首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eichhornia paniculata is a tristylous, self-compatible, emergent aquatic. A given plant produces flowers with either long, mid or short styles and two levels of stamens equal in length to the styles not found in that flower. Flowers of each morph have two whorls of three tepals, six stamens and three fused carpels. The six stamens differentiate into two sets of three stamens each. A relatively short set, having either short- or mid-level stamens, occurs on the upper side of the flower, while a relatively long set, having either mid- or long-level stamens, occurs on the lower side. Stamen level depends on differences among stamens in filament length and position of insertion on the floral tube. Floral parts arise in whorls of three, but the two stamen whorls do not form the two sets of stamens found in each mature flower. Instead, stamens from both whorls make up a given set. Floral differences among morphs are not present at flower origin or floral organ initiation. Morphological differences arise first among stamen sets. The two sets within a flower differ prior to meiosis in the size, number, and timing of comparable developmental events in the sporogenous cells. After these initial differences arise, anther size diverges. In later developmental stages differences in filament and floral tube length, cell size, and cell number, as well as differences in the length, cell size, and cell number of styles, develop among morphs. This sequence of developmental events suggests that the genes controlling development in different morphs do not control flower and floral organ initiation but are first morphologically visible in sporogenous cell differentiation.  相似文献   

2.

Background and Aims

The evolution of selfing from outcrossing is characterized by a series of morphological changes to flowers culminating in the selfing syndrome. However, which morphological traits initiate increased self-pollination and which are accumulated after self-fertilization establishes is poorly understood. Because the expression of floral traits may depend on the conditions experienced by an individual during flower development, investigation of changes in mating system should also account for environmental and developmental factors. Here, early stages in the evolution of self-pollination are investigated by comparing floral traits among Brazilian populations of Eichhornia paniculata (Pontederiaceae), an annual aquatic that displays variation in selfing rates associated with the breakdown of tristyly to semi-homostyly.

Methods

Thirty-one Brazilian populations under uniform glasshouse conditions were compared to investigate genetic and environmental influences on flower size and stigma–anther separation (herkogamy), two traits that commonly vary in association with transitions to selfing. Within-plant variation in herkogamy was also examined and plants grown under contrasting environmental conditions were compared to examine to what extent this trait exhibits phenotypic plasticity.

Key Results

In E. paniculata a reduction in herkogamy is the principal modification initiating the evolution of selfing. Significantly, reduced herkogamy was restricted to the mid-styled morph and occurred independently of flower size. Significant genetic variation for herkogamy was detected among populations and families, including genotypes exhibiting developmental instability of stamen position with bimodal distributions of herkogamy values. Cloned genets exposed to contrasting growth conditions demonstrated environmental control of herkogamy and genotypic differences in plasticity of this trait.

Conclusions

The ability to modify herkogamy independently of other floral traits, genetic variation in the environmental sensitivity of herkogamy, and the production of modified and unmodified flowers within some individuals, reveal the potential for dynamic control of the mating system in a species that commonly confronts heterogeneous aquatic environments.Key words: Eichhornia paniculata, expressivity, flower morphology, herkogamy, phenotypic plasticity, pleiotropy, population variation, self-fertilization, stigma–anther separation, outcrossing, tristyly  相似文献   

3.
In this paper we study merosity in the genus Urospatha within the framework of a resolved phylogeny of the Araceae. We analyse how a transition from dimerous or tetramerous merosity to pentamerous or hexamerous merosity can occur developmentally in the Lasioideae. In Urospatha, initiation of floral primordia along the inflorescence is acropetal, while development of flowers is basipetal. This indicates the presence of two distinct phases in the development of the Urospatha inflorescence. The first phase corresponds to initiation of flowers and establishment of the phyllotactic pattern, and the second phase to differentiation of floral organs. Urospatha is characterized by the presence of trimerous, tetramerous, pentamerous and rarely hexamerous flowers. In all types of flowers, the stamens are closely associated and opposite to the tepals. Pentamerous flowers are formed by addition of a sector comprising a stamen and tepal. Likewise, in the case of hexamerous flowers, two sectors are added. In the Lasioideae, the increase in the number of tepals and stamens is linked with two developmental processes that have appeared independently in the subfamily: (1) addition of one or two stamen?Cpetal sectors (Anaphyllopsis and Urospatha), and (2) independent increase in the number of tepals and stamens on whorls, more or less organized and inserted in alternate position (Dracontium). Tetramerous whorls as they occur in basal Lasioideae would be homologous to two dimerous whorls from an evolutionary point of view.  相似文献   

4.
The inflorescence of Houttuynia cordata produces 45–70 sessile bracteate flowers in acropetal succession. The inflorescence apical meristem has a mantle-core configuration and produces “common” or uncommitted primordia, each of which bifurcates to form a floral apex above, a bract primordium below. This pattern of organogenesis is similar to that in another saururaceous plant, Saururus cernuus. Exceptions to this unusual development, however, occur in H. cordata at the beginning of inflorescence activity when four to eight petaloid bract primordia are initiated before the initiation of floral apices in their axils. “Common” primordia also are lacking toward the cessation of inflorescence apical activity in H. cordata when primordia become bracts which may precede the initiation of an axillary floral apex. Many of these last-formed bracts are sterile. The inflorescence terminates with maturation of the meristem as an apical residuum. No terminal flowers or terminal gynoecia were found, although subterminal gynoecia or flowers in subterminal position may overtop the actual apex and obscure it. Individual flowers have a tricarpellate syncarpous gynoecium and three stamens adnate to the carpels; petals and sepals are lacking. The order of succession of organs is: two lateral stamens, median stamen, two lateral carpels, median carpel. The three carpel primordia almost immediately are elevated as part of a gynoecial ring by zonal growth of the receptacle below the attachment of the carpels. The same growth elevates the stamen bases so that they appear adnate to the carpels. The trimerous condition in Houttuynia is the result of paired or solitary initiations rather than trimerous whorls. Symmetry is bilateral and zygomorphic rather than radial. No evidence of spiral arrangement in the flower was found.  相似文献   

5.
Inflorescence and floral ontogeny are described in the mimosoid Acacia baileyana F. Muell., using scanning electron microscopy and light microscopy. The panicle includes first-order and second-order inflorescences. The first-order inflorescence meristem produces first-order bracts in acropetal order; these bracts each subtend a second-order inflorescence meristem, commonly called a head. Each second-order inflorescence meristem initiates an acropetally sequential series of second-order bracts. After all bracts are formed, their subtended floral meristems are initiated synchronously. The sepals and petals of the radially symmetrical flowers are arranged in alternating pentamerous whorls. There are 30–40 stamens and a unicarpellate gynoecium. In most flowers, the sepals are initiated helically, with the first-formed sepal varying in position. Petal primordia are initiated simultaneously, alternate to the sepals. Three to five individual stamen primordia are initiated in each of five altemipetalous sectorial clusters. Additional stamen primordia are initiated between adjacent clusters, followed by other stamens initiated basipetally as well as centripetally. The apical configuration shifts from a tunica-corpus cellular arrangement before organogenesis to a mantle-core arrangement at sepal initiation. All floral organs are initiated by periclinal divisions of the subsurface mantle cells. The receptacle expands radially by numerous anticlinal divisions in the mantle at the summit, concurrently with proliferation of stamen primordia. The carpel primordium develops in terminal position by conversion of the floral apex.  相似文献   

6.
Distinctions in floral ontogeny among three segregate genera (Cassia sensu stricto, Chamaecrista, and Senna) of Cassia L. support their separation. In all species studied, the order of floral organ initiation is: sepals, petals, antesepalous stamens plus carpel, and lastly antepetalous stamens. Sepal initiation is helical in all three genera, which however differ in whether the first sepal is initiated in median abaxial position (Senna), or abaxial and off-median (Cassia javanica), a rare character state among legumes. Order of petal initiation varies: helical in Senna vs. unidirectional in Cassia and Chamaecrista. Both stamen whorls are uniformly unidirectional. Intergeneric ontogenetic differences occur in phyllotaxy, inflorescence architecture, bracteole formation, overlap of initiation among organ whorls (calyx/corolla in Cassia; two stamen whorls in Chamaecrista), eccentric initiation on one side of a flower, anther attachment, anther pore structure, and precocious carpel initiation in Senna. The asymmetric corolla and androecium in Chamaecrista arise by precocious organ initiation on one side (left or right). The poricidal anther character can result from differing developmental pathways: lateral slits vs. sealing of lateral sutures; clasping hairs vs. sutural ridges; terminal pores (one or two) vs. none; and clamp layer formation internally that prevents lateral dehiscence. Genera differ in corolla aestivation patterns and in stigma type. Convergence is shown among the three genera, based on intergeneric dissimilarities in early floral ontogeny (floral position in the inflorescence, bracteole presence, position of the first sepal initiated, order of petal initiation, asymmetric initiation, overlap between whorls, anther morphology, and time of carpel initiation) resulting in similarities at anthesis (showy, mostly yellow salverform flowers, heteromorphic stamens, poricidal anther dehiscence, bee pollination, and chambered stigma).  相似文献   

7.
All flowers of Anemopsis californica, the most specialized taxon of the family Saururaceae, are initiated as individual primordia subtended by previously initiated bracts, in contrast to the common-primordium initiation of all flowers of Saururus cernuus and of most flowers of Houttuynia cordata. Floral symmetry is bilateral and zygomorphic, and the sequence of initiation among floral parts is paired or whorled. In A. californica, the six stamens arise as three common primordia, each of which later bifurcates to form a pair. The three common primordia occupy sites corresponding to the positions of the three stamens in H. cordata flowers. In Anemopsis, the filaments of each pair are connate. Each stamen pair is vascularized by a single bifurcating vascular bundle. The three carpels per flower are usually initiated simultaneously although there may be some variation. Adnation between stamens and carpels results from zonal growth. Downward extension of the locule, and proliferation and expansion of receptacular tissue and inflorescence cortical tissue around the locule below the bases of the carpels produce the inferior ovary. The inflorescence terminates its activity as a flattened apical residuum, surrounded by bracts subtending reduced flowers most of which have stamens only.  相似文献   

8.
Trillium apetalon Makino is unique amongTrillium in having apetalous flowers. Using scanning electron microscope, the early floral development was observed in comparison with that ofT. kamtschaticum Pallas ex Pursh having petalous flowers. Morphologically petal primordia closely resemble stamen primordia in their more or less narrow and radially symmetric shape and are clearly distinct from sepal primordia with broad bases. Early in floral development sepal primordia are first initiated and subsequently two whorls of three primordia each are formed in rapid sequence, the first three at the corners and the second three at the sides of the triangular floral apex. Based on comparison in position and early developmental processes of their primordia, petals and outer stamens ofTrillium kamtschaticum are equivalent to outer stamens and inner stamens ofT. apetalon. The replacement of petals by outer stamens apparently leads to the loss of petals inTrillium apetalon flowers. Such a replacement can be interpreted in terms of homeosis. The replacement of the petal whorl leads to the serial replacement of the subsequent whorls: outer stamens by inner stamens, and inner stamens by gynoecium inTrillium apetalon. The term ‘serial homeosis’ is introduced for this serial replacement.  相似文献   

9.
The characteristic of heteromorphic inflorescences in some mimosoid legumes such as Neptunia is a puzzling one which can be approached developmentally. Each spicate inflorescence of Neptunia pubescens includes three types of flowers: perfect in the upper half, functionally male just below the middle, and sterile or neuter at the base. Developmental studies of the inflorescence show that order of initiation of bracts on the inflorescence is acropetal, but that order of subsequent development of flowers is both acropetal and basipetal on the axis. Bract growth and initiation of the axillary floral apices at the base are inhibited or retarded, while those in the middle and upper levels continue development without interruption. The three types of floral primordia are similar during initiatory stages of organ formation and through early development. At mid-development, differences arise in floral symmetry, petal form, stamen form, and size and shape of the carpel. The functionally male flowers become strongly dorsiventral and zygomorphic while the other two morphs remain actinomorphic or nearly so. Heteromorphy arises from a combination of early suppression of organogeny plus mid-stage innovations of zygomorphy and lateral expansion of stamen primordia. These divergent developmental pathways in one inflorescence can be interpreted in part using Gould's concept of heterochrony: changes in timing of developmental events to produce different structures. Other changes in Neptunia cannot be explained by this concept, however; such changes as omission of processes (i.e., meiosis) in some organs, or addition of processes not normally present (i.e., blade formation in stamen primordia which become staminodia). It is becoming evident from work on this and other legume flowers that actual loss of organs is rare, compared to initiation followed by suppression or modification.  相似文献   

10.
Monocots are remarkably homogeneous in sharing a common trimerous pentacyclic floral Bauplan. A major factor affecting monocot evolution is the unique origin of the clade from basal angiosperms. The origin of the floral Bauplan of monocots remains controversial, as no immediate sister groups with similar structure can be identified among basal angiosperms, and there are several possibilities for an ancestral floral structure, including more complex flowers with higher stamen and carpel numbers, or strongly reduced flowers. Additionally, a stable Bauplan is only established beyond the divergence of Alismatales. Here, we observed the floral development of five members of the three ‘petaloid’ Alismatales families Butomaceae, Hydrocharitaceae, and Alismataceae. Outer stamen pairs can be recognized in mature flowers of Alismataceae and Butomaceae. Paired stamens always arise independently, and are either shifted opposite the sepals or close to the petals. The position of stamen pairs is related to the early development of the petals. In Butomaceae, the perianth is not differentiated and the development of the inner tepals is not delayed; the larger inner tepals (petals) only permit the initiation of stamens in antesepalous pairs. Alismataceae has delayed petals and the stamens are shifted close to the petals, leading to an association of stamen pairs with petals in so-called stamen–petal complexes. In the studied Hydrocharitaceae species, which have the monocot floral Bauplan, paired stamens are replaced by larger single stamens and the petals are not delayed. These results indicate that the origin of the floral Bauplan, at least in petaloid Alismatales, is closely linked to the position of stamen pairs and the rate of petal development. Although the petaloid Alismatales are not immediately at the base of monocot divergence, the floral evolution inferred from the results should be a key to elucidate the origin of the floral Bauplan of monocots.  相似文献   

11.
Floral onset in soybean (Glycine max cv. Ransom) is characterized by precocious initiation of axillary meristems in the axils of the most recently initiated leaf primordium. During floral transition, leaf morphology changes from trifoliolate leaf with stipules, to a three-lobed bract, to an unlobed bract. Soybean flowers initiated at 26/22 C day/night temperatures are normal, papilionaceous, and pentamerous. Sepal, petal, and stamen whorls are initiated unidirectionally from the abaxial to adaxial side of the floral apex. The median sepal is located abaxially and the median petal adaxially on the meristem. The organogeny of ‘Ransom’ flowers was found to be: sepals, petals, outer stamens plus carpel, inner stamens; or, sepals, petals, carpel, outer stamens, inner stamens. The outer stamen whorl and the carpel show possible overlap in time of initiation. Equalization of organ size occurs only within the stamen whorls. The sepals retain distinction in size, and the petals exhibit an inverse size to age relationship. The keel petals postgenitally fuse along part of their abaxial margins; their bases, however, remain free. Soybean flowers initiated at cool day/night temperatures of 18/14 C exhibited abnormalities and intermediate organs in all whorls. The gynoecium consisted of one to ten carpels (usually three or four), and carpel connation varied. Fusion of keel petals was often lacking, and stamen filaments fused erratically. Multiple carpellate flowers developed into multiple pods that were separate or variously connate. Intermediate type organs had characteristics only of organs in adjacent whorls. These aberrant flowers demonstrate that the floral meristem of soybean is not fixed or limited in its developmental capabilities and that it has the potential to produce alternate morphological patterns.  相似文献   

12.
Plantago lanceolata produces small actinomorphic (radially symmetric), wind-pollinated flowers that have evolved from a zygomorphic, biotically pollinated ancestral state. To understand the developmental mechanisms that might underlie this change in flower shape, and associated change in pollination syndrome, we analyzed the role of CYC-like genes in P. lanceolata. Related zygomorphic species have two CYC-like genes that are expressed asymmetrically in the dorsal region of young floral meristems and in developing flowers, where they affect the rate of development of dorsal petals and stamens. Plantago has a single CYC-like gene (PlCYC) that is not expressed in early floral meristems and there is no apparent asymmetry in the pattern of PlCYC expression during later flower development. Thus, the evolution of actinomorphy in Plantago correlates with loss of dorsal-specific CYC-like gene function. PlCYC is expressed in the inflorescence stem, in pedicels, and relatively late in stamen development, suggesting a novel role for PlCYC in compacting the inflorescence and retarding stamen elongation in this wind pollinated species.  相似文献   

13.
The development of the inflorescence and flowers are described for Gymnotheca chinensis Decaisne (Saururaceae), which is native only to southeast China. The inflorescence is a short terminal spike of about 50–70 flowers, each subtended by a small bract. There are no showy involucral bracts. The bracts are initiated before the flowers, in acropetal order. Flowers tend to be initiated in whorls of three which alternate with the previous whorl members. No perianth is present. The flower contains six stamens, and four carpels fused in an inferior ovary containing 40–60 ovules on four parietal placentae. Floral symmetry is dorsiventral from inception and throughout organ initiation. Floral organs are initiated in the following order: 1) median adaxial stamen, 2) a pair of lateral common primordia which bifurcate radially to produce two stamen primordia each, 3) median abaxial stamen, 4) a pair of lateral carpel primordia, 5) median adaxial carpel, 6) median abaxial carpel. This order of initiation differs from that of any other Saururaceae previously investigated. The inferior ovary results from intercalary growth below the level of stamen attachment; the style elongates by intercalary growth, and the four stigmas remain free. The floral structure of Gymnotheca is relatively advanced compared to Saururus, but its assemblage of specializations differs from that of either Anemopsis or Houttuynia, the other derived genera in the Saururaceae.  相似文献   

14.
Kocyan A 《Annals of botany》2007,100(2):241-248
BACKGROUND AND AIMS: Individual flowers of the monocot Curculigo racemosa (Hypoxidaceae, Asparagales) are regularly polyandrous. To evaluate the significance of this almost unique character among Asparagales for flower evolution of asparagoid monocots, flowers of C. racemosa were studied comparatively. METHODS: Anthetic flowers as well as early floral developmental stages were studied by light and scanning electron microscopy. KEY RESULTS: Despite the polyandry, floral development is similar to that of other Asparagales with a developmental gradient from adaxial to abaxial. Stamens initiate simultaneously and the diameter of staminal primordia is about half of that in species with six anthers. The number of stamens is not fixed (12-26) and varies within the same inflorescence. Surprisingly, the gynoecium can be four- or six-locular, besides the normal trimerous state. CONCLUSIONS: The discovery of a polyandrous Curculigo reveals plasticity of stamen number at the base of Asparagales. Orchidaceae - sister to all other Asparagales - has a reduced stamen number (three, two or one), whereas in Hypoxidaceae - part of the next diverging clade - either the normal monocot stamen number (six), polyandry (this study) or the loss of three anthers (Pauridia) occurs. However, at present it is impossible to decide whether the flexibility in stamen number is autapomorphic for each group or whether it is a synapomorphy. The small size of stamen primordia of Curculigo is conspicuous. It allows more space for additional androecial primordia. Stamens are initiated as independent organs, and filaments are not in bundles, hence C. racemosa is not secondarily polyandrous as may be the case in the distantly related Gethyllis of asparagoid Amaryllidaceae. The increase in carpel number is a rare phenomenon in angiosperms. A possible explanation for the polyandry of C. racemosa is that it is a natural SUPERMAN-deficient mutant, which shows an increase of stamens, or ULTRAPETALA or CARPEL FACTORY mutants, which are polyandrous and changed in carpel number.  相似文献   

15.
A multilocus procedure was used to estimate outcrossing rates from allozyme data in nine populations of Eichhornia paniculata from NE Brazil and Jamaica. The populations were chosen to represent stages in a proposed model of the evolutionary breakdown of tristyly to semi-homostyly; they differed in morph structure (trimorphic, dimorphic, or monomorphic) and floral traits likely to influence the mating system. The interpopulation range in outcrossing rate, t, was 0.96–0.29. Two additional populations from Jamaica, composed exclusively of self-pollinating, semi-homostylous, mid-styled plants, were invariant at 21 isozyme loci, precluding estimates of outcrossing frequency. Trimorphic populations from Brazil had uniformly high outcrossing rates of 0.96–0.88. Values for the floral morphs within populations were not significantly different. A controlled pollination experiment, comparing the competitive ability of self and cross pollen using the Got-3 marker locus, provided evidence that the maintenance of high outcrossing rates in trimorphic populations results from the prepotency of cross pollen and/or the selective abortion of selfed zygotes. Morph-dependent variation in t was detected within a dimorphic population with the L morph outcrossing with a frequency of 0.76 in comparison with 0.36 in the M morph. The difference in the mating system of floral morphs results from modifications in position of short-level stamens in flowers of the M morph resulting in automatic self-pollination. The occurrence of E. paniculata populations composed exclusively of self-pollinating, mid-styled variants is thought to be associated with the spread of genes modifying stamen position. The high level of self-fertilization demonstrated in the M morph would allow automatic selection of these genes, augmented by fertility assurance in the absence of specialized pollinators.  相似文献   

16.
The inflorescence of Dracontium polyphyllum consists of 150 – 300 flowers arranged in recognisable spirals. The flower has 5 – 6 (90% of observed specimens), or 7 broad tepals enclosing 9 – 12 stamens (occasionally 7) inserted in two whorls. The gynoecium is trilocular (90% of observed specimens) or tetralocular. The tetralocular gynoecia are found at random among the trilocular gynoecia. Each locule encloses an ovule inserted in an axile position, in the median portion of the ovary. Each carpel has its own stylar canal. However, in the upper portion of the style, there is only one common stylar canal. Floral organs are initiated in an acropetal direction in the following sequence: tepals, stamens, and carpels. During later stages of development, the tepals progressively cover the other floral organs. The first floral primordia are initiated on the upper portion of the inflorescence. During early stages of development, the floral primordia have a circular shape. The tepals are initiated nearly simultaneously. During later stages of development, the first whorl of stamens develops in alternation with the tepals and is followed by a second whorl of stamens. The trilocular or tetralocular nature of the ovary is clearly visible during early stages of development of the gynoecium. Recent molecular studies show that Anaphyllopsis A. Hay and Dracontium L. are closely related. However, although pentamerous flowers have been observed in Anaphyllopsis, the developmental morphology of the flower of Dracontium is different from that of Anaphyllopsis.  相似文献   

17.
The phytelephantoid group, considered very highly specialized among the 15 major groups of palms, includes only three dioecious genera which are distinguished by multipartite flowers. Staminate flowers of these genera have from 120 to over 900 stamens, the largest number known in palms. Developmental material shows centrifugal inception of stamens in Palandra and Phytelephas, and the course of the trunk bundles indicates centrifugal initiation of stamens in Ammandra. Stamens of all three genera are supplied by large trunk bundles that develop acropetally following the different centrifugal expansion of the floral apex in each genus. Branches of the trunk bundles form later to supply stamen primordia as they develop. Polyandric androecia occur in ten of the major groups of palms. Other multistaminate genera show expansion and change in shape of the floral apex before stamen initiation. Centrifugal development appears to represent a different method of expansion of the floral apex to accommodate increase in stamen number in this group. Centrifugal inception of stamens in monocotyledons has previously been established only for two genera of Butomaceae.  相似文献   

18.
大戟科麻疯树属三种植物花器官发生   总被引:1,自引:0,他引:1  
利用扫描电子显微镜观察了大戟科Euphorbiaceae麻疯树属Jatropha麻疯树J. curcas L.、佛肚树J. podagrica Hook.和棉叶麻疯树J. gossypifolia L.花器官发生。结果表明: 麻疯树、佛肚树和棉叶麻疯树花萼原基均为2/5型螺旋发生。在同一个种不同的花蕾中, 花萼的发生有两种顺序: 逆时针方向和顺时针方向。远轴面非正中位的1枚先发生。5枚花瓣原基几乎同时发生。雄花中雄蕊两轮, 外轮对瓣, 内轮对萼。研究的3种麻疯树属植物雄蕊发生方式有两种类型: 麻疯树亚属麻疯树的5枚外轮雄蕊先同时发生, 5枚内轮雄蕊后同时发生, 佛肚树亚属佛肚树和棉叶麻疯树雄蕊8-9枚, 排成两轮, 内外轮雄蕊同时发生。雌花的3枚心皮原基为同时发生。麻疯树属单性花, 雌花的子房膨大而雄蕊退化, 雄花的雄蕊正常发育, 子房缺失。根据雄蕊发生方式, 支持将麻疯树属分为麻疯树亚属subgen. Jatropha和佛肚树亚属subgen. Curcas。  相似文献   

19.
The floral development of staminate and pistillate flowers of Ceratophyllum demersum was observed, with particular focus on the phyllotactic variation in staminate flowers, using scanning electronic microscopy (SEM). We discerned patterns of development of some important new morphological features, e.g., the difference and discontinuity between the organ initiation in stamens and that in bracts (or tepals) and the initial presence of a mucilaginous appendage on each pistil. Female flowers are considered to be very specialized through reduction. In male flowers stamen initiation changes between early and late floral development. The four or five stamens in the outermost whorl initiate first on the abaxial and lateral sides of the floral apex and only later on the adaxial side (unidirectional). Later the inner stamens initiate spirally, and this is the main pattern in the stamen initiation. Members of each whorl differ among themselves in time of initiation and in ultimate size. The phyllotactic variation in staminate flowers of Ceratophyllum, suggested by previous studies, is derived from the variation in stamen number and the difference of stamen initiation between the early and later stages. The development in Ceratophyllum has some similarities to those of ANITA plants except for Nymphaeales.  相似文献   

20.
Inflorescence and floral organogenesis and development of the bushy perennial legume Astragalus lagopoides of the section Hymenostegis were studied by means of epi-illumination light microscopy. Based on our observations, the primordia of lanceolate racemose inflorescences are born in the axils of leaves. Each inflorescence apex initiates acropetally bracts and floral apices for some time and then eventually ceases meristematic activity and forms an oblong-shaped terminal structure. The formation of such atypical terminal protrusion on the inflorescence meristem is judged to be a diagnostic feature for well-organized cessation of meristem morphogenesis. Pentamerous perfect flowers of the plant show strong zygomorphy and marked overlap in time of initiation among different organ primordia. Unexpectedly, sepal initiation is bidirectional starting from the lateral sides of the floral apex. Other significant developmental feature includes the existence of two types of common primordia, which are formed successively. From the primary common primordia there are produced antesepalous stamens and secondary common primordia. In comparison, the five secondary common primordia subdivide into a petal and an antepetalous stamen primordia. Initiation of two different types of common primordia is possibly the result of rising overlap in time of initiation of organs and demonstrates an advanced developmental style in the genus Astragalus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号