首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Right-side dominance for song control in the zebra finch.   总被引:7,自引:0,他引:7  
Adult male zebra finches underwent unilateral denervation of the syrinx or unilateral lesion of the forebrain nucleus HVC known to be important for song control. Disruptive effects on song were greater after right-side than after left-side operations. After denervation of the right half of the syrinx, the fundamental frequencies of all syllables within a song converged on a value near 500 Hz, and nearly all syllables were altered in type. In contrast, the syllables produced after denervation of the left side of the syrinx largely maintained their preoperative frequencies, and fewer syllables changed in type. Unlike nerve sections, HVC lesions did not result in strikingly lateralized effects on syllable phonology; however, HVC lesions did affect the temporal patterning of a bird's song, whereas nerve sections did not, and changes in temporal patterning were more marked after right than after left HVC lesions. Right-side dominance for zebra finch song control is the reverse of that described in other songbird species with lateral asymmetry for vocal communication. We suggest that the need for a dominant side is more important than the side of dominance.  相似文献   

2.
It is well established that parenteral treatment of female zebra finch chicks with estradiol masculinizes their song control nuclei and that as adults they are capable of song. Concern over the widespread use of putative environmental estrogens caused us to ask whether oral exposure to estrogens (a natural route of exposure) could produce similar effects. We dosed chicks orally with estradiol benzoate (EB; 1, 10, 100, and 1000 nmol/g of body mass per day, days 5-11 posthatch), the non-ionic surfactant octylphenol (100 and 1000 nmol/g), or the pesticides methoxychlor (100 and 1000 nmol/g) and dicofol (100 nmol/g) and measured their song control nuclei as adults. EB treatment produced increases in song nuclei comparable to that induced by parenteral administration of estrogens. This is the first study of which we are aware to use an oral route of administration, which simulates the natural process of parent birds feeding their nestlings. We conclude that oral exposure to estradiol alters song control nuclei and we report in a related paper (Millam et al., 2001) that such exposure severely disrupts reproductive performance. Although we detected no influence of xenobiotics on induction of song control nuclei the possibility remains that oral exposure to xenoestrogens in high enough doses could affect development.  相似文献   

3.
4.
Songbirds sing complex songs as a result of evolution through sexual selection. The evolution of such sexually selected traits requires genetic control, as well as selection on their expression. Song is controlled by a discrete neural pathway in the brain, and song complexity has been shown to correlate with the volume of specific song control nuclei. As such, the development of these nuclei, in particular the high vocal centre (HVC), is thought to be the mechanism controlling signal expression indicating male quality. We tested the hypothesis that early developmental stress selectively affects adult HVC size, compared with other brain nuclei. We did this by raising cross-fostered zebra finches (Taeniopygia guttata) under stressed and controlled conditions and determining the effect on adult HVC size. Our results confirm the strong influence of environmental conditions, particularly on HVC development, and therefore on the expression of complex songs. The results also show that both environmental and genetic factors affect the development of several brain nuclei, highlighting the developmental plasticity of the songbird brain. In all, these results explain how the complex song repertoires of songbirds can evolve as honest indicators of male quality.  相似文献   

5.
Bird song is a complex communication behavior that requires the coordination of several motor systems. Sound is produced in the syrinx and then modified by the upper vocal tract, but the specific nature and dynamics of this modification are not well understood. To determine the contribution of beak movements to sound modification, we studied the beak gape patterns in zebra finches (Taeniopygia guttata). Subsyringeal air sac pressure and song were recorded together with changes in beak gape, which were monitored with a magneto-sensitive transducer. Beak gape was positively correlated with fundamental frequency, peak frequency, and subsyringeal air sac pressure in all but one bird. For harmonic stacks, peak frequency increased with increasing beak gape, and the relationship between fundamental frequency and beak gape was no longer significant. Experimentally holding the beak open or closed had acoustic consequences consistent with the model in which beak movements change upper vocal tract length and, thus, the filter properties. Beak gape was positively correlated with sound amplitude in all but two birds. The relationship between beak aperture and amplitude may, however, be indirect because air sac pressure is correlated with amplitude and beak gape. The beak is opened quickly and to its widest aperture immediately prior to the onset of sound and at rapid transitions in sound, suggesting that beak movements may affect vibratory behavior of the labia.  相似文献   

6.
In zebra finches the gonadal steroid estradiol (E2) directs the sexual differentiation of neural regions controlling song and synergizes with androgens to stimulate song in adulthood. To identify regions where E2 may act to exert these effects, steroid autoradiographic techniques were used to assess cellular accumulation of 3[H]-E2 or its metabolites within various nuclei of the zebra finch brain. In Experiment 1 we examined brains from juvenile females, still within the critical period for E2's effect on sexual differentiation. In Experiment 2 the pattern and extent of labeling in adult male brains was determined following injection of 3[H]-E2, 3[H]-testosterone, or 3[H]-dihydrotestosterone. The results suggest that, both during development and in adulthood, most song-control nuclei contain few E2-accumulating cells. In contrast, many cells densely labeled by 3[H]-E2 or its metabolites are present in the hypothalamus and in close proximity to one song-control region, the hyperstriatum ventralis pars caudalis (HVc). The distribution of these latter cells overlaps with cells that project to another song-related nucleus, Area X. Thus, in Experiment 3 fluorescent retrograde tracing and steroid autoradiographic techniques were combined to determine if E2-accumulating cells project to Area X in adult males. Although a few retrogradely labeled cells were lightly labeled by 3[H]-E2 or its metabolites, for the most part these appear to be two distinct populations of cells. The sparse accumulation of E2 in the zebra finch song system contrasts with that described in other song birds and has important implications as to the mechanism of E2 action on the developing and mature song system.  相似文献   

7.
Most people have left‐hemisphere dominance for various aspects of language processing, but only roughly 1% of the adult population has atypically reversed, rightward hemispheric language dominance (RHLD). The genetic‐developmental program that underlies leftward language laterality is unknown, as are the causes of atypical variation. We performed an exploratory whole‐genome‐sequencing study, with the hypothesis that strongly penetrant, rare genetic mutations might sometimes be involved in RHLD. This was by analogy with situs inversus of the visceral organs (left‐right mirror reversal of the heart, lungs and so on), which is sometimes due to monogenic mutations. The genomes of 33 subjects with RHLD were sequenced and analyzed with reference to large population‐genetic data sets, as well as 34 subjects (14 left‐handed) with typical language laterality. The sample was powered to detect rare, highly penetrant, monogenic effects if they would be present in at least 10 of the 33 RHLD cases and no controls, but no individual genes had mutations in more than five RHLD cases while being un‐mutated in controls. A hypothesis derived from invertebrate mechanisms of left‐right axis formation led to the detection of an increased mutation load, in RHLD subjects, within genes involved with the actin cytoskeleton. The latter finding offers a first, tentative insight into molecular genetic influences on hemispheric language dominance.  相似文献   

8.
Mechanisms regulating sexual differentiation of the zebra finch song system are not well understood. The present study was designed to more fully characterize secretory carrier membrane protein 1 (SCAMP1), which was identified in a cDNA microarray screen as showing increased expression in the forebrains of developing male compared with female zebra finches. We completed the sequence of the open reading frame and used in situ hybridization to compare mRNA in song control regions of juvenile (25-day-old) individuals. Expression was significantly greater in the HVC (used as a proper name) and robust nucleus of the arcopallium (RA) in males than in females. Immunohistochemistry revealed that SCAMP1 protein is also expressed in these two brain regions, and qualitatively appears greater in males. Western analysis confirmed that the protein is increased in the telencephalon of males when compared with females at 25 days of age. These results are consistent with the idea that SCAMP1 is involved in masculinization of these brain areas, perhaps facilitating the survival of cells within them.  相似文献   

9.
Juvenile male zebra finches (Taeniopygia guttata) learn a stereotyped song by imitating sounds from adult male tutors. Their song is composed of a series of syllables, which are separated by silent periods. How acoustic units of song are translated into respiratory and syringeal motor gestures during the song learning process is not well understood. To learn about the respiratory contribution to the imitation process, we recorded air sac pressure in 38 male zebra finches and compared the acoustic structures and air sac pressure patterns of similar syllables qualitatively and quantitatively. Acoustic syllables correspond to expiratory pressure pulses and most often (74%) entire syllables are copied using similar air sac pressure patterns. Even notes placed within different syllables are generated with similar air sac pressure patterns when only segments of syllables are copied (9%). A few of the similar syllables (17%) are generated with a modified pressure pattern, typically involving addition or deletion of an inspiration. The high similarity of pressure patterns for like syllables indicates that generation of particular sounds is constrained to a narrow range of air sac pressure conditions. Following presentation of stroboscope flashes, song was typically interrupted at the end of an expiratory pressure pulse, confirming that expirations and, therefore, syllables are the smallest unit of motor production of song. Silent periods, which separate syllables acoustically, are generated by switching from expiration to inspiration. Switching between respiratory phases, therefore, appears to play a dominant role in organizing the stereotyped motor program for song production.  相似文献   

10.
The contribution of social factors to seasonal plasticity in singing behavior and forebrain nuclei controlling song, and their interplay with gonadal steroid hormones are still poorly understood. In many songbird species, testosterone (T) enhances singing behavior but elevated plasma T concentrations are not absolutely required for singing to occur. Singing is generally produced either to defend a territory or to attract a mate and it is therefore not surprising that singing rate can be influenced by the sex and behavior of the social partner. We investigated, based on two independent experiments, the effect of the presence of a male or female partner on the rate of song produced by male canaries. In the first experiment, song rate was measured in dyads composed of one male and one female (M‐F) or two males (M‐M). Birds were implanted with T‐filled Silastic capsules or with empty capsules as control. The number of complete song bouts produced by all males was recorded during 240 min on week 1, 2, 4, and 8 after implantation. On the day following each recording session, brains from approximately one‐fourth of the birds were collected and the volumes of the song control nuclei HVC and RA were measured. T increased the singing rate and volume of HVC and RA but these effects were affected by the social context. Singing rates were higher in the M‐M than in the M‐F dyads. Also, in the M‐M dyads a dominance‐subordination relationship soon became established and dominant males sang at higher rates than subordinates in T‐treated but not in control pairs. The differences in song production were not reflected in the size of the song control nuclei: HVC was larger in M‐F than in M‐M males and within the M‐M dyads, no difference in HVC or RA size could be detected between dominant and subordinate males. At the individual level, the song rate with was positively correlated with RA and to a lower degree HVC volume, but this relationship was observed only in M‐M dyads, specifically in dominant males. A second experiment, carried out with castrated males that were all treated with T and exposed either to another T‐treated castrate or to an estradiol‐implanted female, confirmed that song rate was higher in the M‐M than in the M‐F condition and that HVC volume was larger in heterosexual than in same‐sex dyads. The effects of T on singing rate and on the volume of the song control nuclei are thus modulated by the social environment, including the presence/absence of a potential mate and dominance status among males. 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

11.
Exogenous estrogens, when administered to hatchling female zebra finches, masculinize the morphology and function of their neural vocal control system. The first of two experiments evaluated whether tamoxifen citrate is an antiestrogen in zebra finches, and the second determined whether it would block the masculinization hypothesized to be caused in hatchling males by the males' endogenous estradiol. In the first experiment adult female zebra finches were ovariectomized and injected for 10 days with estradiol benzoate (EB), tamoxifen, EB and tamoxifen combined, or vehicle (control). The dependent variable was oviduct weight. The EB-stimulated growth of the oviduct was blocked by tamoxifen, which had no effects when administered alone. Thus, tamoxifen acts as an antiestrogen in the zebra finch oviduct. In Experiment 2, male and female zebra finches were treated with tamoxifen or vehicle for the first 20 days after hatching. The males were castrated at 20 days. At 60 days we compared the song control regions of experimental and control males and females. In both sexes tamoxifen increased the somatic areas of neurons in RA (robust nucleus of the archistriatum), HVc (caudal nucleus of the ventral hyperstriatum), and MAN (magnocellular nucleus of the anterior neostriatum). Tamoxifen also increased the volumes of HVc, RA, MAN, and Area X in males. Thus, tamoxifen failed to block masculinization of males, but masculinized females and hypermasculinized males. Tamoxifen's hypermasculinization of the male and masculinization of the female song system is paradoxical given that (1) estradiol does not have similar effects on the male song system, and (2) tamoxifen antagonizes the effects of EB in the oviduct.  相似文献   

12.
Male zebra finches normally crystallize song at approximately 90 days and do not show vocal plasticity as adults. However, changes to adult song do occur after unilateral tracheosyringeal (ts) nerve injury, which denervates one side of the vocal organ. We examined the effect of placing bilateral lesions in LMAN (a nucleus required for song development but not for song maintenance in adults) upon the song plasticity that is induced by ts nerve injury in adults. The songs of birds that received bilateral lesions within LMAN followed by right ts nerve injury silenced, on average, 0.25 syllables, and added 0.125 syllables (for an average turnover of 0.375 syllables), and changed neither the frequency with which individual syllables occurred within songs nor the motif types they used most often. In contrast, the songs of birds that received sham lesions followed by ts nerve injury lost, on average, 1.625 syllables, silenced 0.125 syllables, and added 0.75 syllables, turning over an average of 2.5 syllables. They also significantly changed both the frequency with which individual syllables were included in songs and the motif variants used. Thus, song plasticity induced in adult zebra finches with crystallized songs requires the presence of LMAN, a nucleus which had been thought to play a role in vocal production only during song learning. Although the changes to adult songs induced by nerve transection are more limited than those that arise during song development, the same circuitry appears to underlie both types of plasticity.  相似文献   

13.
Vitamin A, an essential nutrient, is required in its acidic form (retinoic acid) for normal embryogenesis and neuronal development, typically within well-defined concentration ranges. In zebra finches, a songbird species, localized retinoic acid synthesis in the brain is important for the development of song, a learned behavior sharing significant commonalities with speech acquisition in humans. We tested how dietary retinoic acid affects the development of song behavior and the brain's system for song control. Supplemental doses of retinoic acid given to juveniles during the critical period for song learning resulted in more variable or plastic-like songs when the birds reached adulthood, compared to the normal songs of vehicle-fed controls. We also observed that several genes (brinp1, nrgn, rxr-alpha, and sdr2/scdr9) had altered levels of expression in specific nuclei of the song system when comparing the experimental and control diet groups. Interestingly, we found significant correlations between gene expression levels in nuclei of the anterior forebrain pathway (lMAN and area X) and the degree of variability in the recorded songs. We observed, however, no major morphological effects such as changes in the volumes of song nuclei. Overall, our results lend further support to a fundamental role of retinoic acid in song maturation and point to possible molecular pathways associated with this action. The data also demonstrate that dietary content of Vitamin A can affect the maturation of a naturally learned complex behavior.  相似文献   

14.
Shea SD  Margoliash D 《Neuron》2003,40(6):1213-1226
The cholinergic basis of auditory "gating" in the sensorimotor nucleus HVc and its efferent target robustus archistriatalis (RA) was investigated in anesthetized zebra finches. Injections of cholinergic agonists carbachol or muscarine into HVc strongly affected discharge rates and diminished auditory responsiveness in both HVc and its target RA, changes toward an awake-like condition. HVc nicotine injections produced similar strong effects in HVc, but weaker and inconsistent effects in RA. Stimulation of basal forebrain (BF) produced an initial transient network shutdown followed by diminished auditory responsiveness in HVc and RA. All stimulation effects were blocked when preceded by HVc injections of nicotinic or muscarinic antagonists. Thus, BF cholinergic modulation of song system auditory activity acting via functionally distinct HVc circuits can contribute to auditory gating. We hypothesize that wakeful BF activity levels block sensory input to motor systems and adaptively change during behavior to allow sensorimotor feedback such as auditory feedback during singing.  相似文献   

15.

Background

Specialized neural pathways, the song system, are required for acquiring, producing, and perceiving learned avian vocalizations. Birds that do not learn to produce their vocalizations lack telencephalic song system components. It is not known whether the song system forebrain regions are exclusively evolved for song or whether they also process information not related to song that might reflect their ‘evolutionary history’.

Methodology/Principal Findings

To address this question we monitored the induction of two immediate-early genes (IEGs) c-Fos and ZENK in various regions of the song system in zebra finches (Taeniopygia guttata) in response to an aversive food learning paradigm; this involves the association of a food item with a noxious stimulus that affects the oropharyngeal-esophageal cavity and tongue, causing subsequent avoidance of that food item. The motor response results in beak and head movements but not vocalizations. IEGs have been extensively used to map neuro-molecular correlates of song motor production and auditory processing. As previously reported, neurons in two pallial vocal motor regions, HVC and RA, expressed IEGs after singing. Surprisingly, c-Fos was induced equivalently also after food aversion learning in the absence of singing. The density of c-Fos positive neurons was significantly higher than that of birds in control conditions. This was not the case in two other pallial song nuclei important for vocal plasticity, LMAN and Area X, although singing did induce IEGs in these structures, as reported previously.

Conclusions/Significance

Our results are consistent with the possibility that some of the song nuclei may participate in non-vocal learning and the populations of neurons involved in the two tasks show partial overlap. These findings underscore the previously advanced notion that the specialized forebrain pre-motor nuclei controlling song evolved from circuits involved in behaviors related to feeding.  相似文献   

16.
Song in oscine birds is a culturally inherited mating signal and sexually dimorphic. From differences in song production learning, sex differences in song recognition learning have been inferred but rarely put to a stringent test. In zebra finches, Taeniopygia guttata, females never sing and the species has one of the greatest neuroanatomical differences in song-related brain nuclei reported for songbirds. Preference tests with sibling groups for which exposure to song had been identical during the sensitive phase for song learning in males, revealed equally strong influence of the tutor's song (here the father) on males' and females' adult song preferences. Both sexes significantly preferred the father's over unfamiliar song when having free control over exposure to playbacks via an operant task. The sibling comparisons suggest that this preference developed independently of the song's absolute quality: variation between siblings was as great as between nests. The results show that early exposure has an equally strong influence on males' and females' song preferences despite the sexual asymmetry in song production learning. This suggests that the trajectory for song recognition learning is independent of the one for song production learning.  相似文献   

17.
As is the case for human speech, birdsong is transmitted across generations by imitative learning. Although transfer of song patterns from adults to juveniles typically occurs via vertical or oblique transmission, there is also evidence of horizontal transmission between juveniles of the same generation. Here, we show that a young male zebra finch (Taeniopygia guttata) that has been exposed to its father during the sensitive period for song learning can lead a brother, that has never heard the paternal song, to imitate some sounds of the father. Moreover, song similarity between the two brothers was higher than the similarity measured between the paternal song and the song of the brother that had a week-long exposure to the father. We speculate that the phenomenon of within-generation song learning among juveniles may be more widespread than previously thought and that when a juvenile evaluates potential models for imitative learning, a sibling may be as salient as an adult.  相似文献   

18.
In many songbird species, females prefer males that sing a larger repertoire of syllables. Males with more elaborate songs have a larger high vocal centre (HVC) nucleus, the highest structure in the song production pathway. HVC size is thus a potential target of sexual selection. Here we provide evidence that the size of the HVC and other song production nuclei are heritable across individual males within a species. In contrast, we find that heritabilities of other nuclei in a song-learning pathway are lower, suggesting that variation in the sizes of these structures is more closely tied to developmental and environmental differences between individuals. We find that evolvability, a statistical measure that predicts response to selection, is higher for the HVC and its target for song production, the robustus archistriatalis (RA), than for all other brain volumes measured. This suggests that selection based on the functions of these two structures would result in rapid major shifts in their anatomy. We also show that the size of each song control nucleus is significantly correlated with the song related nuclei to which it is monosynaptically connected. Finally, we find that the volume of the telencephalon is larger in males than in females. These findings begin to join theoretical analyses of the role of female choice in the evolution of bird song to neurobiological mechanisms by which the evolutionary changes in behaviour are expressed.  相似文献   

19.
20.
Antiestrogens fail to block the masculine ontogeny of the zebra finch song system that is hypothesized to occur as a result of early estrogen action. Moreover, they hypermasculinize the male, and masculinize the female song systems. In experiment 1, we assessed whether these antiestrogenic effects might mimic estrogenic actions. Zebra finch chicks received one of two treatments. They were given estradiol benzoate (EB) or vehicle daily for the first 20 days after hatching and sacrificed at 60 days of age, or they received EB or vehicle for the first 25 days after hatching, at which time they were sacrificed. In the day 60 group, certain attributes of the song system were hypermasculinized in males and masculinized in females by EB, when compared with controls. In the day 25 group, males treated with EB were partially demasculinized, while the females were partially masculinized. In experiment 2, we assessed whether simultaneous treatment with tamoxifen was capable of antagonizing the effects of EB obtained in experiment 1 (day 60 group). Sixty-day-old females, previously treated with both EB and tamoxifen for the first 20 days after hatching, had more masculine song regions than females treated with either EB alone or tamoxifen alone. In males, the effects of the combined treatment of EB and tamoxifen over those produced by tamoxifen alone were not as dramatic as in the female. These results are similar to those obtained in systems where tamoxifen is purely estrogenic and suggest that in the song system, tamoxifen acts as an estrogen, not an antiestrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号