首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shark skin denticles (scales) are diverse in morphology both among species and across the body of single individuals, although the function of this diversity is poorly understood. The extremely elongate and highly flexible tail of thresher sharks provides an opportunity to characterize gradients in denticle surface characteristics along the length of the tail and assess correlations between denticle morphology and tail kinematics. We measured denticle morphology on the caudal fin of three mature and two embryo common thresher sharks (Alopias vulpinus), and we compared thresher tail denticles to those of eleven other shark species. Using surface profilometry, we quantified 3D-denticle patterning and texture along the tail of threshers (27 regions in adults, and 16 regions in embryos). We report that tails of thresher embryos have a membrane that covers the denticles and reduces surface roughness. In mature thresher tails, surfaces have an average roughness of 5.6 μm which is smoother than some other pelagic shark species, but similar in roughness to blacktip, porbeagle, and bonnethead shark tails. There is no gradient down the tail in roughness for the middle or trailing edge regions and hence no correlation with kinematic amplitude or inferred magnitude of flow separation along the tail during locomotion. Along the length of the tail there is a leading-to-trailing-edge gradient with larger leading edge denticles that lack ridges (average roughness = 9.6 μm), and smaller trailing edge denticles with 5 ridges (average roughness = 5.7 μm). Thresher shark tails have many missing denticles visible as gaps in the surface, and we present evidence that these denticles are being replaced by new denticles that emerge from the skin below.  相似文献   

2.
Shark skin is covered with numerous placoid scales or dermal denticles. While previous research has used scanning electron microscopy and histology to demonstrate that denticles vary both around the body of a shark and among species, no previous study has quantified three‐dimensional (3D) denticle structure and surface roughness to provide a quantitative analysis of skin surface texture. We quantified differences in denticle shape and size on the skin of three individual smooth dogfish sharks (Mustelus canis) using micro‐CT scanning, gel‐based surface profilometry, and histology. On each smooth dogfish, we imaged between 8 and 20 distinct areas on the body and fins, and obtained further comparative skin surface data from leopard, Atlantic sharpnose, shortfin mako, spiny dogfish, gulper, angel, and white sharks. We generated 3D images of individual denticles and measured denticle volume, surface area, and crown angle from the micro‐CT scans. Surface profilometry was used to quantify metrology variables such as roughness, skew, kurtosis, and the height and spacing of surface features. These measurements confirmed that denticles on different body areas of smooth dogfish varied widely in size, shape, and spacing. Denticles near the snout are smooth, paver‐like, and large relative to denticles on the body. Body denticles on smooth dogfish generally have between one and three distinct ridges, a diamond‐like surface shape, and a dorsoventral gradient in spacing and roughness. Ridges were spaced on average 56 µm apart, and had a mean height of 6.5 µm, comparable to denticles from shortfin mako sharks, and with narrower spacing and lower heights than other species measured. We observed considerable variation in denticle structure among regions on the pectoral, dorsal, and caudal fins, including a leading‐to‐trailing edge gradient in roughness for each region. Surface roughness in smooth dogfish varied around the body from 3 to 42 microns.  相似文献   

3.
Vertebrate skin appendages are incredibly diverse. This diversity, which includes structures such as scales, feathers, and hair, likely evolved from a shared anatomical placode, suggesting broad conservation of the early development of these organs. Some of the earliest known skin appendages are dentine and enamel-rich tooth-like structures, collectively known as odontodes. These appendages evolved over 450 million years ago. Elasmobranchs (sharks, skates, and rays) have retained these ancient skin appendages in the form of both dermal denticles (scales) and oral teeth. Despite our knowledge of denticle function in adult sharks, our understanding of their development and morphogenesis is less advanced. Even though denticles in sharks appear structurally similar to oral teeth, there has been limited data directly comparing the molecular development of these distinct elements. Here, we chart the development of denticles in the embryonic small-spotted catshark (Scyliorhinus canicula) and characterize the expression of conserved genes known to mediate dental development. We find that shark denticle development shares a vast gene expression signature with developing teeth. However, denticles have restricted regenerative potential, as they lack a sox2+ stem cell niche associated with the maintenance of a dental lamina, an essential requirement for continuous tooth replacement. We compare developing denticles to other skin appendages, including both sensory skin appendages and avian feathers. This reveals that denticles are not only tooth-like in structure, but that they also share an ancient developmental gene set that is likely common to all epidermal appendages.  相似文献   

4.
This study characterized the morphology, density and orientation of the dermal denticles along the body of a shortfin mako shark Isurus oxyrinchus and identified the hydrodynamic parameters of its body through a computational fluid‐dynamics model. The study showed a great variability in the morphology, size, shape, orientation and density of dermal denticles along the body of I. oxyrinchus. There was a significant higher density in dorsal and ventral areas of the body and their highest angular deviations were found in the lower part of the mouth and in the areas between the pre‐caudal pit and the second dorsal and pelvic fins. A detailed three‐dimensional geometry from a scanned body of a shark was carried out to evaluate the hydrodynamic properties such as drag coefficient, lift coefficient and superficial (skin) friction coefficient of the skin together with flow velocity field, according to different roughness coefficients simulating the effect of the dermal denticles. This preliminary approach contributed to detailed information of the denticle interactions. As the height of the denticles was increased, flow velocity and the effect of lift decreased whereas drag increased. The highest peaks of skin friction coefficient were observed around the pectoral fins.  相似文献   

5.
The diets and prey selection of six species of tuna baitfish (the engraulids Stolephorus devisi and S. heterolobus, three dussumierids of genus Spratelloides, and the apogonid Archamiazosterophora. were examined at two heavily fished and one unfished site in the Solomon Islands. All species ate almost exclusively nektonic zooplankton, especially crustaceans. Calanoid copepods were the most importantpreyofallspeciesexcept A. zosterophora, whichateagreater biomassoflarvalfish. Baitfishcould be divided into two groups according to prey taxa: the apogonid A. zosterophora and the engraulids S. devisi and S. heterolobus ate similar prey in similar proportions; the three dussumierid species (Spratelloides) ate smaller zooplankton and a greater proportion of calanoids than the other species. The size of prey eaten differed greatly between baitfish species. A. zosterophora ate larger prey than other species. The two Stolephorus species ate similar-size prey, which were larger than the prey of the three species of Spratelloides. Among the Spratelloides, S. delicatulus ate smaller prey than the other two species. All species differed in the size of calanoids, carids and brachyurans they ate. In all cases, prey differed more by the minimum dimension (width) than by volume. There were significant relationships between fish length and prey width and volume, except for Archamia. However, in terms ofvolume, the prey of Stolephorus increased with fish size at a much greater rate than in Spratelloides species. Baitfish diets were compared to the zooplankton available. Prey selection by the three Spratelloides species and two Sfolephorus species was density-dependent for all common prey types, although Stolephorus positively selected hyperiid amphipods and brachyurans. Archamia showed strong negative selection for calanoids and selected larger zooplankters, including fish larvae and carids, avoiding smaller, more common, prey. Overall baitfish density and zooplankton density did not correlate at either of the heavily fished sites. Nor were there consistent differences for any species in diet or changes in prey selection between the heavily fished and unfished sites. This suggests that, in these lagoons, commercial baitfish catches are not directly influenced by the composition or density of prey.  相似文献   

6.
Summary Abnormal denticle belt patterns can occasionally be observed in abdominal belts of partial larvae obtained from egg fragments. The abdominal belts have the following features in common: 1) The number of denticles of an abdominal denticle belt may increase, depending on the space occupied by a distinct segment or the whole body region. The arrangement of the denticles in such enlarged belts is less regular than in normal belts. 2) Enlarged denticle belts are also found in the terminal segment of a fragment, or in the segment next to it when the larval pattern is interrupted by fragmentation. The denticle belt in the adjacent segment(s) may then be supressed. 3) All denticles in a belt (or part of a belt) are orientated posteriorly if the distance to the posteriorly adjacent belt (or part of a belt) is larger than normal, or if this denticle belt is suppressed. Conditions anterior to a segment do not seem to exert any influence on denticle orientation.  相似文献   

7.
The fully developed oral disc of the tadpole of Bufo bufo consists of dorsal and ventral labia bearing, respectively, two and three ridges bearing numerous horny denticles, a horny beak provided with jaw sheath serrations, and large lateral papillae that are borne by two cutaneous plicae. As development progresses toward metamorphosis, these structures gradually regress until they disappear. Each cusped clavate labial denticle adheres, by means of a thin peduncle, to a similar labial denticle fixed in the lip and formed by a group of three or four cells that keratinize gradually and thus present remarkable differences in their morphology. Once all the cells of a group have been converted into horny tissue, the denticle sheds and is replaced by the underlying one. The beak serrations also are horny structures; each consists of a columnar band of cells which undergoes a gradual keratinization. The horny cells that detach themselves at intervals, being replaced by those of the underlying anlagen. The labial denticles and the beak serrations keratinize in two distinct ways. In the former, the desmosomal filaments appear to play an important role whereas, in the latter, the keratin seems to be synthesized “ex novo” by the ribosomes.  相似文献   

8.
A new conodont species, Icriodus marieae, is described from pelagic limestone beds of the Carnic Alps (Austria). Specimens are obtained from the upper part of the Valentin Formation (Central Carnic Alps) and range from the latest Eifelian to middle Givetian. Significantly differing from other icriodontid conodonts is that the icriodontan element of the new species develops only three denticles on either lateral denticle row, which are constricted to the central part of the element. The anterior part of the element is free of lateral row denticles and consists of two to four denticles, which have a fan-shaped outline in lateral view. The anterior part as well as the posterior part (consisting of cusp and two to three pre-cusp denticles) is higher than the denticles of the central part of the element. Shape analysis confirms that the parameters chosen for landmarks (element size relation and denticle setting) show little variation between different specimens.  相似文献   

9.
Three new species of Tricorythopsis Traver (Ephemeroptera: Leptohyphidae) are described and illustrated based on nymphs from southeastern Brazil. These new species can be distinguished from other species of the genus by the following characters: Tricorythopsis araponga sp. n.: (1) femora with long setae; (2) abdominal segments 5–7 with dorsal tubercles; (3) tarsal claws with 4–6 marginal denticles and 7 + 4 submarginal denticles. Tricorythopsis baptistai sp. n.: (1) tarsal claws with 4–5 large marginal denticles and one submarginal denticle on each side; (2) abdominal colour pattern; (3) abdomen without tubercles; (4) coxae without projections. Tricorythopsis pseudogibbus sp. n.: (1) abdominal segments 6–8 with small dorsal tubercles; (2) tarsal claws with four large marginal denticles, and 3 + 1 or 2 submarginal denticles; (3) coxae dorsally projected; (4) femora broad and with short setae; (5) pronotum with anterolateral projection.  相似文献   

10.
A partial skeleton of a shark was found in the Frauenweiler clay pit near Rauenberg (Oligocene, Rupelian; Baden-Württemberg, S. Germany). The shark is identified as Cetorhinus parvus Leriche 1910. One tooth, vertebrae, dermal denticles and most of the filter apparatus of the juvenile specimen are described and illustrated. A terminology is introduced for the gill raker elements of the genus Cetorhinus to compare C. parvus and C. maximus.  相似文献   

11.
A new species of Trichodina Ehrenberg, 1830 collected from the skin and fins of farmed North African catfish Clarias gariepinus (Burchell) fingerlings, is described. The new species can be distinguished from other trichodinids by the characteristics of the adhesive disc, especially by the great number of denticles. Trichodina merciae n. sp. is morphologically similar to T. renicola (Mueller, 1931) and T. marplatensis Martorelli, Marcotegui & Alda, 2008, in the number of denticles, but differs in the morphometric data, denticle morphology, environment and location. Trichodina merciae n. sp. has broad sickle-shaped blades and thin, straight rays, while T. marplatensis has broad club-shaped blades and wide S-shaped rays. Besides, denticle length, blade length, ray length, width of central part and denticle span of the new species are greater than T. marplatensis. However, the diameter of denticle ring and the diameter of the central area in T. marplatensis is larger than the ones in T. merciae n. sp. This is the first record of freshwater ectoparasite trichodinid with an average number of denticles greater than 50.  相似文献   

12.
《Fly》2013,7(3):185-191
The development of denticle rows on the ventral Drosophila embryo is a valuable system for studying the genetic control of epithelial patterning. During late embryogenesis, the apical surfaces of denticle-producing cells acquire a distinctive rectangular morphology with long anteroposterior boundaries, along which the denticles form, and short ventrolateral boundaries that stain strongly for adherens junction proteins. We observe that ventrolateral denticle cell boundaries are also convoluted, suggesting that the strong adherens staining results, at least in part, from the additional membrane in these regions. Embryos mutant for the Planar Cell Polarity (PCP) Effector gene multiple wing hairs (mwh), or expressing dominant negative form of the small GTPase Rac1, have cells present between the normal denticle cell rows. These 'Interloper Cells' do not have convoluted ventrolateral boundaries with strong adherens protein staining, but have normal denticle placement, suggesting that adherens protein localization is not critical for denticle cell PCP. Based on these and other observations, we propose that denticle cell morphology arises from an epithelial stretch without junction remodeling. A crude mechanical model suggests that this mechanism can generate both the straight anteroposterior boundaries and the compacted ventrolateral boundaries typical of denticle cells. We discuss the significance of cell adhesion for denticle cell morphogenesis, especially given the established role for Rac1 in cell adhesion.  相似文献   

13.
The structure and tooth attachment of the comblike teeth and denticles of the ayu sweetfish, Plecoglossus altivelis, were examined by light and scanning electron microscopy. The denticle is composed of a spoonlike crown with a spine pointed anteriorly, a triangular plate in the cervical region, and a root that curves laterally and tapers off to a point. The root apex is fused with a long thin pedicle that turns abruptly anteriad toward the jaw bone. Planes of the spine, the spoonlike crown, the triangle plate and the root of the denticle are varied, and the denticle is twisted in the region of the triangle plane. The superficial layer of the dentine is homogeneously calcified and is considered to be enameloid, because some of the inner dentinal epithelial cells in the tooth germ are columnar and possess cellular processes at their apical ends. The dentine is fibrous and fine dentinal tubules are visible in dentine treated with sodium hydroxide and observed by scanning electron microscopy. The upper half of the root is surrounded by a dense layer of collagen fibers running parallel to the tooth axis, and the lower half is encompassed by interlaced collagen fibers. The lower part of the root is open on its lingual side. The pedicle is a long rod which is homogeneously calcified and enmeshed by interlaced collagen fibers, and it curves mediad as it nears the jaw bone. The pedicles are interposed between a layer of gelatinous connective tissue and the jaw bone and terminate on the periosteum. Comparative aspects of ayu tooth morphology are discussed. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Purebred Hampshire pigs, farrowed and maintained under conditions precluding extraneous helminth infection, were exposed to a single dose of 10,000 Ascaris suum infective eggs. The pigs were killed at intervals of 28, 41, 55, 86, 115, 145, 175, and 206 days after infection. At necropsy, no gross lesions were found in the lungs or livers of infected pigs. The worms were recovered from the small intestine, identified, counted, and fixed. The heads were excised, critical point dried, mounted en face, and examined by scanning electron microscopy. Worms 28 to 115 days old had unworn denticles that were triangular when viewed laterally but blunt when viewed tangentially. Wearing of the denticles was observed first with 145-day-old worms; wearing increased with age both in numbers of denticles affected and in degree of wear so that by 206 days after inoculation, almost all denticles in the center of the lip were worn. Worn denticles appear truncated when viewed from any angle. The denticles outside the central area were not affected by wear. The size of the denticles varies not only between specimens of the same age, but also on each specimen. However, average denticle size is directly related to the size and, accordingly, to the age of the worm. External to each denticle is a corresponding depression that we have called the denticular groove. One 28-day-old specimen had some extra denticles aligned irregularly along the lip; this irregularity gave the appearance of a double row. The denticles of the two subventral lips are similar to those of the dorsal and are equally affected by wear. There was no detectable difference in denticles of male and female worms. Since wear can now be specifically correlated with age, we conclude that the denticles are functional and become worn through use. Consequently, adult A. suum may be an even more injurious pathogen than heretofore supposed.  相似文献   

15.
Gill raker divergence is a general pattern in adaptive radiations of postglacial fish, but few studies have addressed the adaptive significance of this morphological trait in foraging and eco-evolutionary interactions among predator and prey. Here, a set of subarctic lakes along a diversifying gradient of coregonids was used as the natural setting to explore correlations between gill raker numbers and planktivory as well as the impact of coregonid radiation on zooplankton communities. Results from 19 populations covering most of the total gill raker number gradient of the genus Coregonus, confirm that the number of gill rakers has a central role in determining the foraging ability towards zooplankton prey. Both at the individual and population levels, gill raker number was correlated with pelagic niche use and the size of utilized zooplankton prey. Furthermore, the average body size and the abundance and diversity of the zooplankton community decreased with the increasing diversity of coregonids. We argue that zooplankton feeding leads to an eco-evolutionary feedback loop that may further shape the gill raker morphology since natural selection intensifies under resource competition for depleted prey communities. Eco-evolutionary interactions may thus have a central role creating and maintaining the divergence of coregonid morphs in postglacial lakes.  相似文献   

16.
Synopsis We have quantitatively analyzed a videotape of Seriola dumerili (Carangidae) displaying ram suspension-feeding behavior and ram ventilation in the field. This is the first report of facultative suspension feeding by a piscivorous carangid. The intraoral morphology of S. dumerili is not typical of ram suspension-feeding fishes in that closely-spaced, long gill rakers are lacking. While the mechanism of particle retention is not known for any ram suspension-feeding fish species, scanning electron microscopy revealed denticles on the branchial surfaces of S. dumerili that could play a role in particle entrapment.  相似文献   

17.
Ecologically, morphologically and genetically distinct populations within single taxa often coexist in postglacial lakes and have provided important model systems with which to investigate ecological and evolutionary processes such as niche partitioning and ecological speciation. Within the Salmonidae, these species complexes have been well studied, particularly within the Coregonus clupeaformisC. laveratus (lake and European whitefish, respectively) group, but the phenomenon has been less well documented in the other whitefish genera, Prosopium and Stenodus. Here, we examined the morphology, feeding biology and genetic structure of three putative forms of the pygmy whitefish, Prosopium coulterii (Eigenmann & Eigenmann, 1892), first reported from Chignik Lake, south‐western Alaska, over 40 years ago. Field collections and morphological analyses resolved a shallow water (< 5 m depth) low gill raker count form (< 15 first arch gill rakers), a deepwater (> 30 m), low gill raker form and a deepwater, high gill raker count (> 15 gill rakers) form. The two low gill raker count forms fed almost exclusively on benthic invertebrates (mostly chironomids), while the deepwater, high gill raker count form fed almost exclusively on zooplankton; differences in diet were also reflected in differences both in δ13C and δ15N stable isotopes. All three forms were characterized by the same major mitochondrial DNA clade that has been associated with persistence in, and postglacial dispersal from, a Beringian glacial refugium. Analysis of variation at nine microsatellite DNA loci indicated low, but significant differentiation among forms, especially between the two low gill raker count forms and the high gill raker count form. The extent of differentiation along phenotypic (considerable) and genetic (subtle) axes among the Chignik Lake forms is similar to that found among distinct taxa of Prosopium found in pre‐glacial Bear Lake (Utah–Idaho, USA) which is probably at least ten times older than Chignik Lake. Our analyses illustrate the potential for the postglacial differentiation in traits subject to divergent natural selection across variable environments.  相似文献   

18.
Three species of chromadorids two of which are new to science are described from bottom samples of Lake Tana, L. Ziway and River Abbay, Ethiopia. Achromadora inflata n. sp. and Ethmolaimus zullinii n. sp. are characterized by a uniquely inflated and offset anterior end. The latter is an exception in its genus also by its possession of a well developed dorsal tooth and inconspicuous ventrosublateral denticles. Prodesmodora nurta Zullini, 1988 is reported here for the first time out of its type locality and is described in detail. SEM pictures of Ethmolaimus zullinii n. sp. and Prodesmodora nurta, and complete setae maps of the three species are also presented.Abbreviations used ABE = anterior body end - ABW = anal body width - Amph = amphid - Amph W = amphidial fovea width - CBW = corresponding body width - CSL = cephalic setae length - Ddent = dorsal denticle - GL = gonad length - L = length - LM = light microscope - LRW = lip region width - MBW = maximum body width - n = number of specimens - NR = nerve ring from the anterior end - PBE = posterior body end - Ph L = pharyngeal length (neck length) - PrL = prerectal length - RL = rectal length - SEM = scanning electron microscope - V-A = distance from vulva to anus - Vdent = ventral denticle - W = width  相似文献   

19.
The Yangtze River estuary (YRE) is an important migration channel and foraging habitat for Coilia nasus. Due to its ecological significance and a prioritization of this species’ protection, the need to investigate and analyze environmental relationships of the abundance of Coilia nasus in the YRE as well as develop an understanding of their temporal and spatial distributions is becoming exceedingly important. Using fishery data and environmental survey data from 2009 to 2016, three models including generalized additive mixed models (GAMM), generalized additive models with zero-inflated Poisson distribution (ZIP-GAM) and two-step GAM were used to analyze relationships between environmental factors and the distribution of Coilia nasus in the YRE. The results showed that model fitting of GAMM was more consistent with observations and revealed influences of water temperature, salinity, chlorophyll, and pH on distribution. GAMM demonstrated that higher Coilia nasus abundances were located in waters with water temperature values at 15°C and 30°C, and lower Coilia nasus abundances were located in areas with water temperature values at 10°C and 20°C. All models indicated that the effect of salinity on abundance of Coilia nasus present a multimodal pattern including three peaks at 5, 15, and 25 ppt respectively. Additionally, abundance of Coilia nasus increased with the increase of chlorophyll A in its range of 0–4 mg/L. In a range of 8.0–9.5, higher PH value was more suitable for the aggregation of Coilia nasus. Cross validation was used to evaluate the predictive performance of models and GAMM was found to be the best. The predicted abundance distribution of Coilia nasus in the summer and autumn of 2016 was relatively higher overall than that in winter and spring. The predicted zero abundance distribution pattern was consistent with the sampling presence distribution which was obtained using fishery independent survey data of the year 2009–2015. Facing the urgency protection of Coilia nasus in YRE, results of this study could be used for Coilia nasus conservation and reserve planning.  相似文献   

20.
The correlation of the origin of teeth with jaws in vertebrate history has recently been challenged with an alternative to the canonical view of teeth deriving from separate skin denticles. This alternative proposes that organized denticle whorls on the pharyngeal (gill) arches in the fossil jawless fish Loganellia are precursors to tooth families developing from a dental lamina along the jaw, such as those occurring in sharks, acanthodians, and bony fishes. This not only indicates that homologs of tooth families were present, but also illustrates that they possessed the relevant developmental controls, prior to the evolution of jaws. However, in the Placodermi, a phylogenetically basal group of jawed fishes, the state of pharyngeal denticles is poorly known, tooth whorls are absent, and the presence of teeth homologous to those in extant jawed fishes (Chondrichthyes + Osteichthyes) is controversial. Thus, placoderms would seem to provide little evidence for the early evolution of dentitions, or of denticle whorls, or tooth families, at the base of the clade of jawed fishes. However, organized denticles do occur at the rear of the placoderm gill chamber, but are associated with the postbranchial lamina of the anterior trunkshield, assumed to be part of the dermal cover. Significantly, these denticles have a different organization and morphology relative to the external dermal trunkshield tubercles. We propose that they represent a denticulate part of the visceral skeleton, under the influence of pharyngeal patterning controls comparable to those for pharyngeal denticles in other jawed vertebrates and Loganellia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号