首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gf tomato mutant, which retains chlorophyll during ripening, has been found to be affected in leaf senescence. The leaves of the gfmutant show an absolute stay-green phenotype. As leaf senescence and fruit ripening proceed, there is a marked difference in chlorophyll content between wild-type and gf. In both attached and detached leaf studies, or after treatment with ethylene, the leaves withered and abscised in gf with only slight loss of chlorophyll and carotenoids. Total protein content declined and free amino acids increased during leaf senescence in wild-type and gf, but Western analysis showed that LHCII polypeptides were retained at higher levels in gf. Expression of senescence-related mRNAs increased normally in gf whereas those for cab, rbcS and rbcL declined in both mutant and wild-type. The mutant possesses enzyme activity for chlorophyllase, the formation of phaeophorbide a by the action of Mg-dechelatase and the oxygenolytic opening of the porphyrin macrocycle. Analysis of chlorophyll breakdown products in fruit indicated that gf, like other stay-green mutants, accumulates chlorophyllides a and b, but phaeophorbide a does not accumulate in vivo. This may indicate that, in the mutant, in vivo the action of phaeophorbide a-oxygenase is somehow presented, either by altered accessibility or transport of components required for thylakoid disassembly or the absence of another factor.  相似文献   

2.
Yellowing/chlorophyll breakdown is a prominent phenomenon in leaf senescence, and is associated with the degradation of chlorophyll – protein complexes. From a rice mutant population generated by ionizing radiation, we isolated nyc4‐1, a stay‐green mutant with a defect in chlorophyll breakdown during leaf senescence. Using gene mapping, nyc4‐1 was found to be linked to two chromosomal regions. We extracted Os07g0558500 as a candidate for NYC4 via gene expression microarray analysis, and concluded from further evidence that disruption of the gene by a translocation‐related event causes the nyc4 phenotype. Os07g0558500 is thought to be the ortholog of THF1 in Arabidopsis thaliana. The thf1 mutant leaves show variegation in a light intensity‐dependent manner. Surprisingly, the Fv/Fm value remained high in nyc4‐1 during the dark incubation, suggesting that photosystem II retained its function. Western blot analysis revealed that, in nyc4‐1, the PSII core subunits D1 and D2 were significantly retained during leaf senescence in comparison with wild‐type and other non‐functional stay‐green mutants, including sgr‐2, a mutant of the key regulator of chlorophyll degradation SGR. The role of NYC4 in degradation of chlorophyll and chlorophyll – protein complexes during leaf senescence is discussed.  相似文献   

3.
Optical Properties and Light Climate in Lake Verevi   总被引:2,自引:2,他引:0  
The optical properties and light climate during the ice-free period in the highly stratified Lake Verevi (Estonia) have been studied together with other lakes in same region since 1994. The upper water layer above the thermocline belongs to class “moderate” by optical classification of Estonian lakes but can turn “turbid” (concentration of chlorophyll a up to 73 mg m−3 and total suspended matter up to 13.2 g m−3) during late summer blooms. In the blue part of the spectrum, light is mainly attenuated by dissolved organic matter and in red part notably scattering but also absorption by phytoplanktonic pigments effect the spectral distribution of underwater light. Consequently, the underwater light is of greenish-yellow color (550–650 nm). Rapid change in optical properties occurs with an increase of all optically active substances close to thermocline (2.5–6 m). Optical measurements are often hampered beneath this layer so that modeling of the depth distribution of the diffuse attenuation coefficient is an useful compliment to field measurements. Kd,PAR ranges from 0.8 to 2.9 m−1 in the surface layer, and model results suggest that it may be up to 5.8 m−1 in the optically dense layer. This forms a barrier for light penetration into the hypolimnion.  相似文献   

4.
Normally, starch (sugars) and minerals are redistributed from the leaves to the pods during monocarpic senescence in maturing soybean plants. Petiole phloem destruction (steam girdling), which blocked this redistribution by interrupting export through the petiole, altered the foliar senescence pattern producing a distinctive interveinal yellowing with green areas along the veins on pod-bearing plants. This suggests that blockage of the petiole phloem may cause nutrients to accumulate in the green zones along the leaf veins instead of being redistributed to the pods. In the leaves of untreated plants, starch showed the same distribution pattern as chlorophyll; however, starch was preserved in yellow areas as well as the green zones of the steam-girdled leaves. Mineral analyses of the veinal and interveinal zones of treated leaves and controls showed that the veinal green zones and interveinal yellowing in treated plants were not respectively enriched and depleted in minerals corresponding to a redistribution of minerals within the leaves. Depodding also blocked leaf yellowing, net mineral redistribution and starch breakdown. Thus, the pods are able to induce chlorophyll breakdown without net mineral redistribution or starch loss in leaves with petiole phloem destruction. This shows that chlorophyll breakdown is not obligatorily coupled with mineral redistribution or starch breakdown.  相似文献   

5.
During senescence of flowering plants, only breakdown products derived from chlorophyll a were detected although  b disappears, too (Matile et al., 1996, Plant Physiol 112: 1403–1409). We investigated the possibility of chlorophyll b reduction during dark-induced senescence of barley (Hordeum vulgare L.) leaves. Plastids isolated from senescing leaves were lysed and incubated with NADPH. We found 71-hydroxy-chlorophyll a, 71-hydroxy-chlorophyllide a, and, after incubation with Zn-pheophorbide b, also Zn-71-hydroxy-pheophorbide a, indicating activity of chlorophyll(ide) b reductase. The highest activity was found at day 2 of senescence when chlorophyll breakdown reached its highest rate. Chlorophyllase reached its highest activity under the same conditions only at days 4–6 of senescence. Based on the chlorophyll b reductase activity of plastids at day 2.5 of senescence (=100%), the bulk of activity (83%) was found in the thylakoids and only traces (5%) in the envelope fraction. Chlorophyll b reduction is considered to be an early and obligatory step of chlorophyll b breakdown. Received: 22 February 1999 / Accepted: 24 March 1999  相似文献   

6.
During leaf senescence, chlorophyll is removed from thylakoid membranes and converted in a multistep pathway to colorless breakdown products that are stored in vacuoles. Dephytylation, an early step of this pathway, increases water solubility of the breakdown products. It is widely accepted that chlorophyll is converted into pheophorbide via chlorophyllide. However, chlorophyllase, which converts chlorophyll to chlorophyllide, was found not to be essential for dephytylation in Arabidopsis thaliana. Here, we identify pheophytinase (PPH), a chloroplast-located and senescence-induced hydrolase widely distributed in algae and land plants. In vitro, Arabidopsis PPH specifically dephytylates the Mg-free chlorophyll pigment, pheophytin (phein), yielding pheophorbide. An Arabidopsis mutant deficient in PPH (pph-1) is unable to degrade chlorophyll during senescence and therefore exhibits a stay-green phenotype. Furthermore, pph-1 accumulates phein during senescence. Therefore, PPH is an important component of the chlorophyll breakdown machinery of senescent leaves, and we propose that the sequence of early chlorophyll catabolic reactions be revised. Removal of Mg most likely precedes dephytylation, resulting in the following order of early breakdown intermediates: chlorophyll → pheophytin → pheophorbide. Chlorophyllide, the last precursor of chlorophyll biosynthesis, is most likely not an intermediate of breakdown. Thus, chlorophyll anabolic and catabolic reactions are metabolically separated.  相似文献   

7.
One important reaction of chlorophyll (chl) breakdown during plant senescence is the removal of the lipophilic phytol moiety by chlorophyllase. AtCLH1 and AtCLH2 were considered to be required for this reaction in Arabidopsis thaliana. Here we present evidence against this assumption. Using green fluorescent protein fusions, neither AtCLH isoform localizes to chloroplasts, the predicted site of chlorophyll breakdown. Furthermore, clh1 and clh2 single and double knockout lines are still able to degrade chlorophyll during senescence. From our data we conclude that AtCLHs are not required for senescence-related chlorophyll breakdown in vivo and propose that genuine chlorophyllase has not yet been molecularly identified.  相似文献   

8.
Dörmann P 《Planta》2007,225(2):269-276
Tocochromanols encompass a group of compounds with vitamin E activity essential for human nutrition. They accumulate in photooxidative organisms, e.g. in some algae and in plants, where they localize to thylakoid membranes and plastoglobules of chloroplasts. Tocochromanols contain a polar chromanol head group with a long isoprenoid side chain. Depending on the nature of the isoprenoid chain, tocopherols (containing a phytyl chain) or tocotrienols (geranylgeranyl chain) can be distinguished in plants. The tocochromanol biosynthetic pathway has been studied in Arabidopsis and Synechocystis in recent years, and the respective mutants and genes were isolated. Mutant characterization revealed that tocopherol protects lipids in photosynthetic membranes and in seeds against oxidative stress. In addition to its antioxidant characteristics, tocopherol was shown be involved in non-antioxidant functions such as primary carbohydrate metabolism. A considerable proportion of tocopherol is synthesized from free phytol suggesting that excess amounts of phytol released from chlorophyll breakdown during stress or senescence might be deposited in the form of tocopherol in chloroplasts.  相似文献   

9.
An early senescence (es) mutant of rice Oryza sativa L. with progressing death of most of leaves before heading stage was identified in the field in Hainan province. After tillering stage, the brown striations were found in the base of green leaves randomly, and then expanded to whole leaves. No fungi, bacteria, and viruses were detected in the brown striations suggesting that it was a genetic mutant. The ultrastructure of leaf cells at the site of brown striations showed breakdown of chloroplast thylakoid membrane structures and other organelles, and condensation of the cytoplasm at severe senescence stage. The photosynthetic activity and chlorophyll (Chl) contents decreased irreversibly along with leaf senescence process.  相似文献   

10.
We report here the cloning and characterization of a soybean receptor-like kinase (RLK) gene, designated GmSARK (Glycine max senescence-associated receptor-like kinase), which is involved in regulating leaf senescence. The conceptual protein product of GmSARK contains typical domains of LRR receptor-like kinases: a cytoplasmic domain with all the 11 kinase subdomains, a transmembrane domain and an extracelullar domain containing 9 Leucine-Rich Repeat (LRR) units that may act as a receptor. The expression of GmSARK in soybean leaves was up-regulated in all the three tested senescence systems: senescing cotyledons, dark-induced primary leaf senescence and the natural leaf senescence process after florescence. Furthermore, the RNA interference (RNAi)-mediated knocking-down of GmSARK dramatically retarded soybean leaf senescence. A more complex thylakoid membrane system, higher foliar level of chlorophyll content and a very remarkable delay of senescence-induced disintegration of chloroplast structure were observed in GmSARK-RNAi transgenic leaves. A homolog of maize lethal leaf-spot 1 gene, which has been suggested to encode a key enzyme catalyzing chlorophyll breakdown, was isolated and nominated Gmlls1. The expression level of Gmgtr1 gene, which encodes a key enzyme of chlorophyll synthesis, was also analyzed. It was found that Gmlls1 was up-regulated and Gmgtr1 was down-regulated during senescence in wild-type soybean leaves. However, both of the up-regulation of Gmlls1 and down-regulation of Gmgtr1 were retarded during senescence of GmSARK-RNAi transgenic leaves. In addition, over-expression of the GmSARK gene greatly accelerated the senescence progression of CaMV 35S:GmSARK transgenic plants. Taken together, these results strongly suggested the involvement of this LRR-RLK in regulation of soybean leaf senescence, maybe via regulating chloroplast development and chlorophyll accumulation. Multiple functions of GmSARK besides its regulation of leaf senescence were also discussed. Electronic Supplementary Material Supplementary material is available for this article at Rui Gan, Peng-Li Li and Yuan-Yuan Ma contributed equally to this work.  相似文献   

11.
In situ optical meters are widely used to estimate leaf chlorophyll concentration, but non‐uniform chlorophyll distribution causes optical measurements to vary widely among species for the same chlorophyll concentration. Over 30 studies have sought to quantify the in situ/in vitro (optical/absolute) relationship, but neither chlorophyll extraction nor measurement techniques for in vitro analysis have been consistent among studies. Here we: (1) review standard procedures for measurement of chlorophyll; (2) estimate the error associated with non‐standard procedures; and (3) implement the most accurate methods to provide equations for conversion of optical to absolute chlorophyll for 22 species grown in multiple environments. Tests of five Minolta (model SPAD‐502) and 25 Opti‐Sciences (model CCM‐200) meters, manufactured from 1992 to 2013, indicate that differences among replicate models are less than 5%. We thus developed equations for converting between units from these meter types. There was no significant effect of environment on the optical/absolute chlorophyll relationship. We derive the theoretical relationship between optical transmission ratios and absolute chlorophyll concentration and show how non‐uniform distribution among species causes a variable, non‐linear response. These results link in situ optical measurements with in vitro chlorophyll concentration and provide insight to strategies for radiation capture among diverse species.  相似文献   

12.
Chlorophyll breakdown in oilseed rape   总被引:2,自引:0,他引:2  
Chlorophyll catabolism accompanying leaf senescence is one of the most spectacular natural phenomena. Despite this fact, the metabolism of chlorophyll has been largely neglegted until recently. Oilseed rape has been used extensively as a model plant for the recent elucidating of structures of chlorophyll catabolites and for investigation of the enzymic reactions of the chlorophyll breakdown pathway. The key reaction which causes loss of green color is catalyzed in a two-step reaction by pheophorbide a oxygenase and red chlorophyll catabolite reductase. In this Minireview, we summarize the actual knowledge about catabolites and enzymes of chlorophyll catabolism in oilseed rape and discuss the significance of this pathway in respect to chlorophyll degradation during Brassica napus seed development. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Phytoplankton production is determined by growth, senescence, sinking and zooplankton grazing. In an attempt to follow algal senescence and grazing, some authors have used HPLC fluorescence detection of chlorophyll a breakdown products. Laboratory grazing experiments have shown that copepods reduce chlorophyll a from diatoms leading to an increase in pheophytin a rather than pheophorbide a. However, field measurements only indicated a slight increase of pheopigment concentrations in summer. During this period, high heterotrophic activities (zooplankton and bacteria) seemed to be responsible for rapid pheopigment disappearance. On the other hand, highest chlorophyllide a levels appeared to be related to spring accumulation of nutrient-limited senescent algae. While increases in pheophytin a accounted for chlorophyll a consumption, changes in pheophorbide a concentrations could be linked to chlorophyllide a abundance. These results suggest that laboratory studies cannot be uncritically extrapolated to the field.  相似文献   

14.
During natural or dark-induced senescence, chlorophyll degradation causes leaf yellowing. Recent evidence indicates that chlorophyll catabolic enzymes (CCEs) interact with the photosynthetic apparatus; for example, five CCEs (NYC1, NOL, PPH, PAO and RCCR) interact with LHCII. STAY-GREEN (SGR) and CCEs interact with one another in senescing chloroplasts; this interaction may allow metabolic channeling of potentially phototoxic chlorophyll breakdown intermediates. 7-Hydroxymethyl chlorophyll a reductase (HCAR) also acts as a CCE, but HCAR functions during leaf senescence remain unclear. Here we show that in Arabidopsis, HCAR-overexpressing plants exhibited accelerated leaf yellowing and, conversely, hcar mutants stayed green during dark-induced senescence. Moreover, HCAR interacted with LHCII in in vivo pull-down assays, and with SGR, NYC1, NOL and RCCR in yeast two-hybrid assays, indicating that HCAR is a component of the proposed SGR-CCE-LHCII complex, which acts in chlorophyll breakdown. Notably, HCAR and NOL are expressed throughout leaf development and are drastically down-regulated during dark-induced senescence, in contrast with SGR, NYC1, PPH and PAO, which are up-regulated during dark-induced senescence. Moreover, HCAR and NOL are highly up-regulated during greening of etiolated seedlings, strongly suggesting a major role for NOL and HCAR in the chlorophyll cycle during vegetative stages, possibly in chlorophyll turnover.  相似文献   

15.
Hormones which inhibit senescence in Rumex leaf tissue in the dark include gibberellic acid and the cytokinin zeatin. Abscisic acid accelerates senescence in this tissue. Other workers have proposed that cytokinins, but not gibberellins, interact with abscisic acid in senescing Rumex leaf tissue. The present study reinvestigates the question of interaction using measurements of chlorophyll degradation kinetics as parameters of senescence rate and draws the conclusion that neither zeatin nor gibberellic acid interact with abscisic acid in this system. In support of this conclusion are these results. Zeatin clearly cannot overcome the effects of abscisic acid when hormone solutions are replaced every other day. The kinetics of chlorophyll breakdown for tissue treated with unreplaced saturating zeatin solutions is different from that of tissue exposed to saturating zeatin plus abscisic acid. The observed rates of chlorophyll breakdown for tissue treated with abscisic acid and zeatin agree closely with predicted rates using a multiplicative model for independent action of the two hormones.  相似文献   

16.
Chlorophyll metabolism probably is the most visible manifestation of life. Total annual turnover of chlorophyll has been estimated to involve more than 1000 million tons. Surprisingly, chlorophyll catabolism has remained an enigma until less than twenty years ago, when a colorless chlorophyll catabolite from senescent plant leaves was identified and its structure was elucidated. In the meantime, chlorophyll breakdown products have been identified in a variety of plant leaves and their structural features have been elucidated. Most recently, chlorophyll breakdown products have also been identified in some ripening fruit. Chlorophyll breakdown in vascular plants only fleetingly involves enzyme-bound colored intermediates. The stage of fluorescent catabolites is also passed rapidly, as these isomerize further to colorless nonfluorescent tetrapyrrolic catabolites. The latter accumulate in the vacuoles of de-greened leaves and are considered the final products of controlled chlorophyll breakdown. The same tetrapyrroles are also found in ripening fruit and are effective antioxidants. Chlorophyll breakdown leads to tetrapyrroles that appear to have physiologically beneficial chemical properties, and it may thus not merely be a detoxification process.  相似文献   

17.
Pigment breakdown mediated by activated oxygen species is a consequence and a general symptom of oxidative stress and injury to plants. We have attempted to estimate the patterns of pigment bleaching and follow pigment susceptibility to irradiation as related to the process of senescence/ripening. Light‐induced pigment breakdown was studied in situ in the leaves of a shade‐requiring plant, wax flower ( Hoya carnosa R. Br.), as well as in apple ( Malus domestica Borlh. cv. Zhigulevskoe) and lemon ( Citrus limon Burm. cv. Pavlovsky) fruits, using reflectance spectroscopy. It was found that the sensitivity of plant pigments to photobleaching increases as ripening progresses in lemon fruit. Kinetic analysis showed that in all systems a rapid breakdown of the pigment occurs after a lag‐phase. The signature analysis revealed a common pattern of chlorophyll and carotenoid changes, but degradation of the individual pigments was found to be inhomogeneous. Both in lemon and apple fruits a decrease in reflectance in the band of carotenoid absorption preceded pigment photodestruction. In the fruits, the bulk of chlorophyll b and the long‐wavelength chlorophyll a forms were degraded at early stages of the process whereas the breakdown of both chlorophylls in H. carnosa leaves was more synchronous. Prolonged irradiation induced bleaching of the main chlorophyll a band with maximum at 678 nm in the difference spectra, as well as carotenoids. Some features of reflectance spectra in the bands of chlorophyll and carotenoid absorption were found to be suitable for the differentiation of photo‐induced pigment breakdown from the transformation of the pigments taking place during senescence.  相似文献   

18.
Hormones which inhibit senescence of Rumex leaf tissue in the dark include gibberellin A3, and the cytokinins 6-benzylamino purine and zeatin. These hormones inhibit respiratory metabolism in this tissue, but do not change the pattern or total amount of oxygen consumption during senescence. Abscisic acid, a senescence accelerator, correspondingly stimulates oxygen consumption. This correlation of senescence rate and respiration rate holds with regard to the hormone concentrations effective and the continued activity of the hormones when added after the lag phase of chlorophyll breakdown. Transfer experiments show that the respiratory inhibition due to gibberellin A3 and the promotion due to abscisic acid become established within 3 hours of hormone addition. When gibberellin A3 and zeatin were rapidly added to narrow strips of tissue, no inhibitions of oxygen uptake were observed in the first 12 minutes. Senescence-inhibiting concentrations of sucrose strongly stimulate respiratory meabolism, raise the respiratory quotient, and cause inhibition of chlorophyll and protein breakdown which is distinct from the effect of gibberellins or cytokinins.  相似文献   

19.
Manfred Tevini 《Planta》1976,128(2):167-171
Summary The glyco- and phospholipid levels in green, green-yellow and yellow leaves of Impatients balsamina L., Daucus carota L. and Cucurbita pepo L. were determined on a leaf area basis. In Fagus silvatica L. leaves the kinetics of lipid breakdown during autumnal senescence was analysed. It was shown that yellow tissues still contain 40% to 50% of galactolipids and 50% to 60% of phospholipids present in green tissues. In the early stages of senescence of autumnal Fagus leaves we found a more rapid decline in the levels of the galactolipids and of the phospholipids phosphatidylglycerol and phosphatidylcholine, whereas in the later stages the breakdown of these lipids is slower than that of chlorophyll. The last yellow stage still contains 30% of the galactolipids and about 23% of the phospholipids present in fully greened leaves. Phosphatidylinositol shows a different behavior during senescence.
Abkürzungen MGD Monogalaktosyldiglycerid - DGD Digalaktosyldiglycerid - SL Sulfolipid - GPC Glycerophosphatidylcholin - GPE Glycerophosphatidyläthanolamin - GPG Glycerophosphatidylglycerin - GPI Glycerophosphatidylinosit - GPS Glycerophosphatidylserin - Gal-Lipide (GL) Galaktolipide - P-Lipide (PL) Phospholipide - Chl Chlorophyll  相似文献   

20.
The changes in chlorophyll and protein in senescing chloroplasts isolated from the first leaves of 7-day-old oat (Avena sativa) seedlings have been investigated. In darkness the chlorophyll in these plastids is highly stable, losing only 5 to 10% of its content after 7 days at 26 C. This result contrasts with the behavior of chlorophyll in intact leaves, in which about 80% of the pigment would have disappeared in that time. The protein is less stable than the chlorophyll, though more stable than in the leaf; probably a small amount of protease is present in the plastids. Some protein is also being synthesized in the chloroplasts along with its breakdown; gains of up to 38% in protein and 13% in chlorophyll were observed under different conditions. l-Serine, which actively promotes senescence in the leaf, has only a very slight effect on the chloroplasts, and kinetin antagonizes it. Kinetin also has a small but significant effect in preserving the protein from breakdown. Acid pH somewhat promotes the breakdown, both of chlorophyll and protein. A loss of chlorophyll and protein comparable to that occurring in the senescence of the leaf could not be induced in the chloroplasts by suspending them in malate, in cytoplasmic extract, or in any of a number of enzymes tested alone. Incubation with a mixture of four enzymes was the only treatment which approximated the senescent process in the leaf, causing 34% loss of chlorophyll at pH 5 and 40% loss of protein at pH 7.4, both in 72 hours.In white light, the chlorophyll and the carotenoids, but not the protein, disappear rapidly. This disappearance was shown to be prevented in an atmosphere of nitrogen or in air by a number of reducing agents, of which ascorbic acid was the most effective. It is, therefore, ascribed to photooxidation rather than to normal senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号