首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
18S rDNA sequences were obtained for the prasinophytes Pseudoscourfieldia marina (Throndsen) Manton and Pycnococcus provasolii Guillard. These sequences, along with those of additional prasinophytes and other green algae and land plants, were used for phylogenetic analyses by the neighbor-joining, maximum parsimony, and quartet puzzling methods. Results indicate that Ps. marina and Py. provasolii are closely allied and that both should be included in the Pycnococcaceae. In addition, results of these sequence analyses and additional pigment analysis indicate that the organism previously identified as Ps. marina, isolate CCMP 717, is, in fact, a Nephroselmis sp. or is closely related to that genus.  相似文献   

2.
The biosynthesis of the light-harvesting complex (LHC) polypeptides of the green flagellate Mantoniella squamata (Manton et Parke) Desikachary (Micromonadophyceae, Chlorophyta) was examined by in vivo polypeptide labeling and immunoprecipitation of in vitro translation products. Using protein synthesis inhibitors, the LHC polypeptides were shown to be synthesized on 80S cytoplasmic ribosomes and not in the chloroplasts of cells. Poly (A)+ RNA was isolated and proteins were synthesized by a rabbit reticulocyte lysate system, with antisera raised against M. squamata LHC used for immunoprecipitation from the translation products. One polypeptide 3-5 kDa larger than mature LHC polypeptides was immunoprecipitated. These studies indicate that although the LHC of M. squamata is quite different from the LHC of most green plants, the LHC polypeptides are synthesized as precursors in the cytoplasm of the cell and suggest that the genes encoding these polypeptides are located in the nucleus.  相似文献   

3.
Pigments were isolated from Mesostigma viride Lauterborn by reversed-phase high-performance liquid chromatography and compared to standards from Chlamydomonas reinhardtii Dang. and Bryopsis plumose (Huds.) Ag. M. viride possesses chlorophylls a and b, α and β-carotenes, and the xanthophylls siphonaxanthis, siphonein, neoxanthin, violaxanthin and echinenone. In addition, three unidentified xanthophylla were detected. Neither lutein nor zeaxanthin were detected. The pigment composition of M. viride was similar to that of B. plumosa which had chlorophylls a and b, ?- and α-carotenes, siphonaxanthin, siphonein, neoxanthin, violaxanthin, and two of the unidentified xanthophylls found in M. viride. The similarities in the pigments of Mesostigma and Bryopsis and other characters suggest that Mesostigma may be related to a flagellate ancestor of the Ulvophyceae.  相似文献   

4.
Bathycoccus prasinos Eikrem et Throndsen exhibited a complex carotenoid distribution pattern including the carotenes β,β-carotene (0.8% of total carotenoids) and β, ° Carotene (0.4%) and several xanthophylls. These were prasinoxanthin (49% of total carotenoids), micromonal (16%), neoxanthin (14%), uriolide (7%), violaxanthin (0.8%), 31-dehydrouriolide (0.8%), dihydrolutein (0.1%), two partly characterized esterified carotenols (together 10%), and five minor unidentified carotenols (together 2%). The identifications were based on high-performance liquid chromatography (HPLC), thin-layer chromatography (TLC), visible spectroscopy (VIS), and mass spectra (MS) and in part on 1H nuclear magnetic resonance (NMR), circular dichroism (CD), and chemical derivatization. The carotenoid composition of B. prasinos was related to that of other prasinoxanthin / uriolide / micromonal-producing prasinophytes (Mantoniella squamata, Micromonas pusilla, and Pseudoscourfieldia marina). The relative distribution of chlorophylls (w/w) were chlorophyll a (chl a; 63%), chl b (31%), and an unknown chl c-like chlorophyll (7%) with spectral characteristics similar to magnesium 2,4-divinylphaeoporphyrin a, monomethyl ester, compatible with other prasinophytes. The chemosystematic data and ultrastructural characteristics for the order Mamiellales are discussed. We conclude that HPLC studies alone are insufficient for the identification and characterization of the carotenoids, including the minor carotenoids essential for biosynthetic/chemosystematic considerations.  相似文献   

5.
A new atmospheric pressure chemical ionization mass spectrometry (APCI‐LC/MS) method improved detection and aided characterization of fucoxanthin related carotenoids, revealing the coccolithophorid Emiliania huxleyi (Lohm.) Hay et Mohler (strain MBA 92, Plymouth) to contain a wider range of acyloxyfucoxanthins than reported previously. The diversity is confirmed as arising from differences in the length of the alkanoic acid substituent esterified at position C‐19′. Acyloxyfucoxanthins with substituents of between four and eight carbons at the C‐19′ position have been detected in a culture of Emiliania huxleyi, where previously only 19′‐butanoyloxyfucoxanthin and 19′‐hexanoyloxyfucoxanthin have been reported in the literature. Novel fucoxanthinol derivatives were also found. The detection of these novel carotenoids in Emiliania huxleyi permits detailed studies of the impact of environmental factors on individual components of the complex pool of fucoxanthin‐type carotenoids in this organism.  相似文献   

6.
Spectral properties of cell suspensions, individual cells, and extracts of the unicellular green alga Parietochloris incisa (Reisigl) Shin Watan. grown under low light were studied. Long‐term nitrogen (N) deprivation resulted in a decrease of chloroplast volume, appearance of numerous large cytoplasmic oil bodies, and the deposition of triacylglycerols with a high proportion of arachidonic acid. Chlorophylls a and b underwent a synchronous decline, whereas carotenoids (Car) showed a relative increase. Simultaneously, significant qualitative changes in the spectral properties of P. incisa individual cells, cell extracts, and cell suspensions were observed. To a large extent, the spectral changes observed in cell suspension could be attributed to a decrease in overall pigment content, leading to a gradual weakening of the so‐called package effect and accumulation of additional amounts of Car over chl, most probably, in oil bodies. Several optical characteristics of cell suspensions could serve as sensitive indicators of N‐deficiency in P. incisa. Furthermore, the absorption ratios, A476/A676 and A650/A676, showed close correlations with the Car‐to‐chl ratio and relative arachidonic acid (AA) content, respectively. The latter makes it possible to suggest that the increase in AA percentage in P. incisa proceeds in parallel with a decrease in cell chl content, accounting for the weakening of the package effect. N‐replenishment resulted in complete recovery of cell optical properties. The possible significance of the changes in cell ultrastructure, pigments, lipids, and optical properties is discussed with special reference to the ability of algae to adapt to and survive under conditions of long‐term nutrient deficiency.  相似文献   

7.
An axenic clonal culture of Chattonella antiqua (Hada) Ono was grown on a 12: 12 h LD cycle in a laboratory culture tank containing 1 m3 of f/2 medium. Diel changes in mean cell volume, cellular carbon (carbon content per cell), C/N ratio, cellular Chl a, Chl a/c ratio and carotenoid composition were observed. Mean cell volume and cellular C, N and pigments increased during the light period as a result of photosynthesis and decreased with increase of cell concentration by phased cell division during the dark period. These changes indicated that carbon assimilation and pigment synthesis occurred together during the light period. However, the patterns of increase were not the same since different diel patterns were also found in the ratios of C/N and chl a/c. Photosynthetic pigments were analyzed by reversed-phase high-performance liquid chromatography with ion-pairing solution. This analysis showed that the dominant carotenoids in C. antiqua were fucoxanthin, violaxanthin and β-carotene. Diel patterns of Chls a and c were similar to that of fucoxanthin but different from those of violaxanthin and β-carotene. The cellular contents of Chl a, fucoxanthin and carbon increased in a parallel manner during the light period. On the other hand, the increase of violaxanthin was restricted to only a few hours at the beginning of the light period during cell division cycles.  相似文献   

8.
Diel changes in mean cell volume, cellular carbon (carbon content per cell), cellular Chl a, C/N ratio, Chl a/carbon ratio and pigment composition were determined for an axenic clonal culture of Pyramimonas parkeae Norris et Pearson through three 12:12 h LD cycles in a laboratory culture tank of 1 m3. Mean cell volume and cellular C, N and most pigments increased during the light period as a result of photosynthesis and decreased with an increase in cell density by phased cell division during the dark period. Chi a and Chi b increased in a parallel manner during the light period. Increases in the diel synthesis pattern of carotenoids varied. Violaxanthin and lutein content increased for a few hours at the beginning of the light period and preceeded that of neoxanthin. The diel synthesis pattern of neoxanthin was similar to that of Chi a. Increases of loroxanthin and its ester form were slower than that of Chi a at the beginning of the light period. A net increase of α-carotene was observed during the dark period. Mass spectroscopy of carotenoid structure showed a new xanthophyll, loroxanthin dodecenoate, in this species.  相似文献   

9.
The placement of Avrainvillea and Cladocephalus in the family Udoteaceae (order Bryopsidales) has been questioned on the basis of nuclear, plastid, and other ultrastructural characteristics unique to these genera. Bayesian analysis of the chloroplast‐encoded LSU RUBISCO (rbcL) gene showed that the Udoteaceae is paraphyletic. Cladocephalus luteofuscus (P. Crouan et H. Crouan) Børgesen, Avrainvillea nigricans f. floridana D. Littler et Littler, and A. mazei G. Murray et Boodle form a clade with the freshwater alga Dichotomosiphon tuberosus (A. Braun ex Kütz.) A. Ernst that is basal to a clade that includes other members of the Udoteaceae, the Halimedaceae, and the Caulerpaceae. The noncalcified species Boodleopsis pusilla (Collins) W. R. Taylor, A. B. Joly et Bernat. groups with species of the calcified Udoteacean genera Penicillus, Rhipocephalus, Udotea, and Halimeda.  相似文献   

10.
Pigment extracts from Emiliania huxleyi (Lohm.) Hay et Mohler (strains CCMP 370, CCMP 373, and NIOZ CH 24) were analyzed using high-performance liquid chromatography (HPLC) on highly efficient monomeric and polymeric octadecylsilica columns using either ammonium acetate or pyridine containing mobile phases. Both systems showed chromatographic profiles with peaks corresponding to pigments of uncertain structure: those of the polar and nonpolar chlorophyll c forms and one peak whose on-line diode array spectrum resembled that of the fucoxanthin acyloxy derivatives. Liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry gave a molecular mass of 786 units for the unknown carotenoid. The pigments corresponding to each of these fractions were isolated and their visible spectra recorded in various solvents. Samples of the isolated pigments were subjected to analysis by fast atom bombardment mass spectrometry that confirmed a molecular mass of 786 for the unknown carotenoid and gave a mass of 654 units for the polar chlorophyll c 3, compatible with the monovinylic structure previously suggested. The detection of these new pigments calls for attention on the use of correct methodologies when HPLC pigment signatures are used to study the taxonomic composition of natural phytoplankton populations.  相似文献   

11.
12.
Photosynthetic pigments, C, N, and P tissue composition, and photosynthetic rate were measured from April to October in the brown alga Phyllariopsis purpurascens (C. Agardh) Henry et South (Laminariales, Phaeophyta) growing at a 30-m depth in the Strait of Gibraltar. Ir-radiance reaching the population ranged from 13.5 to 27.5 mol.m-2.mo-1. The available light for this species, expressed as a percentage of the irradiance above the water, was 1.8%. Dissolved inorganic nitrogen forms, NO3-and NH4+, were constant from April to October, whereas phosphate was depleted in August. Chlorophyll a decreased from 520.0 ± 165.0 to 199.6 ± 159.9 μg.g-1 dry weight; in contrast, chlorophyll c and carotenoids did not change until September but increased threefold in October. C:N and N:P ratios changed in the same way and in the same range. They were constant until July but increased from 15–17 up to 42 (C:N) and from 14 to 40 (N:P) in October, suggesting a severe P limitation of growth of this species. The dark respiration rate and the light compensation point were constant from April to October (0.5 ± 0.1 μmol O2. m-2.s-1 and 6.5 ± 0.2 μmol.m-2. s-1, respectively), whereas the maximum rate of apparent photosynthesis, light onset saturation parameter, and half saturation constant for light were maximum in April to May (3.7 μmol O2. m-2.s-1and 40 and 41.5 μmol.m-2. s-1, respectively) and October (3.6 μmol O2. m-2.s-1 and 50 and 53.7 μmol.m-2. s-1, respectively). They were minimum in August (1.2 μmol O2.m-2.s-1 and 11.3 and 12 μmol.m-2.s-1, respectively). These minimum figures yielded a negative carbon budget in August and 0 in September, whereas it was positive the rest of the year. Photosynthetic efficiency, estimated by the ratio between maximum apparent photosynthesis and light half saturation constant, showed a strong agreement with productivity measured by means of an independent method. These results indicate that lamina expansion in this species is controlled by photosynthetic efficiency.  相似文献   

13.
Flagellar and basal body development during cell division was studied in the biflagellate green alga Spermatozopsis similis Preisig et Melkonian by light microscopy of immobilized living cells, statistical analysis of flagellar lengths during the cell cycle, and electron microscopy of cells and isolated cytoskeletons. Interphase cells display two flagella of unequal/subequal length. An eyespot located in an anterior lobe of the chloroplast is connected to the basal body bearing the shorter flagellum by means of a five-stranded microtubular root. Until cell division, the two parental flagella attain the same length. During cell division, each cell forms two new flagella that grow to a length of 1.5 μm before they are distributed in a semiconservative fashion together with the parental flagella to the two progeny cells at cytokinesis. During the following interphase, the flagella newly formed during the preceding cell division grow to attain the same length as the parental flagella until the subsequent cell division. The shorter of the two flagella of a cell thus represents the developmentally younger flagellum, which transforms to the mature state during two consecutive cell cycles. Interphase cells display only two flagella-bearing basal bodies; two nascent basal bodies are formed during cell division and are connected to the microtubular d-roots of respective parental basal bodies with which the newly formed basal bodies are later distributed to the progeny cells. During segregation, basal body pairs shaft into the 11/5 o'clock direction, thus conserving the 1/7 o'clock configuration of basal body pairs of interphase cells. Prior to chloroplast and cell division, an eyespot is newly formed near the cell posterior in close association with a 1s microtubular root, while the parental eyespot is retained. During basal body segregation, eyespot-root connections for both the old and newly formed eyespots are presumably lost, and new associations of the eyespots with the 2s roots of the newly formed basal bodies are established during cytokinesis. The significance of this “eyespot-flagellar root developmental cycle” for the absolute orientation of the progeny cells is discussed.  相似文献   

14.
Chlamydomonas reinhardtii was grown at photon flux densities (PFDs) ranging from 47 to 400 μE.m-2 s-1. The total cellular content of chlorophyll (Chl) was twice as high in the low light (LL) versus high light (HL) grown cells. On an equal Chl basis, photosystem II (PSII) and cytochrome f (Cyt f) content was higher in HL cells, but photosystem I (PSI) concentration displayed little variation with the light intensity during cell growth. Consequently, there was a shift in the ratio of PSII / PSI and Cyt / PSI from near unity in LL cells to greater than two in HL cells. The functional Chl antenna size of PSII and PSI ranged from 460 and 170 Chl (a + b)in HL-grown cells to 620 and 370 Chl (a+ b)in LL-grown cells, respectively. The initial slope of the Chl-specific photosyn-thesis-irradiance (P-I) curve was similar in LL- and HL-grown cells, but the light saturated rate of photosynthesis was lower under LL. The response to low light was beneficial at the cellular level, since there was an enhancement of photosynthesis in LL. The PFD for the onset of light saturation, 1 was a factor of 2 lower in LL- relative to HL-grown photosythetic membranes. Since growth PFD varied by a factor of ten, photosynthesis shifted from being light-limited in the LL regime to light-saturated in the HL regime. The requirement for balanced absorption of light by the two photosystems constrains the PSII / PSI ratio to near unity when growth is light-limited, but such a constraint does not apply in HL conditions. Instead the concentration of individual electron transport complexes way be related to the pool size necessary for maximum rates of steady-state electron transport. Thus the stoichiometry of electron transport complexes changes in response to growth PFD and this change is correlated with the response flexlbility of algal photosynthesis in diverse light environments.  相似文献   

15.
Symbiotic green algae from two species of intertidal Pacific sea anemones, Anthopleura elegantissima and Anthopleura xanthogrammica, were collected from the northeastern Pacific coast of North America across the known range of the symbiont. Freshly isolated Anthopleura symbionts were used for both morphological and molecular analyses because Anthopleura symbiont cultures were not available. Light and transmission electron microscopy supported previous morphological studies, showing the symbionts consist of spherical unicells from 5 to 10 μm in diameter, with numerous vesicles, and a single bilobed chloroplast. Pyrenoids were not seen in LM, but a thylakoid‐free area was observed in TEM, consistent with previous findings. Many algal cells extracted from fresh anemone tissue were observed in the process of division, producing two autospores within a maternal cell wall. The morphology of the green symbionts matches that of Elliptochloris Tscherm.‐Woess. Molecular phylogenetic analyses of the nuclear SSU rDNA and the plastid encoded gene for the large subunit of RUBISCO (rbcL) support the monophyly of these green algal symbionts, regardless of host species and geographic origin. Phylogenetically, sequences of the Anthopleura symbionts are nested within the genus Elliptochloris and are distinct from sequences of all other Elliptochloris spp. examined. Given the ecological and phylogenetic distinctions among the green algal symbionts in Anthopleura spp. and the named species of Elliptochloris, we designate the green algal symbionts as a new species, Elliptochloris marina (Trebouxiophyceae, Chlorophyta).  相似文献   

16.
The existence of a phenomenon in phosphorus (P) nutrition comparable to the “Neish effect” in nitrogen (N) nutrition (an inverse relation between seawater N enrichment and carrageenan content) was investigated in the temperate red alga Chondrus crispus Stackhouse. Plants were preconditioned for 17 d and then cultured under varying enrichments of P (0, 3, 6, 10, 15 μM P·wk?1) and a constant N enrichment (53.5 μM N·wk?1) for 5 wk. Tissue total P, tissue total N, and carrageenan contents were then determined. Identical experiments were performed using C. crispus collected during the fall, winter, spring, and summer seasons. The procedure was repeated using material collected during the following fall season and cultured under constant P (6 μM P·wk?1) and varying N enrichments (0, 3, 6, 10, 25 μM N·wk?1). In the fall (P) experiment, carrageenan content was the highest [53.1 ± 0.3% DW (dry weight)], and tissue total P content was the lowest (1.71 ± 0.27 mg P·g DW?1) in plants that received no P enrichment. Carrageenan content was stable (46.1 ± 1.8% DW) for plants given enrichments of 3 μM P·wk?1 and greater. Thus, a decrease in carrageenan content, concomitant with an increase in tissue total P content, was observed, but only at tissue total P levels below 2 mg P·g DW?1. As these levels were always higher than 2 mg P·g DW?1 in the winter, spring, and summer experiments, carrageenan content remained constant within each season at 46.2 ± 1.3, 43.1 m 0.7, and 44.5 ± 0.6% DW, respectively. Nitrogen enrichment of plants collected in the fall did not affect carrageenan content, which was stable at 49.3 ± 0.9% DW. When these plants were compared with those of the previous fall experiment (6 μM P·wk?1 and 53.5 μM N·wk?1), a slight increase in carrageenan content was noted. Thus, at sufficiently high concentration, N also decreased carrageenan content in C. crispus. Phosphorus nutrition had no significant effect on photosynthesis versus irradiance parameters (Pmax, α, Rd, Ic, and Ik), the contents of the photosynthetic pigments chlorophyll-a, phycoerythrin (PE), phycocyanin (PC), and allophycocyanin (APC), and the ratios PE:APC and PC:APC. In contrast, N nutrition affected both Pmaxand the photosynthetic pigment contents. The data indicate that N limitation reduces the number of phycobilisomes but not their size. The greater reduction in phycobiliprotein than chlorophyll-acontent corroborates the natural bleaching phenomenon regularly observed in C. crispus populations during summer when N levels are generally low in seawater. These results suggest that C. crispus in the temperate waters of the Bay of Fundy may experience N limitation, but P limitation is unlikely.  相似文献   

17.
We measured maximum ammonium uptake rates of the green alga Scenedesmus quadricauda (Turpin) Brébisson and the blue-green alga Microcystis novacekii (Kom.) Comp. grown in nitrogen (ammonium)–limited chemostats. Maximum uptake rates per cellular carbon were larger in S. quadricauda than in M. novacekii. These rates increased with increased specific growth rates. Maximum uptake rates per cellular nitrogen were also larger in S. quadricauda than in M. novacekii. The maximum uptake rates per cellular nitrogen were nearly constant against increased cellular N:C ratios under nitrogen-limited conditions. The higher maximum uptake rates indicate that S. quadricauda had higher uptake abilities for ammonium than M. novacekii when grown under nitrogen limitation. We examined the competition between both species under two distinct nutrient supply modes, using measured maximum uptake values and computer simulations. Microcystis novacekii prevailed in the small-pulse, high-frequency nutrient supply mode, whereas S. quadricauda became competitively superior in the large-pulse, low-frequency nutrient supply mode. These results indicate that we could control nuisance blooms of blue-green algae in lakes and reservoirs by changing the nutrient supply modes.  相似文献   

18.
Three chlorophyll c-type pigments were separated by reversed-phase high Performance liquid chromatography and thin-layer chromatography from pigment extracts of the prymnesiophyte, Prymnesium parvum Carter. Based on spectral characteristics, retention times, and comparison with reference pigments isolated from the diatom Phaeodactylum tricornutum Bohlin, two of these pigments were identijied as chlorophyll c1 and c2. The other pigment was identified by its absorption spectrum and thin-layer chromatography retention times as the newly described chlorophyll c3. However, in other prymnesiophytes so far examined, chlorophyll c1 and chlorophyll c3 were present with no chlorophyll cl. The discovery of chlorophyll c3 with chlorophyll c1 and chlorophyll c3 in Prymnesium parvum therefore represents the first report of this combination of pigments in prymnesiophytes.  相似文献   

19.
Our understanding of the physiological mechanisms that allow marine photoautotrophs to thrive in a high light environment is limited. The pelagic phaeophyte, Sargassum natans (L.) Gaillon, exists at the air–sea interface and often is exposed to high irradiances. During a cruise in the Gulf of Mexico, aggregates of S. natans were collected and maintained in a shipboard incubator under natural sunlight. In vivo fluorescence and pigmentation dynamics were assessed over two daily cycles to characterize the photophysiological responses of this taxon to varying irradiance (i.e. overcast and sunny conditions). The relative proportion of the photosynthetic carotenoid, violaxanthin, to the photoprotective carotenoid, zeaxanthin, decreased during daylight hours. This mirrored the dynamics in the maximum quantum yield for stable charge separation at photosystem II (FV/FM[variable fluorescence/maximum fluorescence]), which decreased (relative to predawn levels) by 50%–60% during periods of sustained bright light and recovered to predawn values 3 h after sunset. The ratio of de-epoxidized to epoxidized components of the xanthophyll-cycle pigment pool (violaxanthin, zeaxanthin) was associated with energy dissipation activity within the pigment bed. The operational quantum yield for photosystem II activity (φIIe) was substantially lower than FV/FM due to both a decreased probability that absorbed photons reached open reaction centers and to the induction of nonphotochemical fluorescence quenching (which was rapidly reversible). Bright light also affected the rate of electron flow from the reaction center chlorophyll through to the secondary electron acceptor, quinone B (QB); specifically, single turnover decay curves indicated that the proportion of QB bound to the D1–D2 complex in photosystem II decreased during the protracted periods of bright light. Kautsky curves suggested that the relative proportion of inactive light-harvesting complexes also increased during periods of bright light. Taken together, these findings suggest that S. natans can tolerate high irradiances by down-regulating its quantum yield during the day, decreasing its functional absorption coefficient through the uncoupling of light-harvesting complexes, and decreasing the efficiency with which absorbed light is utilized. These cellular responses appear to be driven by the absolute flux of light and not by an endogenous rhythm, which is phased to a particular time of day.  相似文献   

20.
Changes in biomass of several macroalgae [Ulva rotundata Bliding; Gracilariopsis longissima (S. G. Gmel.) Steentoft, L. M. Irvine et Farnham; Ulva intestinalis L.; and Cladophora sp.] and marine plants (Zostera noltii and Ruppia cirrhosa) growing naturally in earthen ponds of a fish farm (Acuinova, San Fernando, Southern Spain) were recorded during a year. The farm is mainly devoted to the culture of gilthered seabream (Sparus aurata). The most conspicuous algal species thriving in the ponds was U. rotundata, which reached densities up to 600 g dry mass · m−2 and produced up to 20.45 g C · m−2 · d−1. Dissolved nutrients (phosphate and ammonium), tissue nutrient content, and growth rates of this species were estimated during 2001 and 2002. Evidence of natural biomitigation by U. rotundata when water circulates throughout the fish farm is presented. Due to the fish cultivation, both phosphate and ammonium increased as water circulated from the preculture ponds to the postculture ponds. As a consequence, U. rotundata tissue nitrogen (N) and phosphorus (P) increased from algae growing in preculture ponds to algae growing in the outflow channel, so that mean C:N:P ratio varied from 773:57:1 in preculture ponds to 567:64:1 in the outflow channel. Phosphorus limited growth of U. rotundata during the spring. As growth rates increased as a function of tissue P, data were fitted to the Droop equation. From this equation, the estimated maximal growth rate was 0.295 ± 0.041 d−1, the subsistence quota was 0.05 ± 0.01% P of dry mass, and the critical quota was 0.215% P of dry mass. The results suggest that management of the fish farm based on a large-scale integrated mariculture system of fish and macroalgae may increase the total ecological and economic benefits, both for the farm and for the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号