首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within‐population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures.  相似文献   

2.
Quantitative genetic models of evolution of phenotypic plasticity are used to derive environmental tolerance curves for a population in a changing environment, providing a theoretical foundation for integrating physiological and community ecology with evolutionary genetics of plasticity and norms of reaction. Plasticity is modelled for a labile quantitative character undergoing continuous reversible development and selection in a fluctuating environment. If there is no cost of plasticity, a labile character evolves expected plasticity equalling the slope of the optimal phenotype as a function of the environment. This contrasts with previous theory for plasticity influenced by the environment at a critical stage of early development determining a constant adult phenotype on which selection acts, for which the expected plasticity is reduced by the environmental predictability over the discrete time lag between development and selection. With a cost of plasticity in a labile character, the expected plasticity depends on the cost and on the environmental variance and predictability averaged over the continuous developmental time lag. Environmental tolerance curves derived from this model confirm traditional assumptions in physiological ecology and provide new insights. Tolerance curve width increases with larger environmental variance, but can only evolve within a limited range. The strength of the trade‐off between tolerance curve height and width depends on the cost of plasticity. Asymmetric tolerance curves caused by male sterility at high temperature are illustrated. A simple condition is given for a large transient increase in plasticity and tolerance curve width following a sudden change in average environment.  相似文献   

3.
Stress occurring in periods shorter than life span strongly selects for reversible phenotypic plasticity, for maximum reliability of stress indicating cues and for minimal response delays. The selective advantage of genotypes that are able to produce adaptive reversible plastic phenotypes is calculated by using the concept of environmental tolerance. Analytic expressions are given for optimal values of mode and breadth of tolerance functions for stress induced and non-induced phenotypes depending on (1) length of stress periods, (2) response delay for switching into the induced phenotype, (3) response delay for rebuilding the non-induced phenotype, (4) intensity of stress, i.e. mean value of the stress inducing environment, (5) coefficient of variation of the stress environment and (6) completeness of information available to the stressed organism. Adaptively reversible phenotypic plastic traits will most probably affect fitness in a way that can be described by simultaneous reversible plasticity in mode and breadth of tolerance functions.  相似文献   

4.
Adaptation to temporal variation in environmental conditions is widespread. Whether evolution in a constant environment alters adaptation to temporal variation is relatively unexplored. We examine how constant and diurnally fluctuating temperature conditions affect life-history traits in two populations of the tobacco hornworm, Manduca sexta : a field population that routinely experiences fluctuating temperatures; and a laboratory population (derived from this field population in the 1960s) maintained at a constant temperature for more than 250 generations. Our experiments demonstrate that diurnal fluctuations significantly alter body size and development time in both populations, and confirm that these populations differ in their responses to a mean temperature. However, we found no evidence for population divergence in responses to diurnal temperature fluctuations. We suggest that mean and extreme temperatures may act as more potent selective forces on thermal reaction norms than temperature variation per se.  相似文献   

5.
The development of an individual's phenotype is influenced by environmental factors (the modifying environment) which may differ from those factors (the adaptive environment) that decide on the adaptational value of the developed phenotype. The shapes of adaptationally optimal norms of reaction are therefore essentially determined by associations between these two environmental components together with the degree of adaptational sensitivity of the developed phenotypes. Two complementary aspects of optimality are accounted for: (a) environments can be optimal for a given norm of reaction and (b) norms of reaction can be optimal for a given environment. The results are obtained for random distribution of genotypes over environmental conditions and under the physiologically reasonable premise that fitness is a function of the costs of modification and adaptation. It turned out that the associations of adaptive and modifying environments are the primary sources of adaptational optimization. More specifically, it is shown that (i) independence between the two environmental components constitutes an adaptationally optimal environment only for norms of reaction in which all phenotypes are adaptively insensitive; (ii) if costs of modification do not depend on the environment, and if the two environmental components are not associated, adaptationally optimal norms of reaction can always be realized through phenogenetic invariance; (iii) as a rule, adaptively sensitive phenotypes developed under strong environmental associations necessitate phenogenetic plasticity for the optimal norm of reaction; (iv) a norm of reaction which is adaptationally optimal in its adaptationally optimal environment can always be realized through phenogenetic invariance, if costs of modification do not vary with the environment. These results reveal an important role of patterns of adaptive sensitivity of phenotypes, which may even surpass that of shapes of norms of reaction in adaptational processes.  相似文献   

6.
Adaptation in dynamic environments depends on the grain, magnitude and predictability of ecological fluctuations experienced within and across generations. Phenotypic plasticity is a well-studied mechanism in this regard, yet the potentially complex effects of stochastic environmental variation on optimal mean trait values are often overlooked. Using an optimality model inspired by timing of reproduction in great tits, we show that temporal variation affects not only optimal reaction norm slope, but also elevation. With increased environmental variation and an asymmetric relationship between fitness and breeding date, optimal timing shifts away from the side of the fitness curve with the steepest decline. In a relatively constant environment, the timing of the birds is matched with the seasonal food peak, but they become adaptively mismatched in environments with temporal variation in temperature whenever the fitness curve is asymmetric. Various processes affecting the survival of offspring and parents influence this asymmetry, which collectively determine the 'safest' strategy, i.e. whether females should breed before, on, or after the food peak in a variable environment. As climate change might affect the (co)variance of environmental variables as well as their averages, risk aversion may influence how species should shift their seasonal timing in a warming world.  相似文献   

7.
We extend methods of quantitative genetics to studies of the evolution of reaction norms defined over continuous environments. Our models consider both spatial variation (hard and soft selection) and temporal variation (within a generation and between generations). These different forms of environmental variation can produce different evolutionary trajectories even when they favor the same optimal reaction norm. When genetic constraints limit the types of evolutionary changes available to a reaction norm, different forms of environmental variation can also produce different evolutionary equilibria. The methods and models presented here provide a framework in which empiricists may determine whether a reaction norm is optimal and, if it is not, to evaluate hypotheses for why it is not.  相似文献   

8.
An important step in diagnosing local adaptation is the demonstration that phenotypic variation among populations is at least in part genetically based. To do this, many methods experimentally minimize the environmental effect on the phenotype to elucidate the genetic effect. Minimizing the environmental effect often includes reducing possible environmental maternal effects. However, maternal effects can be an important factor in patterns of local adaptation as well as adaptive plasticity. Here, we report the results of an experiment with males from two populations of the poeciliid fish, Heterandria formosa, designed to examine the relative influence of environmental maternal effects and environmental effects experienced during growth and development on body morphology, and, in addition, whether the balance among those effects is unique to each population. We used a factorial design that varied thermal environment and water chemistry experienced by mothers and thermal environment and water chemistry experienced by offspring. We found substantial differences between the two populations in their maternal and offspring norms of reaction of male body morphology to differences in thermal environment and water chemistry. We also found that the balance between maternal effects and postparturition environmental effects differed from one thermal regime to another and among traits. These results indicate that environmental maternal effects can be decidedly population‐specific and, as a result, might either contribute to the appearance of or blur evidence for local adaptation. These results also suggest that local adaptation might also occur through the evolution of maternal norms of reaction to important, and varying, environmental factors.  相似文献   

9.
The phenotype produced by a given genotype can be strongly modulated by environmental conditions. Therefore, natural populations continuously adapt to environment heterogeneity to maintain optimal phenotypes. It generates a high genetic variation in environment-sensitive gene networks, which is thought to facilitate evolution. Here we analyze the chromatin regulator crm, identified as a candidate for adaptation of Drosophila melanogaster to northern latitudes. We show that crm contributes to environmental canalization. In particular, crm modulates the effect of temperature on a genomic region encoding Hedgehog and Wingless signaling effectors. crm affects this region through both constitutive heterochromatin and Polycomb silencing. Furthermore, we show that crm European and African natural variants shift the reaction norms of plastic traits. Interestingly, traits modulated by crm natural variants can differ markedly between Drosophila species, suggesting that temperature adaptation facilitates their evolution.  相似文献   

10.
Phenotypic plasticity is a key factor for the success of organisms in heterogeneous environments. Although many forms of phenotypic plasticity can be induced and retracted repeatedly, few extant models have analyzed conditions for the evolution of reversible plasticity. We present a general model of reversible plasticity to examine how plastic shifts in the mode and breadth of environmental tolerance functions (that determine relative fitness) depend on time lags in response to environmental change, the pattern of individual exposure to inducing and noninducing environments, and the quality of available information about the environment. We couched the model in terms of prey-induced responses to variable predation regimes. With longer response lags relative to the rate of environmental change, the modes of tolerance functions in both the presence or absence of predators converge on a generalist strategy that lies intermediate between the optimal functions for the two environments in the absence of response lags. Incomplete information about the level of predation risk in inducing environments causes prey to have broader tolerance functions even at the cost of reduced maximal fitness. We give a detailed analysis of how these factors and interactions among them select for joint patterns of mode and breadth plasticity.  相似文献   

11.
Temporal variability in survivorship and reproduction is predicted to affect the evolution of life-history characters. Desert annual plants experience temporal variation in reproductive success that is largely caused by precipitation variability. We studied several populations of the desert annual Plantago insularis along a precipitation gradient. Whereas models of bet hedging in unpredictable environments generally predict one optimal germination fraction for a population, empirical studies have shown that environmental conditions during germination can cause a range of germination fractions to be expressed. In a 4-yr field study, we found that populations in historically more xeric environments had lower mean germination fractions, as is predicted by bet-hedging models. However, populations exhibited significant variation in germination among years. Two experimental studies measuring germination under several environment conditions were conducted to elucidate the source of this in situ variation. Germination fractions exhibited phenotypic plasticity in response to water availability and date within the season. Populations differed in their norms of reaction such that seeds from more xeric populations germinated under less restrictive conditions. A pattern of delayed germination consistent with among-year bet-hedging predictions arose in the field through the interaction of seed germinability and the distribution of environmental conditions during germination.  相似文献   

12.
This paper examines the environment as a source of dimensions of stimulation that are directly related to the individual's affective response to his environment, and his behavioral adaptation to it. The concept of an optimal level of stimulation is introduced, along with a view of environmental stress as resulting from conditions of excessive deviation from such optimal levels, with particular reference to variations in intensity, diversity, and patterning of the stimulus input. This analysis provides the framework for a consideration of behavioral adaptation to the environment by reference to the concept of adaptation level. Levels of adaptation to particular environmental dimensions, established as a function of past exposure, are shown to act as potent determiners of the individual's evaluation of his environment, as well as representing a plausible basis for the optimal level of stimulation principle itself. The presentation proceeds to an examination of the process of adaptation to the environment as a multilayered process, and to a discussion of the concept of the cost of adaptation as it applies in the behavioral realm. Finally, adaptation is contrasted with an alternative mechanism, adjustment, involving active alteration of the environment by the individual, and the relative place to be accorded to these two processes in the individual's relation to the environment is considered.  相似文献   

13.
14.
How organisms may adapt to rising global temperatures is uncertain, but concepts can emerge from studying adaptive physiological trait variations across existing spatial climate gradients. Many ectotherms, particularly fish, have evolved increasing genetic growth capacities with latitude (i.e. countergradient variation (CnGV) in growth), which are thought to be an adaptation primarily to strong gradients in seasonality. In contrast, evolutionary responses to gradients in mean temperature are often assumed to involve an alternative mode, 'thermal adaptation'. We measured thermal growth reaction norms in Pacific silverside populations (Atherinops affinis) occurring across a weak latitudinal temperature gradient with invariant seasonality along the North American Pacific coast. Instead of thermal adaptation, we found novel evidence for CnGV in growth, suggesting that CnGV is a ubiquitous mode of reaction-norm evolution in ectotherms even in response to weak spatial and, by inference, temporal climate gradients. A novel, large-scale comparison between ecologically equivalent Pacific versus Atlantic silversides (Menidia menidia) revealed how closely growth CnGV patterns reflect their respective climate gradients. While steep growth reaction norms and increasing growth plasticity with latitude in M. menidia mimicked the strong, highly seasonal Atlantic coastal gradient, shallow reaction norms and much smaller, latitude-independent growth plasticity in A. affinis resembled the weak Pacific latitudinal temperature gradient.  相似文献   

15.
The magnitude of fitness variation caused by maternal effects and, thus, the adaptive significance of maternal traits may depend on environmental quality, generating crossing reaction norms among offspring phenotypes that shape life-history evolution. By manipulating intraclutch variation in egg size and comparing siblings we examined the maternal effects of egg size on offspring performance and tested for the existence of reaction norms to environmental quality using the brown trout Salmo trutta. When sibling groups of small and large eggs were reared separately in a hatchery environment initial size differences disappeared rapidly. However, in semi-natural environments and under direct competition, juveniles from large eggs experienced growth and survival advantages over siblings from small eggs. Moreover, distinct reaction norms existed, with the differences in performance of juveniles from small and large eggs being most pronounced in the poorer growth environments. Our results provide the first direct evidence, to our knowledge, for a causal relationship between egg size and fitness-related traits in fishes, independent of potentially confounding genetic effects. Moreover, they indicate that previous studies have been biased by experimental conditions that excluded competitive asymmetries and environmental variability. The existence of reaction norms indicates a shift in optimal egg size across gradients of environmental quality that probably shapes the evolution of this trait.  相似文献   

16.
Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist–specialist trade‐offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade‐offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life‐history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature‐mediated trade‐off between juvenile survival and size at maturity, suggesting that trade‐offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist–specialist dimension.  相似文献   

17.
Janzen's seasonality hypothesis predicts that organisms inhabiting environments with limited climatic variability will evolve a reduced thermal tolerance breadth compared with organisms experiencing greater climatic variability. In turn, narrow tolerance breadth may select against dispersal across strong temperature gradients, such as those found across elevation. This can result in narrow elevational ranges and generate a pattern of isolation by environment or neutral genetic differentiation correlated with environmental variables that are independent of geographic distance. We tested for signatures of isolation by environment across elevation using genome‐wide SNP data from five species of Andean dung beetles (subfamily Scarabaeinae) with well‐characterized, narrow thermal physiologies, and narrow elevational distributions. Contrary to our expectations, we found no evidence of population genetic structure associated with elevation and little signal of isolation by environment. Further, elevational ranges for four of five species appear to be at equilibrium and show no decay of genetic diversity at range limits. Taken together, these results suggest physiological constraints on dispersal may primarily operate outside of a stable realized niche and point to a lower bound on the spatial scale of local adaptation.  相似文献   

18.
Theoretical models predict that selection on reaction norms should depend on the relative frequency of environmental states experienced by a population. We report a laboratory experimental test of this prediction for thermal performance curves of larval growth rate in Pieris rapae in relation to their thermal environment. We measured short-term relative growth rate (RGR) for each individual at a series of five temperatures, and then we assigned individuals randomly to warm or cool selection treatments, which differ in the frequency distributions of environmental temperatures. Selection gradient analyses of two independent experiments demonstrated significant positive selection for increasing RGR, primarily through its effects on survival to adulthood and on development rate. In both the warm and cool selection treatments, the magnitude of directional selection on RGR was consistently greater at lower (suboptimal) temperatures than at higher temperatures; differences in selection between the treatments did not match model predictions. The temporal order and duration of environmental conditions may affect patterns of selection on thermal performance curves and other continuous reaction norms, complicating the connections between variation in environment, phenotype, and fitness.  相似文献   

19.
20.
Dauer larvae of Caenorhabditis elegans are formed when young larvae experience conditions of low food availability and high conspecific population density; non-dauer, third stage larvae are formed in conditions of plenty. This developmental response to environmental conditions is an example of phenotypic plasticity; that is, an environmentally induced change in phenotype and, as such, a manifestation of a genotype-environment interaction. Extensive variation was found in reaction norms of phenotypic plasticity of dauer formation among wild lines of C. elegans. Recombinant-inbred lines were constructed from parental lines with very different reaction norms of dauer formation. These recombinant-inbred lines had a wide range of reaction norms, of a range greater than that set by the parental lines. The natural variation in reaction norms of dauer formation in C. elegans is, presumably, an adaptation to enhance fitness under the lines' different natural prevailing conditions. The genetic basis of this variation, as well as its phenotypic consequences, are now ripe for further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号