首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of anti-mosquito-midgut antibodies on the development of the malaria parasite, P. vivax was studied by feeding the vector mosquito, An. culicifacies with infected blood supplemented with serum from immunized rabbits. In order to get antisera, rabbits were immunized with midgut proteins of three siblings species of Anopheles culicifacies, reported to exhibit differential vectorial capacity. The mosquitoes that ingested anti-midgut antibodies along with infectious parasites had significantly fewer oocysts compared to the control group of mosquitoes. The immunized rabbits generated high titer of antibodies. Their cross reactivity amongst various tissues of the same species and with other sibling species was also determined. Immunogenic polypeptides expressed in the midgut of glucose or blood fed An. culicifacies sibling species were identified by Western blotting. One immunogenic polypeptide of 62 kDa was exclusively present in the midgut of species A. Similarly, three polypeptides of 97, 94 and 58 kDa and one polypeptide of 23 kDa were present exclusively in species B and C respectively. Immunoelectron microscopy revealed the localization of these antigens on baso-lateral membrane and microvilli. The effects of anti-mosquito midgut antibodies on fecundity, longevity, mortality and engorgement of mosquitoes were studied. Fecundity was also reduced significantly. These observations open an avenue for research toward the development of a vector-based malaria parasite transmission-blocking vaccine.  相似文献   

2.
A triglyceride-splitting esterase was identified in the midgut of sugar-fed and of blood-fed mosquitoes. Maximal activity is reached 15 hr after a blood meal.Enema experiments revealed the stimulation mechanism of acetylcholine and unspecific esterases in the midgut. Simple stretching of the epithelium causes increased enzyme production that involves the same esterases as after a blood meal. The results are discussed in connexion with the known data on the stimulation of enzymes and of the peritrophic membrane in mosquitoes.  相似文献   

3.
4.
New Zealand white rabbits were immunized with partly fed Hyalomma dromedarii tick-derived midgut concealed antigens (supernate and pellet fractions) and Freund's complete adjuvant (FCA). The rabbits received three inoculations subcutaneously on days 0, 14 day 21 at a dose rate of 1 mg antigen per animal. The effects of the immunity induced was determined by infesting the rabbits with adult H. dromedarii ticks. In immunized rabbits a significant reduction in tick yield, engorgement weight, oviposition period, egg mass weight and percentage of egg hatchability was found. The gut supernatant antigen fraction induced the best protection in terms of reduced feeding and reproductive performance of the ticks.  相似文献   

5.
Rabbits immunized with polypeptides of midgut of glucose fed A. stephensi resulted in high titer of antibodies (10(4)-10(6)) as detected by ELISA. Effect of antisera on fecundity, hatchability and engorgement was investigated. Fecundity was reduced drastically (62.4%). Eight polypeptides were recognized by the antisera raised against midgut tissues viz., 92, 85, 55, 52, 45, 38, 29 and 13 kDa. Cross reactivity of these antibodies with different tissues of A. stephensi as well as different species of Anopheles was also analyzed. The results indicated that anti-mosquito midgut antibodies had the potential to disrupt the reproductive physiology of mosquitoes in view of the present study, there is a need for further investigation with target antigens.  相似文献   

6.
Rabbits were immunized three times with extracts of Anopheles stephensi midgut. Immunized rabbits showed a high titer of antibodies when characterized by ELISA. We investigated the effect of anti-mosquito midgut antibodies on mosquito fecundity, longevity, mortality, engorgement, and the development of the malaria parasite in mosquitoes. Fecundity was reduced significantly (38%) and similarly hatchability by about 43.5%. There was no statistically significant effect on mortality, longevity, and engorgement. When the mosquito blood meal contained anti-midgut antibodies, fewer oocysts of Plasmodium vivax developed in the mosquito midgut and the proportion of mosquitoes becoming infected was significantly reduced. We also found that the midgut antibodies inhibit the development and/or translocation of the sporozoites. Antisera raised against midgut of A. stephensi recognized eight polypeptides (110, 92, 70, 45, 38, 29, 15, 13 kDa) by Western blotting. Cross-reactive antigens/epitopes present in other tissues of A. stephensi were also examined both by Western blotting and in vivo ELISA. Together, these observations open an avenue for research toward the development of a vector-based malaria parasite transmission blocking vaccine and/or anti-mosquito vaccine.  相似文献   

7.
The distribution of the West Nile virus (WNV) in the organs and tissues of the mosquito Culex pipiens pallens, a potential vector of WNV in China, was investigated up to 14 days after oral infection. The WNV antigen was detected in paraffin‐embedded mosquitoes using immunocytochemistry and viral titers of post‐infected mosquitoes determined by plaque assay. Viral titers sharply decreased 24 h post‐infection, were undetectable for the first few days, then rose over the course of infection. The first midgut infection appeared after one day, and the overall infection rate (based on midgut infection) was 43.9%. Other tissues, including hindgut, foregut, ovarian follicles, Malpighian tubules, and ommatidia, showed weak WNV antigens as early as three days post‐infection. Staining in the salivary glands first appeared after seven days, and the salivary gland infection rate on the 14th day was 37.5%. Specimens with no detectable WNV antigens in any tissues, and with positive results confined to the midgut, anterior midgut, and hindgut, were observed on the 14th day. The route of viral dissemination from the midgut, and the relative importance of amplifying tissues in mosquitoes' susceptibility to infection, were evaluated. The results indicate that Cx. p. pallens has the ability to harbor WNV throughout its alimentary system and that midgut epithelial cells may be the initial site of the replication of this virus in this species.  相似文献   

8.
When B10.A(5R) mice are immunized with congenic C57BL/10 cells only 2-ME-sensitive antibodies (IgM type) are found directed against H-2Db. To obtain 2-ME-resistant antibodies (IgG type) 5R mice must be immunized with noncongenic cells (e.g., A.BY); in this case non-H-2 cell surface antigens will activate helper T cells to induce anti-Db IgG antibody production by B cells. An attempt was made to define helper antigens that activate helper T cells. Neither N-2 antigens of seven H-2Db recombinant strains nor a limited set of non-H-2 cell surface antigens were able to serve as helper antigens. By using individual backcross mice as antigen, one helper antigen was found on the background of strain A under the conditions used, whereas other backgrounds may carry more than one antigen. The helper antigen is dominantly expressed in F1 mice and has to be presented on the same cell as H-2Db to induce the switch from IgM to IgG.  相似文献   

9.
Xanthurenic acid (XA), produced as a byproduct during the biosynthesis of insect eye pigment (ommochromes), is a strong inducer of Plasmodium gametogenesis at very low concentrations. In previous studies, it was shown that XA is present in Anopheles stephensi (Diptera: Culicidae) mosquito salivary glands and that during blood feeding the mosquitoes ingested their own saliva into the midgut. Considering these two facts together, it is therefore likely that XA is discharged with saliva during blood feeding and is swallowed into the midgut where it exerts its effect on Plasmodium gametocytes. However, the quantities of XA in the salivary glands and midgut are unknown. In this study, we used high performance liquid chromatography with electrochemical detection to detect and quantify XA in the salivary glands and midgut. Based on the results of this study, we found 0.28+/-0.05 ng of XA in the salivary glands of the mosquitoes, accounting for 10% of the total XA content in the mosquito whole body. The amounts of XA in the salivary glands reduced to 0.13+/-0.06 ng after mosquitoes ingested a blood meal. Approximately 0.05+/-0.01 ng of XA was detected in the midgut of nonblood fed An. stephensi mosquitoes. By adding synthetic tryptophan as a source of XA into larval rearing water (2 mM) or in sugar meals (10 mM), we evaluated whether XA levels in the mosquito (salivary glands, midgut, and whole body) were boosted and the subsequent effect on infectivity of Plasmodium berghei in the treated mosquito groups. A female specific increase in XA content was observed in the whole body and in the midgut of mosquito groups where tryptophan was added either in the larval water or sugar meals. However, XA in the salivary glands was not affected by tryptophan addition to larval water, and surprisingly it reduced when tryptophan was added to sugar meals. The P. berghei oocyst loads in the mosquito midguts were lower in mosquitoes fed tryptophan treated sugar meals than in mosquitoes reared on tryptophan treated larval water. Our results suggest that mosquito nutrition may have a significant impact on whole body and midgut XA levels in mosquitoes. We discuss the observed parasite infectivity results in relation to XA's relationship with malaria parasite development in mosquitoes.  相似文献   

10.
Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control.  相似文献   

11.

Background

Anopheles gambiae is the main vector of Plasmodium falciparum in Africa. The mosquito midgut constitutes a barrier that the parasite must cross if it is to develop and be transmitted. Despite the central role of the mosquito midgut in the host/parasite interaction, little is known about its protein composition. Characterisation of An. gambiae midgut proteins may identify the proteins that render An. gambiae receptive to the malaria parasite.

Methods

We carried out two-dimensional gel electrophoresis of An. gambiae midgut proteins and compared protein profiles for midguts from males, sugar-fed females and females fed on human blood.

Results

Very few differences were detected between male and female mosquitoes for the approximately 375 silver-stained proteins. Male midguts contained ten proteins not detected in sugar-fed or blood-fed females, which are therefore probably involved in male-specific functions; conversely, female midguts contained twenty-three proteins absent from male midguts. Eight of these proteins were specific to sugar-fed females, and another ten, to blood-fed females.

Conclusion

Mass spectrometry analysis of the proteins found only in blood-fed female midguts, together with data from the recent sequencing of the An. gambiae genome, should make it possible to determine the role of these proteins in blood digestion or parasite receptivity.  相似文献   

12.
Vaccines that target blood-feeding disease vectors, such as mosquitoes and ticks, have the potential to protect against the many diseases caused by vector-borne pathogens. We tested the ability of an anti-tick vaccine derived from a tick cement protein (64TRP) of Rhipicephalus appendiculatus to protect mice against tick-borne encephalitis virus (TBEV) transmitted by infected Ixodes ricinus ticks. The vaccine has a "dual action" in immunized animals: when infested with ticks, the inflammatory and immune responses first disrupt the skin feeding site, resulting in impaired blood feeding, and then specific anti-64TRP antibodies cross-react with midgut antigenic epitopes, causing rupture of the tick midgut and death of engorged ticks. Three parameters were measured: "transmission," number of uninfected nymphal ticks that became infected when cofeeding with an infected adult female tick; "support," number of mice supporting virus transmission from the infected tick to cofeeding uninfected nymphs; and "survival," number of mice that survived infection by tick bite and subsequent challenge by intraperitoneal inoculation of a lethal dose of TBEV. We show that one dose of the 64TRP vaccine protects mice against lethal challenge by infected ticks; control animals developed a fatal viral encephalitis. The protective effect of the 64TRP vaccine was comparable to that of a single dose of a commercial TBEV vaccine, while the transmission-blocking effect of 64TRP was better than that of the antiviral vaccine in reducing the number of animals supporting virus transmission. By contrast, the commercial antitick vaccine (TickGARD) that targets only the tick's midgut showed transmission-blocking activity but was not protective. The 64TRP vaccine demonstrates the potential to control vector-borne disease by interfering with pathogen transmission, apparently by mediating a local cutaneous inflammatory immune response at the tick-feeding site.  相似文献   

13.
Epoxide hydrolases (EHs) are enzymes that play roles in metabolizing xenobiotic epoxides from the environment, and in regulating lipid signaling molecules, such as juvenile hormones in insects and epoxy fatty acids in mammals. In this study we fed mosquitoes with an epoxide hydrolase inhibitor AUDA during artificial blood feeding, and we found the inhibitor increased the concentration of epoxy fatty acids in the midgut of female mosquitoes. We also observed ingestion of AUDA triggered early expression of defensin A, cecropin A and cecropin B2 at 6 h after blood feeding. The expression of cecropin B1 and gambicin were not changed more than two fold compared to controls. The changes in gene expression were transient possibly because more than 99% of the inhibitor was metabolized or excreted at 42 h after being ingested. The ingestion of AUDA also affected the growth of bacteria colonizing in the midgut, but did not affect mosquito longevity, fecundity and fertility in our laboratory conditions. When spiked into the blood, EpOMEs and DiHOMEs were as effective as the inhibitor AUDA in reducing the bacterial load in the midgut, while EETs rescued the effects of AUDA. Our data suggest that epoxy fatty acids from host blood are immune response regulators metabolized by epoxide hydrolases in the midgut of female mosquitoes, inhibition of which causes transient changes in immune responses, and affects growth of microbes in the midgut.  相似文献   

14.
Changes in polypeptides pattern of haemolymph, midgut, ovary and salivary glands of female mosquito A. stephensi were studied when fed upon anti-mosquito haemolymph antibodies. The expression of almost all polypeptides was reduced in haemolymph and ovary of the immune fed mosquitoes as compared to control. However, there was no significant difference in case of midgut and salivary glands. Seven polypeptides 100, 90, 84, 80, 62, 19 and 12.5 kDa were absent in haemolymph and five 92, 90, 80, 60 and 55 kDa were absent in ovaries. Changes in the polypeptide pattern have been correlated with the fecundity reduction due to immunized blood feeding.  相似文献   

15.
In order to determine whether proline can be utilized as fuel during flight of Aedes aegypti, proline, alanine, and glutamine concentrations were monitored at 0, 30 and 60 min after flight using sugar-fed males and females, and blood meal-fed females. In sugar-fed and blood meal-fed females, flight lead to a significant decrease in proline and a significant increase in glutamine concentration in both hemolymph and thorax. Only during flight after a blood meal was a significant increase in the alanine concentration observed in hemolymph. After flight, the proline alanine and glutamine levels in the hemolymph and thorax from males did not change significantly. In addition, activities of enzymes related to amino acid metabolism were assayed in homogenates of cephalothorax and thorax from both sexes, and in fat body and midgut from females. In both sexes, the activities of all the enzymes studied were significantly higher in thorax than in cephalothorax. The levels of the enzymes involved in proline oxidation were higher in thorax than in fat body and midgut. These results suggest that proline can be used as an energy substrate for flight muscle of Ae. aegypti females. However, the elevation in glutamine levels observed in hemolymph and thorax after flight has not been reported in other insects that fuel flight using proline and may suggest an additional mechanism for shuttling ammonia between flight muscle and fat body is present in mosquitoes.  相似文献   

16.
Secretion and luminal formation of the peritrophic membrane (PM) were induced in female Anopheles stephensi and Aedes aegypti by feeding the mosquitoes on a warmed suspension of latex particles in Ringer's solution. The PM in A. stephensi was produced from apical secretion vesicles stored in the midgut epithelial cells and secreted into the lumen during feeding. In A. aegypti, the PM was formed de novo. When the latex feeding was followed 24 hr later by a meal of lyophilized pig blood, the 2 mosquito species exhibited very different modifications to their PM structure; in A. stephensi no PM was formed around the blood meal, whereas de novo synthesis of the PM in A. aegypti continued during the blood meal, with the resulting PM greatly thickened compared to the normal feeding. This artificial induction of PM formation was used as the basis to study the role of the PM in blood meal digestion and in infectivity of mosquitoes by the appropriate species of Plasmodium. The feeding of a latex suspension alone had no stimulatory effect on the 2 major midgut proteases, trypsin and aminopeptidase, in either species. After a blood meal alone, proteases rose to maximum activity at 30 hr and 24 hr after feeding in A. stephensi and A. aegypti, respectively. After double feeding, protease activities in both species were almost identical to those in blood-fed mosquitoes. Neither the absence of a PM (in A. stephensi) nor the presence of a thickened PM (in A. aegypti), therefore, has any effect on the ability of mosquitoes to digest a blood meal. Malaria infectivity, measured by oocyst counts, also was compared after normal and double feeding using infective blood meals. Infectivity of A. stephensi by Plasmodium berghei was unaffected by the presence or absence of the PM. The thickened PM produced by double feeding in A. aegypti caused a reduction of midgut infectivity by Plasmodium gallinaceum. These results suggest that the PM may act as a partial, but not an absolute, barrier to invasion of the midgut by the ookinete.  相似文献   

17.
Mice immunized with glutaraldehyde-fixed sheep red blood cells (G-SRBC) show delayed-type hypersensitivity (DTH) reactions to G-SRBC or SRBC. The specificity of the DTH reaction of mice sensitized with glutaraldehyde-fixed antigens is similar to that found after sensitization with unfixed antigens. The dose-response curve for sensitization by glutaraldehyde-fixed SRBC was very different from the curve for normal SRBC. At low doses, both antigens were effective in sensitizing to show DTH but neither induced an antibody response. However, at high antigen doses, only the glutaraldehyde-fixed antigen was efficient in sensitizing to show DTH and it failed to raise an antibody titer. Spleen cells of mice sensitized with fixed RBC can transfer DTH locally but if the donor cells are irradiated (500 R), the transfer is abrogated. In contrast, the transfer of DTH by spleen cells of mice immunized with unfixed antigen is not affected by 500 R. The transfer of DTH by spleen cells of mice immunized with fixed antigen can be blocked by “in vitro desensitization” while the transfer of DTH by spleen cells from mice primed with normal antigen is resistant to “in vitro desensitization.” These results suggest that immunization of mice with different physical states of the same antigen can result in the activation of antigen-specific T cells which exhibit markedly different properties.  相似文献   

18.

Background

Previously, we investigated the role of the Rift Valley fever virus (RVFV) virulence genes NSs and NSm in mosquitoes and demonstrated that deletion of NSm significantly reduced the infection, dissemination, and transmission rates of RVFV in Aedes aegypti mosquitoes. The specific aim of this study was to further characterize midgut infection and escape barriers of RVFV in Ae. aegypti infected with reverse genetics-generated wild type RVFV (rRVF-wt) or RVFV lacking the NSm virulence gene (rRVF-ΔNSm) by examining sagittal sections of infected mosquitoes for viral antigen at various time points post-infection.

Methodology and Principal Findings

Ae. aegypti mosquitoes were fed an infectious blood meal containing either rRVF-wt or rRVF-ΔNSm. On days 0, 1, 2, 3, 4, 6, 8, 10, 12, and 14 post-infection, mosquitoes from each experimental group were fixed in 4% paraformaldehyde, paraffin-embedded, sectioned, and examined for RVFV antigen by immunofluorescence assay. Remaining mosquitoes at day 14 were assayed for infection, dissemination, and transmission. Disseminated infections were observed in mosquitoes as early as three days post infection for both virus strains. However, infection rates for rRVF-ΔNSm were statistically significantly less than for rRVF-wt. Posterior midgut infections in mosquitoes infected with rRVF-wt were extensive, whereas midgut infections of mosquitoes infected with rRVF-ΔNSm were confined to one or a few small foci.

Conclusions/Significance

Deletion of NSm resulted in the reduced ability of RVFV to enter, replicate, and disseminate from the midgut epithelial cells. NSm appears to have a functional role in the vector competence of mosquitoes for RVFV at the level of the midgut barrier.  相似文献   

19.
In Plasmodium-infected mosquitoes, oocysts are preferentially located at the posterior half of the posterior midgut. Because mosquitoes rest vertically after feeding, the effect of gravity on the ingested blood has been proposed as the cause of such a biased distribution. In this paper, we examined the oocyst distribution on the midguts of mosquitoes that were continuously rotated to nullify the effect of gravity and found that the typical pattern of oocyst distribution did not change. Invasion of the midgut epithelium by ookinetes was similarly found to be biased toward the posterior part of the posterior midgut. We examined whether the distribution of oocysts depends on the distribution of vesicular ATPase (V-ATPase)-overexpressing cells that Plasmodium ookinetes preferentially use to cross the midgut epithelium. An antiserum raised against recombinant Aedes aegypti V-ATPase B subunit indicated that the majority of V-ATPase-overexpressing cells in Ae. aegypti and Anopheles gambiae are localized at the posterior part of the posterior midgut. We propose that the typical distribution of oocysts on the mosquito midgut is attributable to the presence and the spatial distribution of the V-ATPase-overexpressing cells in the midgut epithelium.  相似文献   

20.
Several properties of the salivary glands of Culex quinquefasciatus mosquitoes were analysed. The amount of protein in female salivary glands increased from 0.26 microg on day one after emergence to about 1.4 microg on day seven. The major polypeptides found in the female salivary glands had molecular weights of 35.7, 28.3, and 20.5 kDa. Antibodies produced by mice immunized by bites of Culex quinquefasciatus female mosquitoes reacted with the 35.7 and 28.3 kDa polypeptides, showing that these molecules were secreted by mosquitoes during blood feeding. The salivary glands of C. Quinquefasciatus females displayed the same morphological and biochemical organization as that of Aedes aegypti mosquitoes, accumulating apyrase in the distal portions and alpha-glucosidase in the proximal portions of the gland. Arch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号