroxisomal membrane protein (PMP70) is a major component of peroxisomal membranes. Human PMP70 consists of 659 amino acid residues and has six putative transmembrane domains (TMDs). PMP70 is synthesized on cytoplasmic ribosomes and targeted posttranslationally to peroxisomes by an unidentified peroxisomal membrane protein targeting signal (mPTS). In this study, to examine the mPTS within PMP70 precisely, we expressed various COOH-terminally or NH(2)-terminally deleted constructs of PMP70 fused with green fluorescent protein (GFP) in Chinese hamster ovary cells and determined their intracellular localization by immunofluorescence. In the COOH-terminally truncated PMP70, PMP70(AA.1-144)-GFP, including TMD1 and TMD2 of PMP70, was still localized to peroxisomes. However, by further removal of TMD2, PMP70(AA.1-124)-GFP lost the targeting ability, and PMP70(TMD2)-GFP did not target to peroxisomes by itself. The substitution of TMD2 in PMP70(AA.1-144)-GFP for TMD4 or TMD6 did not affect the peroxisomal localization, suggesting that PMP70(AA.1-124) contains the mPTS and an additional TMD is required for the insertion into the peroxisomal membrane. In the NH(2)-terminal 124-amino acid region, PMP70 possesses hydrophobic segments in the region adjacent to TMD1. By the disruption of these hydrophobic motifs by the mutation of L21Q/L22Q/L23Q or I70N/L71Q, PMP70(AA.1-144)-GFP lost targeting efficiency. The NH(2)-terminally truncated PMP70, GFP-PMP70(AA.263-375), including TMD5 and TMD6, exhibited the peroxisomal localization. PMP70(AA.263-375) also possesses hydrophobic residues (Ile(307)/Leu(308)) in the region adjacent to TMD5, which were important for targeting. These results suggest that PMP70 possesses two distinct targeting signals, and hydrophobic regions adjacent to the first TMD of each region are important for targeting.  相似文献   

9.
H B Tugal  M Pool  A Baker 《Plant physiology》1999,120(1):309-320
We sequenced and characterized PMP22 (22-kD peroxisomal membrane protein) from Arabidopsis, which shares 28% to 30% amino acid identity and 55% to 57% similarity to two related mammalian peroxisomal membrane proteins, PMP22 and Mpv17. Subcellular fractionation studies confirmed that the Arabidopsis PMP22 is a genuine peroxisomal membrane protein. Biochemical analyses established that the Arabidopsis PMP22 is an integral membrane protein that is completely embedded in the lipid bilayer. In vitro import assays demonstrated that the protein is inserted into the membrane posttranslationally in the absence of ATP, but that ATP stimulates the assembly into the native state. Arabidopsis PMP22 is expressed in all organs of the mature plant and in tissue-cultured cells. Expression of PMP22 is not associated with a specific peroxisome type, as it is detected in seeds and throughout postgerminative growth as cotyledon peroxisomes undergo conversion from glyoxysomes to leaf-type peroxisomes. Although PMP22 shows increased accumulation during the growth of young seedlings, its expression is not stimulated by light.  相似文献   

10.
《The Journal of cell biology》1993,123(6):1717-1725
The membrane insertion of the 22-kD integral peroxisomal membrane protein (PMP 22) was studied in a system in which peroxisomes isolated from rat liver were incubated with the [35S]methionine-labeled in vitro translation product of PMP 22 mRNA. Membrane insertion of PMP 22 was demonstrated by protease treatment of peroxisomes in the absence and presence of detergent. Approximately 35% of total in vitro translated PMP 22 became protease resistant after a 1-h incubation at 26 degrees C. Import was dependent on time and temperature, did not require ATP or GTP and was not inhibited by N-ethylmaleimide treatment of neither the soluble components of the translation mixture nor of the isolated peroxisomes. In contrast to these results it was recently shown that the import of the peroxisomal marker, firefly luciferase, into peroxisomes of permeabilized cells was dependent on ATP hydrolysis and was blocked by N-ethylmaleimide pretreatment of the cytosol-depleted cells (Rapp et al., 1993; Wendland and Subramani, 1993). Therefore, the present data suggest that insertion of PMP 22 into the peroxisomal membrane and translocation of firefly luciferase into peroxisomes follow distinct mechanisms. At low temperature binding of PMP 22 to the peroxisomal membrane was not influenced whereas insertion was strongly inhibited. Pretreatment of peroxisomes with subtilisin reduced binding to a low level and completely abolished insertion. Therefore it is suggested that binding is prerequisite to insertion and that insertion may be mediated by a proteinaceous receptor.  相似文献   

11.
The 70-kDa peroxisomal membrane protein (PMP70) and adrenoleukodystrophy protein (ALDP), half-size ATP-binding cassette transporters, are involved in metabolic transport of long and very long chain fatty acids into peroxisomes. We examined the interaction of peroxisomal ATP-binding cassette transporters with ATP using rat liver peroxisomes. PMP70 was photoaffinity-labeled at similar efficiencies with 8-azido-[alpha-32P]ATP and 8-azido-[gamma-32P]ATP when peroxisomes were incubated with these nucleotides at 37 degrees C in the absence Mg2+ and exposed to UV light without removing unbound nucleotides. The photoaffinity-labeled PMP70 and ALDP were co-immunoprecipitated together with other peroxisomal proteins, which also showed tight ATP binding properties. Addition of Mg2+ reduced the photoaffinity labeling of PMP70 with 8-azido-[gamma-32P]ATP by 70%, whereas it reduced photoaffinity labeling with 8-azido-[alpha-32P]ATP by only 20%. However, two-thirds of nucleotide (probably ADP) was dissociated during removal of unbound nucleotides. These results suggest that ATP binds to PMP70 tightly in the absence of Mg2+, the bound ATP is hydrolyzed to ADP in the presence of Mg2+, and the produced ADP is dissociated from PMP70, which allows ATP hydrolysis turnover. Properties of photoaffinity labeling of ALDP were essentially similar to those of PMP70. Vanadate-induced nucleotide trapping in PMP70 and ALDP was not observed. PMP70 and ALDP were also phosphorylated at a tyrosine residue(s). ATP binding/hydrolysis by and phosphorylation of PMP70 and ALDP are involved in the regulation of fatty acid transport into peroxisomes.  相似文献   

12.
A gene encoding PMP47, a peroxisomal integral membrane protein of the methylotrophic yeast Candida boidinii, was isolated from a genomic library. DNA sequencing of PMP47 revealed an open reading frame of 1269 base pairs capable of encoding a protein of 46,873 Da. At least two membrane-spanning regions in the protein are predicted from the sequence. Since the 3 amino acids at the carboxyl terminus are -AKE, PMP47 lacks a typical peroxisomal sorting signal. No significant similarities in primary structure between PMP47 and known proteins were observed, including PMP70, a rat peroxisomal membrane protein whose sequence has recently been reported (Kamijo, K., Taketani, S., Yokota, S., Osumi, T., and Hashimoto, T. (1990). J. Biol. Chem. 265, 4534-4540). In order to study the import and assembly of PMP47 into peroxisomes by genetic approaches, the gene was expressed in the yeast Saccharomyces cerevisiae. When PMP47 was expressed in cells grown on oleic acid to induce peroxisomes, the protein was observed exclusively in peroxisomes as determined by marker enzyme analysis of organelle fractions. Most of the PMP47 co-purified with the endogenous peroxisomal membrane proteins on isopycnic sucrose gradients. Either in the native host or when expressed in S. cerevisiae, PMP47 was not extractable from peroxisomal membranes by sodium carbonate at pH 11, indicating an integral membrane association. These results indicate that PMP47 is competent for sorting to and assembling into peroxisomal membranes in S. cerevisiae.  相似文献   

13.
Pex6p belongs to the AAA family of ATPases. Its CHO mutant, ZP92, lacks normal peroxisomes but contains peroxisomal membrane remnants, so called peroxisomal ghosts, which are detected with anti-70-kDa peroxisomal membrane protein (PMP70) antibody. No peroxisomal matrix proteins were detected inside the ghosts, but exogenously expressed green fluorescent protein (GFP) fused to peroxisome targeting signal-1 (PTS-1) accumulated in the areas adjacent to the ghosts. Electron microscopic examination revealed that PMP70-positive ghosts in ZP92 were complex membrane structures, rather than peroxisomes with reduced matrix protein import ability. In a typical case, a set of one central spherical body and two layers of double-membraned loops were observed, with endoplasmic reticulum present alongside the outer loop. In the early stage of complementation by PEX6 cDNA, catalase and acyl-CoA oxidase accumulated in the lumen of the double-membraned loops. Biochemical analysis revealed that almost all the peroxisomal ghosts were converted into peroxisomes upon complementation. Our results indicate that 1) Peroxisomal ghosts are complex membrane structures; and 2) The complex membrane structures become import competent and are converted into peroxisomes upon complementation with PEX6.  相似文献   

14.
The 70-kDa peroxisomal membrane protein (PMP70) is one of the major integral membrane proteins of rat liver peroxisomes. cDNA clones for PMP70 were isolated and sequenced. The predicted amino acid sequence (659 amino acid residues) revealed that the carboxyl-terminal region of PMP70 has strong sequence similarities to a group of ATP-binding proteins such as MalK and Mdr. These proteins form a superfamily and are involved in various biological processes including membrane transport. Limited protease treatment of peroxisomes showed that the ATP-binding domain of PMP70 is exposed to the cytosol. The hydropathy profile, in comparison with those of several other members of the ATP-binding protein superfamily, suggests that PMP70 is a transmembrane protein possibly forming a channel. Based on these results, we propose that PMP70 is involved in active transport across the peroxisomal membrane.  相似文献   

15.
We have characterized the role of YPR128cp, the orthologue of human PMP34, in fatty acid metabolism and peroxisomal proliferation in Saccharomyces cerevisiae. YPR128cp belongs to the mitochondrial carrier family (MCF) of solute transporters and is localized in the peroxisomal membrane. Disruption of the YPR128c gene results in impaired growth of the yeast with the medium-chain fatty acid (MCFA) laurate as a single carbon source, whereas normal growth was observed with the long-chain fatty acid (LCFA) oleate. MCFA but not LCFA beta-oxidation activity was markedly reduced in intact ypr128cDelta mutant cells compared to intact wild-type cells, but comparable activities were found in the corresponding lysates. These results imply that a transport step specific for MCFA beta-oxidation is impaired in ypr128cDelta cells. Since MCFA beta-oxidation in peroxisomes requires both ATP and CoASH for activation of the MCFAs into their corresponding coenzyme A esters, we studied whether YPR128cp is an ATP carrier. For this purpose we have used firefly luciferase targeted to peroxisomes to measure ATP consumption inside peroxisomes. We show that peroxisomal luciferase activity was strongly reduced in intact ypr128cDelta mutant cells compared to wild-type cells but comparable in lysates of both cell strains. We conclude that YPR128cp most likely mediates the transport of ATP across the peroxisomal membrane.  相似文献   

16.
In rat liver, peroxisome proliferators induce profound changes in the number and protein composition of peroxisomes, which upon subcellular fractionation is reflected in heterogeneity in sedimentation properties of peroxisome populations. In this study we have investigated the time course of induction of the peroxisomal proteins catalase, acyl-CoA oxidase (ACO) and the 70 kDa peroxisomal membrane protein (PMP70) in different subcellular fractions. Rats were fed a di(2-ethylhexyl)phthalate (DEHP) containing diet for 8 days and livers were removed at different time-points, fractionated by differential centrifugation into nuclear, heavy and light mitochondrial, microsomal and soluble fractions, and organelle marker enzymes were measured. Catalase was enriched mainly in the light mitochondrial and soluble fractions, while ACO was enriched in the nuclear fraction (about 30%) and in the soluble fraction. PMP70 was found in all fractions except the soluble fraction. DEHP treatment induced ACO, catalase and PMP70 activity and immunoreactive protein, but the time course and extent of induction was markedly different in the various subcellular fractions. All three proteins were induced more rapidly in the nuclear fraction than in the light mitochondrial or microsomal fractions, with catalase and PMP70 being maximally induced in the nuclear fraction already at 2 days of treatment. Refeeding a normal diet quickly normalized most parameters. These results suggest that induction of a heavy peroxisomal compartment is an early event and that induction of 'small peroxisomes', containing PMP70 and ACO, is a late event. These data are compatible with a model where peroxisomes initially proliferate by growth of a heavy, possibly reticular-like, structure rather than formation of peroxisomes by division of pre-existing organelles into small peroxisomes that subsequently grow. The various peroxisome populations that can be separated by subcellular fractionation may represent peroxisomes at different stages of biogenesis.  相似文献   

17.
The traditional view holds that peroxisomes are autonomous organelles multiplying by growth and division. More recently, new observations have challenged this concept. Herein, we present evidence supporting the involvement of the endoplasmic reticulum (ER) in peroxisome formation by electron microscopy, immunocytochemistry and three-dimensional image reconstruction of peroxisomes and associated compartments in mouse dendritic cells. We found the peroxisomal membrane protein Pex13p and the ATP-binding cassette transporter protein PMP70 present in specialized subdomains of the ER that were continuous with a peroxisomal reticulum from which mature peroxisomes arose. The matrix proteins catalase and thiolase were only detectable in the reticula and peroxisomes. Our results suggest the existence of a maturation pathway from the ER to peroxisomes and implicate the ER as a major source from which the peroxisomal membrane is derived.  相似文献   

18.
Subcellular proteomics, which includes isolation of subcellular components prior to a proteomic analysis, is advantageous not only in characterizing large macro-molecular complexes such as organelles but also in elucidating mechanisms of protein transport and organelle biosynthesis. Because of the high sensitivity achieved by the present proteomics technology, the purity of samples to be analyzed is important for the interpretation of the results obtained. In the present study, peroxisomes isolated from rat liver by usual cell fractionation were further purified by immunoisolation using a specific antibody raised against a peroxisomal membrane protein, PMP70. The isolated peroxisomes were analyzed by SDS-PAGE combined with liquid chromatography/mass spectrometry. Altogether 34 known peroxisomal proteins were identified in addition to several mitochondrial and microsomal proteins. Some of the latter may reside in the peroxisomes as well. Analysis of membrane fractions identified all known peroxins except for Pex7. Two new peroxisomal proteins of unknown function were of high abundance. One is a bi-functional protein consisting of an aminoglycoside phosphotransferase-domain and an acyl-CoA dehydrogenase domain. The other is a newly identified peroxisome-specific isoform of Lon protease, an ATP-dependent protease with chaperone-like activity. The peroxisomal localization of the protein was confirmed by immunological techniques. The peroxisome-type Lon protease, which is distinct from the mitochondrial isoform, may play an important role in the peroxisomal biogenesis.  相似文献   

19.
Peroxisomes are degraded by a selective type of autophagy known as pexophagy. Several different types of pexophagy have been reported in mammalian cells. However, the mechanisms underlying how peroxisomes are recognized by autophagy-related machinery remain elusive. PEX3 is a peroxisomal membrane protein (PMP) that functions in the import of PMPs into the peroxisomal membrane and has been shown to interact with pexophagic receptor proteins during pexophagy in yeast. Thus, PEX3 is important not only for peroxisome biogenesis, but also for peroxisome degradation. However, whether PEX3 is involved in the degradation of peroxisomes in mammalian cells is unclear. Here, we report that high levels of PEX3 expression induce pexophagy. In PEX3-loaded cells, peroxisomes are ubiquitinated, clustered, and degraded in lysosomes. Peroxisome targeting of PEX3 is essential for the initial step of this degradation pathway. The degradation of peroxisomes is inhibited by treatment with autophagy inhibitors or siRNA against NBR1, which encodes an autophagic receptor protein. These results indicate that ubiquitin- and NBR1-mediated pexophagy is induced by increased expression of PEX3 in mammalian cells. In addition, another autophagic receptor protein, SQSTM1/p62, is required only for the clustering of peroxisomes. Expression of a PEX3 mutant with substitution of all lysine and cysteine residues by arginine and alanine, respectively, also induces peroxisome ubiquitination and degradation, hence suggesting that ubiquitination of PEX3 is dispensable for pexophagy and an endogenous, unidentified peroxisomal protein is ubiquitinated on the peroxisomal membrane.  相似文献   

20.
Nucleotide-induced conformational changes of the 70-kDa peroxisomal membrane protein (PMP70) were investigated by means of limited-trypsin digestion. Rat liver peroxisomes preincubated with various nucleotides were subsequently digested by trypsin. The digestion products were subjected to immunoblot analysis with an anti-PMP70 antibody that recognizes the carboxyl-terminal 15 amino acids of the protein. PMP70 was initially cleaved in the boundary region between the transmembrane and nucleotide-binding domains and a carboxyl-terminal 30-kDa fragment resulted. The fragment in turn was progressively digested at the helical domain between the Walker A and B motifs. The fragment, however, could be stabilized with MgATP or MgADP. In contrast to MgATP, MgATP-gammaS protected whole PMP70 as well as the fragment. The 30-kDa fragment processed by trypsin was recovered in the post-peroxisomal fraction as a complex with a molecular mass of about 60 kDa irrespective of the presence of MgATP. These results suggest that PMP70 exists as a dimer on the peroxisomal membranes and the binding and hydrolysis of ATP induce conformational changes in PMP70 close to the boundary between the transmembrane and nucleotide binding domains and the helical domain between the Walker A and B motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号