首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The definition of homology and its application to reproductive structures, external genitalia, and the physiology of sexual pleasure has a tortuous history. While nowadays there is a consensus on the developmental homology of genital and reproductive systems, there is no agreement on the physiological translation, or the evolutionary origination and roles, of these structural correspondences and their divergent histories. This paper analyzes the impact of evolutionary perspectives on the homology concept as applied to the female orgasm, and their consequences for the biological and social understanding of female sexuality and reproduction. After a survey of the history of pre-evolutionary biomedical views on sexual difference and sexual pleasure, we examine how the concept of sexual homology was shaped in the new phylogenetic framework of the late 19th century. We then analyse the debates on the anatomical locus of female pleasure at the crossroads of theories of sexual evolution and new scientific discourses in psychoanalysis and sex studies. Moving back to evolutionary biology, we explore the consequences of neglecting homology in adaptive explanations of the female orgasm. The last two sections investigate the role played by different articulations of the homology concept in evolutionary developmental explanations of the origin and evolution of the female orgasm. These include the role of sexual, developmental homology in the byproduct hypothesis, and a more recent hypothesis where a phylogenetic, physiological concept of homology is used to account for the origination of the female orgasm. We conclude with a brief discussion on the social implications for the understanding of female pleasure derived from these different homology frameworks.  相似文献   

2.
Given the pervasiveness of gene sharing in evolution and the extent of homology across the tree of life, why is everything not homologous with everything else? The continuity and overlapping genetic contributions to diverse traits across lineages seem to imply that no discrete determination of homology is possible. Although some argue that the widespread overlap in parts and processes should be acknowledged as “partial” homology, this threatens a broad base of presumed comparative morphological knowledge accepted by most biologists. Following a long scientific tradition, we advocate a strategy of “theoretical articulation” that introduces further distinctions to existing concepts to produce increased contrastive resolution among the labels used to represent biological phenomena. We pursue this strategy by drawing on successful patterns of reasoning from serial homology at the level of gene sequences to generate an enriched characterization of serial homology as a hierarchical, phylogenetic concept. Specifically, we propose that the concept of serial homology should be applied primarily to repeated but developmentally individualized body parts, such as cell types, differentiated body segments, or epidermal appendages. For these characters, a phylogenetic history can be reconstructed, similar to families of paralogous genes, endowing the notion of serial homology with a hierarchical, phylogenetic interpretation. On this basis, we propose a five-fold theoretical classification that permits a more fine-grained mapping of diverse trait-types. This facilitates answering the question of why everything is not homologous with everything else, as well as how novelty is possible given that any new character possesses evolutionary precursors. We illustrate the fecundity of our account by reference to debates over insect wing serial homologs and vertebrate paired appendages.  相似文献   

3.
Current notions on homology, and its recognition, causation, and explanation are reviewed in this report. The focus is primarily on concepts because the formulation of precise definitions of homology has contributed little to our understanding of the issue. Different aspects or concepts of homology have been contrasted, currently the most important ones being the distinction between systematic and biological concepts. The systematic concept of homology focuses on common ancestry and on taxa; the biological concept tries to explain patterns of conservatism in evolution by shared developmental constraints. Similarity or correspondence is generally accepted as a primary criterion in the delimitation of homologues, albeit that this criterion is not without practical and theoretical problems. Apart from similarity, the biological concept of homology also stresses developmental individuality of putative homologous structures. Structural and positional aspects of homology can be separated, with positional homology acquiring an independent status. Similarity, topographic relationships, and ontogenetic development cannot be tests of homology. Within the cladistic paradigm, the most decisive test of homology is that of congruence; proponents of the biological-homology concept have been less concerned with test implications. Adopting a hierarchical view of nature suggests that characters have to be homologized at their appropriate level of organization. A taxic or systematic approach to homology has precedence over a transformational or biological approach. Nevertheless, pattern analysis and process explanations are not independent of each other.  相似文献   

4.
This article focuses on the interphyletic comparison of gene expression patterns. By means of the hypothesis of the inversion of the dorsoventral axis during the evolution of the Bilateria, it is demonstrated, that evolutionary developmental biologists use similarities in spatial and temporal gene expression patterns as evidence for the formulation of hypotheses of homology concerning either developing structures or body regions. The molecular genetic and morphogenetic evidence used is discussed within the framework of a cladistic-phylogenetic analysis based on the phylogenetic tree of the Bilateria. I argue that similarity of spatial and temporal gene expression patterns is not a sufficient criterion for homology inference. Therefore, gene expression patterns should be coded as characters. Their homology should be tested in concert with other characters.

Furthermore, it is demonstrated, that spatial and temporal similar gene expression patterns, indicating similar molecular genetic mechanisms, were interpreted as an analytical criterion of homology, offering the possibility to identify similar structures. In contrast to this, the evolutionary developmental biolgists have not developed a causal-analytically extended concept of shape, from which a causal-analytical concept of homology could be deduced. Instead, the homology concept from evolutionary morphology is used.  相似文献   


5.
Phylogenetics has inherent utility in evolutionary developmental biology (EDB) as it is an established methodology for estimating evolutionary relationships and for making comparisons between levels of biological organization. However, explicit phylogenetic methods generally have been limited to two levels of organization in EDB-the species and the gene. We demonstrate that phylogenetic methods can be applied broadly to other organizational levels, such as morphological structures or cell types, to identify evolutionary patterns. We present examples at and between different hierarchical levels of organization to address questions central to EDB. We argue that this application of "hierarchical phylogenetics" can be a unifying analytical approach to the field of EDB.  相似文献   

6.
The main purpose of the present review is to draw attention to growing problems in the modern systematics and phylogenetics which are presently underestimated by the professional community. The dramatic reduction of the importance of ontogeny and morphology in phylogenetic studies of the second part of the 20th century is considered among the major factors of the modern taxonomic and evolutionary paradigm. The deep contradiction of modern approaches, which either merely consider systematics and phylogeny as genealogy or even in a neotypolgical manner irrespective of the evolutionary idea, is demonstrated. Thus, despite the widespread opinion that the evolutionary theory is the major basis for taxonomy, the processes, which in fact caused the origin and formation of the systematic hierarchy are often considered as redundant for the procedure of classification. In this respect, the classical, but well forgotten statement that evolution is a modification of ontogeny is specially highlighted. Tight relationships between evolution, ontogeny, systematics, and phylogenetics are prima facie obvious, but also presently underestimated, although the field of the evo-devo is continuously growing. Paradoxically, even despite the outburst of various molecular ontogenetic approaches, the commonly accepted evolutionary paradigm still lacks a general theory for changes in the shape of organisms. As a step towards the development of such a theory, a synthesis (or more exactly, resynthesis) of still largely independently developing major biological fields, i.e., ontogenetic and evolutionary studies, on the one hand, and traditional taxonomy, on the other hand, a new concept of ontogenetic systematics is proposed. The new concept is intended for integration of supposedly ??immobile?? traditional taxonomy with the dynamics, but predominantly considered as hypothetical, evolutionary field based on the process of ontogeny, which, in contrast to the evolution itself, can be observed in the real time. Therefore, it is concluded that, for instance, the evolution of the main group of living organisms Metazoa, is primarily the evolution of a very limited number of ontogenetic cycles that were formed as early as the Early Cambrian. A significant underestimation of cyclic properties of ontogeny in the evolution and systematics is shown. Using two model groups, echinoderms of the class Ophiuroidea and dorid nudibranch mollusks (Gastropoda: Doridacea), practical importance of the integrative approach developed here is demonstrated. The ??disruption?? of the ancestral ontogenetic cycle and further formation of a new descendant cycle (which implies some continuity of ancestral and descendant characters) is considered to be a major evolutionary pattern. The model proposed implies either progressive (addition of stages and characters) or regressive (reduction of already existing stages and structures) modification of ancestral taxon, the diagnosis of which corresponds to the model of its ontogenetic cycle. In the extreme cases of disruption of the ancestral ontogenetic cycle, adult characters of descendants are substituted by juvenile ancestral features, demonstrating paedomorphoses in the narrow sense. Within the framework of the approach proposed, the evolutionary and ontogenetic models of ancestral ontogenetic cycles of brittle stars and dorid nudibranchs are developed and discussed. Based on the original material of the extinct Paleozoic ophiuroid group Oegophiurida, the origin of key evolutionary novelties is discussed. A major conclusion of the present review is the high necessity of integration of new molecular data with already well-established taxonomic hierarchy and ontogenetic information as a basis for the development of the general theory of transformations of organisms, i.e., the theory of evolution in its true sense.  相似文献   

7.
Pollen morphology from 143 collections representing 11 genera and 75 species of native South American Convolvulaceae was analyzed with LM and SEM. Exine structure and sculpture allow to distinguish three main types, in two of these types some subtypes were recognized. 1) Tectate, microechinate-perforate exine, with ramified columellae. On the basis of apertures three subtypes were distinguished: tricolpate in Aniseia, Bonamia, Convolvulus, Cressa, Dichondra, Merremia and Jacquemontia blanchetii; penta-hexacolpate in Merremia umbellata; and pantoporate with elliptic and circular pores, in Calystegia. 2) Tectate, microechinate-perforate exine with microspines and single columellae in concordant pattern, relates pantocolpate pollen of Jacquemontia and Evolvulus. From pollen data generic status of J. blanchetii should be considered. 3) Semitectate, echinate or gemmate, microechinate-microreticulate exine with single columellae is exclusive of pantoporate pollen of Ipomoea. Four subtypes were recognized in this genera, which are discussed in relation to Austins infrageneric classification.  相似文献   

8.
9.
10.
11.
双子叶植物幼苗类型及其可能的演化关系   总被引:1,自引:0,他引:1  
根据幼苗形态特征,把双子叶植物幼苗划分为18个类型9个亚型,用图解释了幼苗类型之间的进化关系。双子叶植物幼苗类型进化的主线是:暗罗型(子叶具吸收功能,留土)→紫玉盘型(子叶具吸收功能,留于种壳中,下胚轴伸长)→木兰型(子叶具吸收兼光合功能)→蜡梅型(子叶具光合功能)→樱型(子叶具光合兼贮藏功能)→樟型(子叶具贮藏功能),其他类型或亚型则为进化的旁支或盲支。根据幼苗类型来判断,现存被子植物最古老的科应为番荔枝科。  相似文献   

12.
Eighteen types and nine subtypes of the seedlings in dicots are recognized based on a long-term investigation on the seedlings of1251species in740genera of157families.They are:1.Polyalthia Type;2.Euryale Type;3.Uvaria Type;4.Magnolia Type;5.Peperomia Type  相似文献   

13.
In this paper the cranial arteries, cranial arterial foramina, and bony canals of the Cheloniidae, Chelydridae, Pelomedusidae, and Chelidae are described in detail. From skull studies and published material, the general cranial arterial patterns of all the turtle families can be inferred. Sea turtles, the Cheloniidae and Dermochelyidae, possess both a large stapedial artery and a large artery supplying the orbit, which is possibly similar to the primitive cranial arterial pattern for turtles. From a primitive pattern in which stapedial and palatine arteries supply the orbit, the Chelydridae and Testudinidae retained a large stapedial artery and reduced the palatine artery, while the Kinosternidae and Dermatemydidae developed a large palatine artery and reduced the stapedial artery. The Trionychidae and probably the Carettochelyidae evolved a complex arterial pattern in which the stapedial artery was reduced somewhat and the pseudopalatine artery was substituted for the palatine artery. Pleurodires in general retained a large stapedial artery and reduced or eliminated the palatine artery. The Podocneminae, including the Madagascar species, developed a highly modified carotid canal, which is found in no other turtle group. The facts which have been presented should aid in fossil skull studies and in understanding the evolutionary background of recent turtles.  相似文献   

14.
C. M. Wilke  E. Maimer  J. Adams 《Genetica》1992,86(1-3):155-173
The basic structure and properties of Ty elements are considered with special reference to their role as agents of evolutionary change. Ty elements may generate genetic variation for fitness by their action as mutagens, as well as by providing regions of portable homology for recombination. The mutational spectra generated by Ty 1 transposition events may, due to their target specificity and gene regulatory capabilities, possess a higher frequency of adaptively favorable mutations than spectra resulting from other types of mutational processes. Laboratory strains contain between 25–35 elements, and in both these and industrial strains the insertions appear quite stable. In contrast, a wide variation in Ty number is seen in wild isolates, with a lower average number/genome. Factors which may determine Ty copy number in populations include transposition rates (dependent on Ty copy number and mating type), and stabilization of Ty elements in the genome as well as selection for and against Ty insertions in the genome. Although the average effect of Ty transpositions are deleterious, populations initiated with a single clone containing a single Ty element steadily accumulated Ty elements over 1,000 generations. Direct evidence that Ty transposition events can be selectively favored is provided by experiments in which populations containing large amounts of variability for Ty1 copy number were maintained for 100 generations in a homogeneous environment. At their termination, the frequency of clones containing 0 Ty elements had decreased to 0.0, and the populations had became dominated by a small number of clones containing >0 Ty elements. No such reduction in variability was observed in populations maintained in a structured environment, though changes in Ty number were observed. The implications of genetic (mating type and ploidy) changes and environmental fluctuations for the long-term persistence of Ty elements within the S. cerevisiae species group are discussed.  相似文献   

15.
Glutamine synthetase exists in at least two related forms, GSI and GSII, the sequences of which have been used in evolutionary molecular clock studies. GSI has so far been found exclusively in bacteria, and GSII has been found predominantly in eukaryotes. To date, only a minority of bacteria, including rhizobia, have been shown to express both forms of GS. The sequences of equivalent internal fragments of the GSI and GSII genes for the type strains of 16 species of rhizobia have been determined and analyzed. The GSI and GSII data sets do not produce congruent phylogenies with either neighbor-joining or maximum-likelihood analyses. The GSI phylogeny is broadly congruent with the 16S rDNA phylogeny for the same bacteria; the GSII phylogeny is not. There are three striking rearrangements in the GSII phylograms, all of which might be explained by horizontal gene transfer to Bradyrhizobium (probably from Mesorhizobium), to Rhizobium galegae (from Rhizobium), and to Mesorhizobium huakuii (perhaps from Rhizobium). There is also evidence suggesting intrageneric DNA transfer within Mesorhizobium. Meta-analysis of both GS genes from the different genera of rhizobia and other reference organisms suggests that the divergence times of the different rhizobium genera predate the existence of legumes, their host plants.  相似文献   

16.
A systematic SEM survey of tooth microstructure in (primarily) fossil taxa spanning chondrichthyan phylogeny demonstrates the presence of a superficial cap of single crystallite enameloid (SCE) on the teeth of several basal elasmobranchs, as well as on the tooth plates of Helodus (a basal holocephalan). This suggests that the epithelial-mesenchymal interactions required for the development of enameloid during odontogenesis are plesiomorphic in chondrichthyans, and most likely in toothed gnathostomes, and provides phylogenetic support for the homology of chondrichthyan and actinopterygian enameloid. Along the neoselachian stem, we see a crownward progression, possibly modulated by heterochrony, from a monolayer of SCE lacking microstructural differentiation to the complex triple-layered tooth enameloid fabric of neoselachians. Finally, the occurrence of fully-differentiated neoselachian enameloid microstructure (including compression-resistant tangle fibered enameloid and bending-resistant parallel fibered enameloid) in Chlamydoselachus anguineus, a basal Squalean with teeth that are functionally "cladodont," is evidence that triple-layered enameloid microstructure was a preadaption to the cutting and gouging function of many neoselachian teeth, and thus may have played an integral role in the Mesozoic radiation of the neoselachian crown group.  相似文献   

17.
干扰的类型、特征及其生态学意义   总被引:110,自引:15,他引:110  
陈利顶  傅伯杰 《生态学报》2000,20(4):581-586
干扰是自然界中无时无处不在的一种现象,是在不同时空尺度上偶然发生的不可预知的事件,直接影响着生态系统的结构和功能演替。根据不同分类原则,干扰可以分为自然干扰和人为干扰,内部干扰和外部干扰,物理干扰、化学干扰和生物干扰,局部干扰和跨边界干扰。觉的干扰类型包括火、放牧、土壤物理干扰、土壤物理干扰、土壤化学干扰、践踏、外来种入入侵、洪水泛滥、森林采伐、矿山开发、道路建设和旅游等。干扰主要具有以下一些特点  相似文献   

18.
19.
The broad field of cognitive ethology, in which internal mental states are inferred from the behavior they explain, is receiving increased attention nowadays from diverse scientists and philosophers. The nature of the results and how they are presented greatly influence how humans assess their place in the natural world and how they view other animals. The attribution of consciousness and intelligence to other animals suggests that they have moral rights. The results of comparative cognitive ethological analyses and how they are presented may play a large role in defining the domain of morally permissible research, and in the development of research strategies including decisions on feeding and housing, treatment, handling, and what happens to animal subjects when the research is completed. Scientists and philosophers interested in the evolution of behavior and mental continuity can have a significant impact on how others view the world.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号