首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduced Protein Kinase C Activity in Ischemic Spinal Cord   总被引:5,自引:4,他引:1  
Protein phosphorylation was evaluated in a rabbit spinal cord ischemia model under conditions where cyclic AMP-dependent protein kinase (PK-A) and calcium/phospholipid-dependent protein kinase (PK-C) were activated. One hour of ischemia did not affect PK-A activity significantly; however, PK-C activity was reduced by more than 60%. In vitro phosphorylation of endogenous proteins by endogenous PK-C revealed that eight particulate and five cytosolic proteins showed stimulated phosphorylation by PK-C activators in control tissue, although this stimulation was virtually absent in ischemic samples. When control and ischemic particulate fractions were combined, the endogenous protein phosphorylation pattern under PK-C-activating conditions was similar to the ischemic sample, which suggests that inhibitory molecules may be present in the ischemic particulate fraction. In vitro phosphorylation of endogenous proteins under PK-A-activating conditions in ischemic tissue was similar to that in control tissue. The results suggest that the PK-C phosphorylation system is selectively impaired in ischemic spinal cord. In addition to reduced PK-C-dependent phosphorylation, an Mr 64,000 protein was phosphorylated in ischemic cytosolic samples, but not in control samples. The phosphorylation of the Mr 64,000 protein was neither PK-C-dependent nor PK-A-dependent. These altered phosphorylation reactions may play critical roles in neuronal death during the course of ischemia.  相似文献   

2.
In vitro effects of sodium orthovanadate on protein kinase C induced phosphorylation of rat liver cytosolic and particulate proteins were examined. Vanadate enhanced the phosphorylation of six liver cytosolic proteins (Mr 170K, 150K, 80K, 34K, 25K and 19K daltons), the probable substrates for protein kinase C. There was a 2.5-fold increase in total endogenous protein phosphorylation at 2.0 mM concentration which was abolished in the presence of protein kinase C inhibitors such as 1-(5-isoquinolinyl-sulfonyl-2-methylpiperazine (H-7), N-[2-(methylamine)-ethyl]-5-isoquinolinesulfonamide (H-8) and polymyxin B. Metavanadate showed a similar stimulatory effect whereas vanadyl sulfate was inhibitory. These differential effects of vanadium salts were also observed with the particulate fraction. The results suggest that some of the effects of vanadate could be mediated through protein kinase C-induced phosphorylation of endogenous proteins.  相似文献   

3.
Previous studies in this laboratory have shown that benzo(a)pyrene (BaP) modulates protein kinase C (PKC)-mediated phosphorylation of aortic smooth muscle cell (SMC) proteins. This observation is consistent with the ability of other aromatic hydrocarbons (AHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), to modulate kinase activities in cells of hepatic, testicular, and thymic origin. Because all these chemicals share the ability to bind the aryl hydrocarbon receptor (AhR), the present studies were conducted to determine if changes in PKC activity by AHs conform with established structure-activity relationships. Experiments were conducted to examine the effects of TCDD, 2,3,7,8-tetrachlorodibenzofuran (TCDF), and 2,8-dichlorodibenzodioxin (DCDD) on the phosphorylation of exogenous histone type-III under basal and PKC-activating conditions. These congeners exhibit both high (TCDD and TCDF) and low (DCDD) AhR agonist activities. Measurements of kinase activity were conducted in the cytosolic and particulate fractions of growth-arrested (i.e., serum-deprived) cultured rat aortic SMCs incubated with 10 nM TCDD, TCDF, and DCDD for 0.5, 12, or 24 hours. No changes in basal kinase activity were induced by these chemicals at any of the times tested. Significant decreases in cytosolic and particulate PKC activity relative to controls were observed upon exposure of SMCs for 0.5 hours to 10 nM TCDD, TCDF, and DCDD. In contrast, SMCs exposed to TCDD and TCDF for 12 hours exhibited a significant increase in PKC activity in both cytosolic and particulate fractions. The PKC activity in cells exposed to DCDD for 12 hours was not altered. Prolonged exposure of SMCs to 10 nM TCDD, TCDF, and DCDD for 24 hours decreased PKC activity in the cytosolic fraction, while only TCDD and TCDF decreased particulate PKC activity. These data show that PKC activity is modulated differentially as a function of time in SMCs exposed to TCDD and related compounds. Collectively, the patterns of histone phosphorylation induced by these chemicals in rat aortic SMCs suggest that modulation of C-kinase activity involves both receptor-independent and receptor-related events.  相似文献   

4.
Membrane proteins of Mr 240,000, 130,000, and 85,000 (GS-proteins) were rapidly and selectively phosphorylated in particulate fractions of rabbit aortic smooth muscle in the presence of [Mg-32P]ATP and low concentrations of cGMP (Ka = 0.01 microM) or cAMP (Ka = 0.2 microM). The effects of both cyclic nucleotides in this preparation were mediated entirely by an endogenous, membrane-bound form of cGMP-dependent protein kinase (G-kinase). The GS-proteins were also phosphorylated by the soluble form of G-kinase purified from bovine lung; this effect was most evident following removal of endogenous G-kinase from the membranes using Na2CO3 and high salt washes. The membrane-bound and cytosolic forms of G-kinase phosphorylated the Mr 130,000 GS-protein with the same specificity as determined by two-dimensional peptide mapping. Despite this functional homology between the two forms of G-kinase, only the particulate enzyme appears to play a role in phosphorylating the GS-proteins. Although little endogenous cAMP-dependent protein kinase (A-kinase) activity was detected in washed aortic smooth muscle membranes, the GS-proteins could be phosphorylated when purified A-kinase catalytic subunit was added to this preparation. Peptide mapping of the Mr 130,000 GS-protein indicated that A-kinase phosphorylated a subset of the same peptides labeled by the two forms of G-kinase. The endogenous A-kinase of rabbit aortic smooth muscle homogenates was also found to phosphorylate the GS-proteins. Since the intracellular concentrations of cGMP or cAMP can be selectively elevated by different stimuli, these results suggest several possible mechanisms by which the phosphorylation state of the GS-proteins may be regulated by cyclic nucleotides: activation of the membrane-bound G-kinase by cGMP or cAMP; and activation of cytosolic A-kinase by cAMP.  相似文献   

5.
1. Phosphorylation of rat liver endogenous substrates by protein kinase C (type III) was compared between cytosolic and particulate (mitochondria, microsomes and plasma membrane) fractions. 2. The rate and the maximum level of protein phosphorylation were several-fold higher in particulate fractions than in cytosolic fraction. 3. Protein phosphorylation in cytosolic fraction was dependent on both Ca2+ and phospholipid, but only Ca2+ was necessary in phosphorylation of particulate fractions. 4. These results suggest that protein kinase C (type III) has much more target proteins in particulate fractions rather than in cytosolic fraction and Ca2+ was important regulator in particulate protein phosphorylation.  相似文献   

6.
Inhibitory actions of 1-(5-isoquinolinyl-sulfonyl)-2-methylpiperazine (H-7), N-[2-(methylamine)ethyl]-5-isoquinolinesulfonamide [H-8] and polymyxin B on the calcium-activated, phospholipid-dependent protein kinase (protein kinase C) of rat liver were compared. Using a partially purified liver protein kinase C and an exogenous substrate histone-III S, polymyxin B showed maximum inhibition (IC50, 9.5 microM) followed by H-7 (IC50, 25 microM) and H-8 (IC50, 36 microM). These inhibitors also inhibited protein kinase C-induced phosphorylation of endogenous cytosolic and particulate proteins in a dose-dependent manner though polymyxin B was relatively less effective with the particulate fraction. With the aid of protein kinase-C activators and these inhibitors, seven proteins in cytosolic (Mr 170K, 150K, 43K, 34K, 30K, 25K and 19K daltons) and six proteins in particulate (Mr 150K, 43K, 34K, 25K, 19K and 16K daltons) fractions were identified as probable substrates for protein kinase C in liver. The identity of these proteins remains to be determined.  相似文献   

7.
The atrial natriuretic peptide (ANP) stimulates cGMP production and protein phosphorylation in a particulate fraction of cultured rat aortic smooth muscle cells. Three proteins of 225, 132, and 11 kDa were specifically phosphorylated in response to ANP treatment, addition of cGMP (5 nM), or addition of purified cGMP-dependent protein kinase. The cAMP-dependent protein kinase inhibitor had no effect on the cGMP-stimulated phosphorylation of the three proteins but inhibited cAMP-dependent phosphorylation of a 17-kDa protein. These results demonstrate that the particulate cGMP-dependent protein kinase mediates the phosphorylation of the 225-, 132-, and 11-kDa proteins. The 11-kDa protein is phospholamban based on the characteristic shift in apparent Mr from 11,000 to 27,000 on heating at 37 degrees C rather than boiling prior to electrophoresis. ANP (1 microM) increased the cGMP concentration approximately 4-fold in the particulate fractions, from 4.3 to 17.7 nM, as well as the phosphorylation of the 225-, 132-, and 11-kDa proteins. In contrast, the biologically inactive form of ANP, carboxymethylated ANP (1 microM), did not stimulate phosphorylation of any proteins nor did the unrelated peptide hormone, angiotensin II (1 microM). These results demonstrate the presence of the cGMP-mediated ANP signal transduction pathway in a particulate fraction of smooth muscle cells and the specific phosphorylation of three proteins including phospholamban, which may be involved in ANP-dependent relaxation of smooth muscle.  相似文献   

8.
Inflammatory macrophages elicited from the peritoneal cavity of mice injected with endotoxin can avidly ingest E opsonized with IgG antibody (EIgG) or with IgM antibody and C (EIgMC). However, only ingestion of EIgG is associated with activation of the respiratory burst and release of superoxide anion. We compared the endogenous phosphorylation of proteins from macrophages stimulated by interaction with EIgG or EIgMC on the premise that proteins phosphorylated after stimulation by EIgG but not EIgMC could play a role in activating the enzyme (oxidase) responsible for the respiratory burst. Proteins were separated by one-dimensional and two-dimensional electrophoresis in polyacrylamide gels. We found that proteins with approximate Mr of 20 kDa, 23 kDa, 46 kDa, 48 kDa (three proteins), 67 kDa, and 130 kDa were more heavily phosphorylated after EIgG stimulation than after EIgMC stimulation. Exposure to PMA, which activates the respiratory burst oxidase, induced phosphorylation of the 23-kDa, 48-kDa group, and 130-kDa proteins that were phosphorylated after stimulation by EIgG. Activity of protein kinase C was found to be significantly increased in the particulate fraction of macrophages stimulated by EIgG but not in the particulate fraction of EIgMC-stimulated cells. These data are compatible with the hypotheses that phosphorylation of specific cellular proteins, especially with a Mr of approximately 48 kDa, is involved in activation of the respiratory burst oxidase, and that function of protein kinase C also plays a part in this activation process.  相似文献   

9.
Protein kinase C activity in the particulate fraction of the heart increases two-fold during mid-stage of disease in the cardiomyopathic hamster. No change in the corresponding enzyme activity occurs with aging in healthy control hamsters. In the solubilized particulate fraction of hearts from both myopathic and control animals, Ca++/phospholipid-dependent endogenous phosphorylation of proteins of Mr 26, 31, 45, 53, 69, 98, 105 and 126 kDa are observed. All of these proteins are more highly phosphorylated in the protein kinase C-enriched preparation from the myopathic heart compared to the control. No significant differences between myopathic and control hamsters are observed in the activities of protein kinase C or phosphoinositide-specific phospholipase C from heart cytosol.  相似文献   

10.
The relationship between postnatal age and protein tyrosine kinase activity in synaptosomes prepared from the rat forebrain was studied. Synaptosomal particulate and soluble fractions, as well as total homogenates, the cell soluble fraction, and P3, were prepared from rats ranging in postnatal age from 5 to 60 days and analyzed for (a) tyrosine kinase activity using polyglutamyltyrosine (4:1) as the substrate, (b) the presence of endogenous substrates for tyrosine phosphorylation using polyclonal antibodies specific for phosphotyrosine, and (c) levels of pp60src. Enzyme activity, expressed per milligram of protein, in the total homogenate, P3, and both the cell and synaptosomal soluble fractions was highest in the brains of young animals (postnatal days 5-10) and decreased thereafter to adult levels. In contrast, tyrosine kinase activity in the synaptosomal particulate fraction exhibited a unique biphasic developmental profile, increasing to maxima at postnatal days 10 and 20 before decreasing to adult values. Endogenous substrates for tyrosine phosphorylation were identified by incubating subcellular fractions with 2 mM ATP in the presence of sodium orthovanadate and probing nitrocellulose blots of proteins separated by gel electrophoresis with antiphosphotyrosine antibodies. Several phosphotyrosine-containing proteins were detected in the synaptosomal particulate and P3 fractions, including proteins of Mr 180K, 145K, 120K, 100K, 77K, 68K, 62K, 54K, 52K, and 42K. In the cell soluble fraction a protein doublet of Mr 54/52K and a 120K protein were the major phosphotyrosine-containing proteins. The 54/52K doublet was the major protein tyrosine kinase substrate in the synaptosomal soluble fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Atrial natriuretic peptide (ANP) stimulates the phosphorylation of three cyclic GMP-dependent protein kinase substrate proteins of 225, 132, and 11 kDa (P225, P132 and P11 respectively) in the particulate fraction of cultured rat aortic smooth muscle cells [Sarcevic, Brookes, Martin, Kemp & Robinson (1989) J. Biol. Chem. 264, 20648-20654]. Vrolix, Raeymaekers, Wuytack, Hofmann & Casteels [(1988) Biochem. J. 255, 855-863] have reported the presence of a 130 kDa cyclic GMP-dependent protein kinase substrate protein in the membrane fraction of pig aorta or stomach, and suggested that it may be myosin light chain kinase (MLCK). The aim of the present study was to determine whether P132 from rat aorta was MLCK or caldesmon. Although P132 co-migrates with purified chicken gizzard MLCK on SDS/polyacrylamide gels, it is distinct from rat aortic MLCK. Partially purified MLCK from rat aorta migrated as a 145 kDa protein on SDS/polyacrylamide gels. Immunoblotting the partially purified rat aortic MLCK with antibody to bovine tracheal MLCK identified rat aortic MLCK (145 kDa) and a corresponding 145 kDa protein in the particulate fraction of cultured rat aortic smooth muscle cells, but did not detect the 132 kDa protein. Phosphopeptide maps of purified rat aortic MLCK prepared by digestion with Staphylococcus aureus V8 protease were distinct from those of P132. P132 was not caldesmon, since antibodies to caldesmon cross-reacted with 136 and 76 kDa proteins in the particulate fraction of rat aortic cells, but not with P132. Furthermore, caldesmon was partially extracted from the particulate into the soluble fraction by heating at 90 degrees C, whereas P132 was not. These results demonstrate that the ANP-responsive cyclic GMP-dependent protein kinase substrate of 132 kDa from rat aortic smooth muscle cells is not MLCK or caldesmon.  相似文献   

12.
Secretory granules isolated from anterior pituitary glands were examined for Ca2+/phospholipid-dependent protein kinase (protein kinase C) activity as well as the occurrence of granule-associated substrate proteins. Sheep adenohypophyses were fractionated by differential and sucrose-density-gradient centrifugation to yield a granule fraction enriched for luteinizing-hormone (lutropin)-containing secretory granules. Marker-enzyme analysis showed no detectable cytosolic contamination, although there were small amounts of plasma membranes (2-4%) and lysosomes (4-6%) associated with the preparation. As determined by histone-H1 phosphorylation after DEAE-cellulose DE-52 chromatography, protein kinase C activity with a marked dependence on Ca2+ and lipid (4-fold increase in their presence) was evident in the secretory-granule fraction. Phosphorylation in vitro of the secretory-granule fraction by endogenous and exogenous protein kinase C revealed a protein of Mr 36,000, which by two-dimensional SDS/polyacrylamide-gel electrophoresis showed multiple sites of phosphorylation. The Mr-36,000 protein was not found in cytosolic or plasma-membrane fractions and was not phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase. Several secretory-granule proteins served as substrates for the catalytic subunit, the most prominent of which were of Mr 63,000, 23,000 and 21,000. From these data, we suggest that phosphorylation of secretory-granule-associated proteins by protein kinase C and by cyclic AMP-dependent protein kinase may be important in secretion regulation in the anterior pituitary gland.  相似文献   

13.
Endogenous phosphorylation of proteins in cell suspensions of collecting tubes was studied. Using SDS disc electrophoresis in polyacrylamide gel with subsequent autoradiography, it was shown that vasopressin increases the 32P incorporation into two proteins with molecular masses of 15 kDa and 33 kDa, which serve as endogenous substrates for cAMP-dependent protein kinase. The hormone-dependent phosphorylation of these proteins was typical of the membrane fraction of collecting tube cells but was absent in the cytosolic fraction. The results obtained are suggestive of the direct involvement of vasopressin in the regulation of membrane protein phosphorylation by cAMP-dependent protein kinase which may increase the permeability of cells for H2O.  相似文献   

14.
Protein phosphorylation was studied in crude and in protein kinase C (Pk-C)-enriched preparations from squamous cell carcinomas and normal mucosa of the human upper aero-digestive tract. In crude soluble preparations from neoplastic mucosa we found a 5-fold higher basal endogenous phosphorylation when compared to normal mucosa. In particulate fractions the increase was 3-fold. SDS-PAGE and autoradiography of phosphorylated proteins in crude soluble tumor extracts showed bands corresponding to proteins with apparent molecular weights of 18, 37, 40-42, 52, 60, 62 and 90 kDa. In normal mucosa the phosphorylation of these proteins was very low or absent, except for the proteins with molecular weights of 40-42 and 52-55 kDa. Addition of Ca2+ or Ca2+/phospholipids to the reaction mixture caused phosphorylation of additional proteins with apparent molecular weight of 45-50 kDa in soluble preparations of tumors. Cyclic AMP or cGMP had no significant effect on the phosphorylation of endogenous proteins. In the partially purified, Pk-C-enriched fractions the phosphorylation in the presence of Ca2+/phospholipids was distinctly higher in tumors when compared to the phosphorylation observed in normal mucosa, and some phosphorylation substrates were detected only in tumor tissue. In order to find out whether the elevated basal phosphorylation was due to an endogenous activation of protein kinases, different inhibitors of serine/threonine protein kinases were tested. These inhibitors included: heat-stable cyclic AMP-dependent protein kinase (Pk-A) inhibitor, Pk-A inhibitor peptide (Wiptide), heparin and the Pk-C inhibitors peptide 19-36 and H-7. None of these inhibitors had any significant effect on the basal phosphorylation. In conclusion, our results show the existence of endogenous phosphorylation substrates in human squamous cell carcinomas from the upper aerodigestive tract, and indicates that there is a significantly higher basal and Pk-C specific phosphorylation of endogenous substrates in tumors compared to normal mucosa. This may be of importance for the transformation and altered growth regulation in epithelial tumors.  相似文献   

15.
The occurrence of phospholipid-sensitive calcium-dependent protein kinase (referred to as C kinase) and its endogenous substrate proteins was examined in a membrane preparation from rat pancreatic zymogen granules. Using exogenous histone H1 as substrate, C kinase activity was found in the membrane fraction. The kinase was solubilized from membranes using Triton X-100 and partially purified using DEAE-cellulose chromatography. An endogenous membrane protein (Mr approximately equal to 18 000) was found to be specifically phosphorylated in the combined presence of Ca2+ and phosphatidylserine. Added diacylglycerol was effective in stimulating phosphorylation of exogenous histone by the partially purified C kinase, but had no effect upon phosphorylation of the endogenous 18 kDa protein by the membrane-associated C kinase. Phosphorylation of the 18 kDa protein was rapid (detectable within 30 s following exposure to Ca2+ and phosphatidylserine), and highly sensitive to Ca2+ (Ka = 4 microM in the presence of phosphatidylserine). These findings suggest a role for this Ca2+-dependent protein phosphorylation system in the regulation of pancreatic exocrine function.  相似文献   

16.
Calcium-activated, phospholipid-dependent protein kinase (protein kinase C) has been implicated in the regulation of transport processes in a variety of tissues and cell lines. To establish whether protein kinase C participates in the regulation of renal phosphate transport, we examined the effect of phorbol myristate acetate (PMA), a potent activator of protein kinase C, on phosphate uptake in fresh preparations of mouse renal tubules, and we correlated the changes in transport activity with protein kinase C activation and phosphorylation of endogenous proteins. PMA inhibited Na+-dependent phosphate transport, elicited a rapid translocation of protein kinase C from the cytosolic to the particulate fraction and stimulated the phosphorylation of endogenous substrates in the cytosolic and brush border membrane fractions. Effects of PMA were maximal after a 10 min incubation of the tubules with the activator. 4 alpha-Phorbol, an inert analogue of PMA, did not elicit any of these effects. The present results demonstrate a temporal correlation between inhibition of Na+-dependent phosphate transport, translocation and activation of protein kinase C, and phosphorylation of endogenous proteins in mouse renal tubules. These data suggest that protein kinase C may play a regulatory role in phosphate transport in mammalian kidney.  相似文献   

17.
The activating kinase of protein phosphatase 1I is distributed in approximately equal amounts between the cytosolic and particulate fractions of bovine brain homogenates. Both species of this protein kinase have been purified to near homogeneity. The cytosolic form, purified about 7,000-fold, has an apparent Mr = approximately 75,000, as estimated by gel filtration chromatography on Sephacryl S-300. The enzyme contains two subunits, with apparent Mr = 52,000 and 46,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both subunits undergo phosphorylation when the enzyme is incubated with Mg2+ and [gamma-32P]ATP. Peptide maps of the two subunits are different, and rabbit antibodies to the 52-kDa subunit show only very minor cross-reactivity to the 46-kDa subunit. These observations indicate that the two subunits are different. The species of protein phosphatase 1I activating kinase that is associated with the membrane fraction has an apparent Mr = approximately 105,000 as estimated by gel filtration. This species also contains two subunits, with apparent Mr = 52,000 and 46,000, the properties of which are very similar, if not identical, to those of the two subunits comprising the cytosolic form of the protein kinase.  相似文献   

18.
Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2)-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA) for casein kinase (CK1) and P2 (RRRADDSDDDDD) for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA) also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II-A and kemptide in the parasite soluble fraction. Since the sum of the values obtained in the parasite cytosolic and particulate fractions were always higher than the values observed in the total T. evansi lysate, the kinase activities examined here appeared to be inhibited in the original extract.  相似文献   

19.
In rat adrenal glomerulosa cells, endogenous substrate proteins for Ca2+/calmodulin (CaM)-dependent protein kinase (glomerulosa CaM kinase) and Ca2+/phospholipid-dependent protein kinase (protein kinase C) were investigated. In a 105,000 g-supernatant fraction (cytosol), the Mr 100,000 protein was phosphorylated in the presence of calcium (calculated free Ca2+ concentration, 460 microM) alone or calcium and CaM, and the phosphorylation of this protein was completely inhibited by the CaM antagonists pimozide (500 microM) and melittin (5 microM) in the presence of calcium alone, respectively. These results indicate that the Mr 100,000 protein is a major substrate for glomerulosa CaM kinase, and considerable amounts of endogenous CaM might be present in the cytosol. In the presence of phospholipids (the micelles of 8 micrograms of phosphatidyl serine and 1 microgram of diacylglycerol), at least twelve proteins of Mr 127,000, 80,000, 70,000, 36,000, 35,000, 33,000, 32,000, 30,000, 27,000, 22,000, 19,000 and 17,000 were phosphorylated, and the phosphorylation of these proteins was enhanced by the addition of calcium, indicating that these proteins are substrates for protein kinase C. No endogenous protein phosphorylation was found in a 105,000 g-particulate fraction. Thus, these findings demonstrate that adrenal glomerulosa cells have specific substrate proteins for glomerulosa CaM kinase and protein kinase C, respectively.  相似文献   

20.
A Ca2+-activated and calmodulin-dependent protein kinase activity which phosphorylates predominantly two endogenous proteins of 57kDa and 54kDa was found in a microsomal fraction from islet cells. Half-maximal activation of the protein kinase occurs at approx. 1.9 microM-Ca2+ and 4 micrograms of calmodulin/ml (250 nM) for phosphorylation of both protein substrates. Similar phosphoprotein bands (57kDa and 54kDa) were identified in intact islets that had been labelled with [32P]Pi. Islets prelabelled with [32P]Pi and incubated with 28 mM-glucose secreted significantly more insulin and had greater incorporation of radioactivity into the 54 kDa protein than did islets incubated under basal conditions in the presence of 5 mM-glucose. Thus the potential importance of the phosphorylation of these proteins in the regulation of insulin secretion is indicated both by activation of the protein kinase activity by physiological concentrations of free Ca2+ and by correlation of the phosphorylation of the substrates with insulin secretion in intact islets. Experiments undertaken to identify the endogenous substrates indicated that this calmodulin-dependent protein kinase may phosphorylate the alpha- and beta-subunits of tubulin. These findings suggest that Ca2+-stimulated phosphorylation of islet-cell tubulin via a membrane-bound calmodulin-dependent protein kinase may represent a critical step in the initiation of insulin secretion from the islets of Langerhans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号