首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Protein tyrosine kinases (PTKs) have major roles in signal transduction and growth control. There are several lines of evidence implicating PTKs in the regulation of axon growth, and this has led to the suggestion that they are centrally involved in the transduction of neuronal growth signals. To test this idea, we assayed the effect of the compounds genistein and lavendustin, specific inhibitors of PTKs, on neurite growth. We find that genistein greatly reduces phosphotyrosine in neurons, as expected from its action on other cells. Surprisingly, administration of genistein or lavendustin potentiated substrate-induced neurite growth in at least several different neuronal types. Stimulation of neurite growth by genistein was abolished by vanadate, providing additional evidence that inhibition of PTKs is responsible for this effect. The potentiation of growth is rather general, in that it occurs on several different extracellular matrix substrates and on two different cell adhesion molecules. Both the initiation of neurite growth and the rate of neurite elongation appear to be potentiated. Our results do not provide evidence for models of substrate-induced signal transduction that involve PTKs as a positive and necessary step, but suggest that such kinases play a regulatory role in neurite elongation.  相似文献   

2.
This review deals with two topics: (1) the effects of fibronectin and laminin on neurite growth and the molecular mechanisms of these effects, and (2) isolation and properties of the adhesive molecule p30. This novel molecule is an abundant heparin-binding protein in perinatal rat brain, and is suggested to have a role in neuronal growth.  相似文献   

3.
Smooth muscle contractility and protein tyrosine phosphorylation   总被引:1,自引:0,他引:1  
During the last 5 years several studies have documented an involvement of protein tyrosine kinases (PTKs) in smooth muscle contraction and Ca2+mobilization. Most of these studies have utilized highly selective inhibitors of PTKs, genistein and tyrphostin and have shown that these inhibitors attenuated smooth muscle contraction induced by growth factors - epidermal growth factor (EGF) and platelet derived growth factor (PDGF) and several vasoactive peptides. It has also been demonstrated that inhibitors of protein tyrosine phosphatases (PTPases) such as vanadate and pervanadate mimic growth factors and vasoactive peptides in causing the contraction of smooth muscle. In this brief review, we have summarized some of the recent observations suggesting a possible link between protein tyrosine phosphorylation pathway and smooth muscle contraction.  相似文献   

4.
Interactions between the cytoskeleton and cell adhesion molecules are presumed responsible for neurite extension. We have examined the role of microfilaments in neurite outgrowth on the cell adhesion molecules L1, P84, N-CAM, and on laminin. Cerebellar neurons growing on each substrate exhibited differing growth cone morphologies and rates of neurite extension. Growth of neurites in the presence of cytochalasin B (CB) was not inhibited on substrates of L1 or P84 but was markedly inhibited on N-CAM. Neurons on laminin were initially unable to extend neurites in the presence of CB but recovered this ability within 9 h. These studies suggest that neurite outgrowth mediated by different cell adhesion molecules proceeds via involvement of distinct cytoskeletal interactions. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Immobilized extracellular matrix proteins and neurotrophins have been extensively studied to enhance neuronal adhesion and proliferation on surfaces for applications in nerve tissue engineering and neuroprosthetic devices. This article describes how the coimmobilization of laminin, an extracellular matrix protein and nerve growth factor (NGF), a neurotrophin can enhance neurite outgrowth observed separately with each type of molecule. In the absence of immobilized NGF, PC12 neurite outgrowth is influenced strongly by the presence of NGF in solution and unaffected by significant increases in laminin surface density (18.7–93.5 ng/mm2). However, when both laminin and NGF are immobilized together, the surface density of laminin is an important factor in determining whether or not the neurite outgrowth‐promoting effect of NGF can be obtained. PC12 neurite outgrowth on surfaces with coimmobilized laminin and NGF with surface densities of 27.6 ng/mm2 and 1.4 ng/mm2, respectively, are similar to that observed on surfaces with immobilized laminin and dissolved NGF. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
The identity of the protein tyrosine phosphatases (PTPs) regulating cell death and responses to neurotrophins during neural development remain unknown. To determine if the leukocyte common antigen‐related (LAR) PTP regulates these processes, PC12 cells were made LAR‐deficient via stable transfection with an LAR antisense transgene. LAR‐deficient cells demonstrated a stable novel phenotype, including a two‐fold increase in nerve growth factor‐ but not fibroblast growth factor‐induced neurite outgrowth. Upon serum‐deprivation, LAR‐deficient cells exhibited a two‐ to three‐fold decrease in cell death. The findings that an endogenous PTP promotes cell death and counter‐regulates neurotrophin actions introduce a major new receptor gene family to neurotrophic processes and suggest novel strategies for preventing cell death and augmenting neurotrophin function. © 2000 John Wiley & Sons, Inc. J Neurobiol 42: 477–486, 2000  相似文献   

7.
Axonal growth and guidance, like other aspects of neuronal differentiation, can be regulated by changes in tyrosine phosphorylation. Although much is known concerning the role of tyrosine kinases in these processes, relatively little is known about the nature and function of protein tyrosine phosphatases (PTPs) that may be involved. To identify the PTPs expressed in the embryonic chicken CNS at the time of axon growth, we performed a polymerase chain reaction based “screen” using degenerate primers directed against conserved regions of the PTP catalytic domain. We obtained five distinct PTP-related cDNAs, two of which code for novel PTPs. One, designated CRYP-2, is selectively expressed in the CNS. Full-length cloning of CRYP-2 revealed that it is a receptor-type PTP with an adhesion molecule-like extracellular region comprising fibronectin (FN) type III repeats and a single catalytic domain in the intracellular region. It is alternatively spliced in the juxtamembrane region, similar to other PTPs recently cloned. CRYP-2 mRNA is strongly expressed in the brain during the time of axon growth; it is downregulated toward the end of embryo-genesis. Western blot analysis identifies a 330-kDa glycoprotein as CRYP-2 and confirms that the protein is downregulated after hatching. Immunostaining of cerebellar neurons in vitro reveals that CRYP-2 is expressed on neuronal cell bodies and processes, but not on glia. The CAM-like structure, developmental pattern of expression, and neuron-specific localization of the CRYP-2 PTP suggest that it is involved in neuronal differentiation, particularly axon growth. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Mitochondrial tyrosine phosphorylation is emerging as an important mechanism in regulating mitochondrial function. This article, aimed at identifying which kinases are the major agents in mitochondrial tyrosine phosphorylation, shows that this role should be attributed to Src family members. Indeed, various members of this family, for example, Fgr, Fyn, Lyn, c-Src, are constitutively present in the internal structure of mitochondria as well as Csk, a key enzyme in the regulation of the activity of this family. By means of different approaches, biochemical fractioning, Western blotting and immunogold analysis "in situ" of phosphotyrosine signaling, evidence is reported on the existence of a signal transduction pathway from plasma membrane to mitochondria, resulting in increasing Src-dependent mitochondrial tyrosine phosphorylation. The activation of Src kinases at mitochondrial level is associated with the proliferative status where several mitochondrial proteins are specifically tyrosine-phosphorylated.  相似文献   

9.
A chimeric molecule consisting of the extracellular domain of the adhesion molecule, N-cadherin, fused to the Fc region of human IgG (NCAD-Fc) supports calcium-dependent cell adhesion and promotes neurite outgrowth following affinity-capture to a tissue culture substrate. When presented to cerebellar neurons as a soluble molecule, the NCAD-Fc stimulated neurite outgrowth in a manner equivalent to that seen for N-cadherin expressed as a cell surface glycoprotein. Neurons expressing a dominant-negative version of the fibroblast growth factor (FGF) receptor did not respond to soluble NCAD-Fc. In cells transfected with full-length N-cadherin and the FGF receptor, antibody-clustering of N-cadherin resulted in a co-clustering of the FGF receptor to discrete patches in the cell membrane. The data demonstrate that the ability of N-cadherin to stimulate neurite outgrowth can be dissociated from its ability to function as a substrate associated adhesion molecule. The N-cadherin and the FGF receptor co-clustering in cells provides a basis for the neurite outgrowth response stimulated by N-cadherin being dependent on FGF receptor function.  相似文献   

10.
The role of protein kinase C (PKC) in tyrosine phosphorylation of the N‐methyl‐d ‐aspartate receptor (NMDAR) following transient cerebral ischemia was investigated. Transient (15 min) cerebral ischemia was produced in adult rats by four‐vessel occlusion and animals allowed to recover for 15 or 45 min. Following ischemia, tyrosine phosphorylation of NR2A and NR2B and activated Src‐family kinases (SFKs) and Pyk2 were increased in post‐synaptic densities (PSDs). Phosphorylation of NR2B on Y1472 by PSDs isolated from post‐ischemic forebrains was inhibited by the SFK specific inhibitor PP2, and by the PKC inhibitors GF109203X (GF), Gö6976 and calphostin C. Intravenous injection of GF immediately following the ischemic challenge resulted in decreased phosphorylation of NR1 on PKC phosphorylation sites and reduced ischemia‐induced increases in tyrosine phosphorylation of NR2A and NR2B without affecting the increase in total tyrosine phosphorylation of hippocampal proteins. Ischemia‐induced increases in activated Pyk2 and SFKs in PSDs, but not the translocation of PKC, Pyk2 or Src to the PSD, were also inhibited by GF. The inactive homologue of GF, bisindolylmaleimide V, had no effect on these parameters. The results are consistent with a role for PKC in the ischemia‐induced increase in tyrosine phosphorylation of the NMDAR, via a pathway involving Pyk2 and Src‐family kinases.  相似文献   

11.
Brassinosteroid-induced phosphorylation of tyrosine residues in proteins was studied. Proteins of crude extract of pea leaves were analyzed by one- and two-dimensional electrophoresis followed by Western blotting with monoclonal antibodies PY20 to phosphotyrosine proteins. One- and two-dimensional electrophoresis revealed 7 and 13 tyrosine-phosphorylated proteins, respectively. Brassinolide increased the phosphorylation level of most of these proteins. With inhibitors of tyrosine protein phosphatases, such as phenylarsine oxide and orthovanadate, the level of tyrosine phosphorylation of these proteins increased.  相似文献   

12.
13.
Possible roles of coexisting cells in inducing neurite growth from a nerve cell were studied. Nerve growth factor (NGF)-inducing neurite growth from PC12h-R (a cell line derived from cultured nerve cells) was investigated at various cell densities. At the cell density 102104 cells/ml neurites appeared even without NGF. In contrast, no neurite appeared without NGF in single cell culture. The neurite growth observed in plural cell culture without NGF was only partially inhibited by antibody to NGF receptor (Ab-NGFR). However, the effect of the used medium alone was mostly inhibited by Ab-NGFR. These results suggest that the neurite inducing potency of coexisting cells is via different sites than the NGF receptor.Abbreviations Ab-IgG-FITC anti-mouse-IgG labeled with fluorescein isothiocyanate - Ab-NF monoclonal antibody to neurofilament 160 kD - Ab-NGFR monoclonal antibody to NGF receptor - BDNF brain-derived neurotrophic factor - D-medium medium for differentiation culture - DMEM Dulbecco's modified Eagle's medium - M-medium medium for multiplication culture - NGF nerve growth factor - NGFR NGF receptor - NT-3 neurotrophin-3 - PC12 pheochromocytoma cell line - PC12h-R subclone of PC12 - Sup-D supernatant of D-medium  相似文献   

14.
15.
Nerve growth cones contain mRNA and its translational machinery and thereby synthesize protein locally. The regulatory mechanisms in the growth cone, however, remain largely unknown. We previously found that the calcium entry‐induced increase of phosphorylation of eukaryotic elongation factor‐2 (eEF2), a key component of mRNA translation, within growth cones showed growth arrest of neurites. Because dephosphorylated eEF2 and phosphorylated eEF2 are known to promote and inhibit mRNA translation, respectively, the data led to the hypothesis that eEF2‐mediating mRNA translation may regulate neurite outgrowth. Here, we validated the hypothesis by using a chromophore‐assisted light inactivation (CALI) technique to examine the roles of localized eEF2 and eEF2 kinase (EF2K), a specific calcium calmodulin‐dependent enzyme for eEF2 phosphorylation, in advancing growth cones of cultured chick dorsal root ganglion (DRG) neurons. The phosphorylated eEF2 was weakly distributed in advancing growth cones, whereas eEF2 phosphorylation was increased by extracellular adenosine triphosphate (ATP)‐evoked calcium transient through P2 purinoceptors in growth cones and resulted in growth arrest of neurites. The increase of eEF2 phosphorylation within growth cones by inhibition of protein phosphatase 2A known to dephosphorylate eEF2 also showed growth arrest of neurites. CALI of eEF2 within growth cones resulted in retardation of neurite outgrowth, whereas CALI of EF2K enhanced neurite outgrowth temporally. Moreover, CALI of EF2K abolished the ATP‐induced retardation of neurite outgrowth. These findings suggest that an eEF2 phosphorylation state localized to the growth cone regulates neurite outgrowth. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

16.
Components of the extracellular matrix are believed to guide both nerve cells and neurites to their targets during embryogenesis and, therefore, might be useful for controlling regeneration of nervous tissue in adults. To study the influence of extracellular conditions on neurite outgrowth and cell motility, PC12 cells were suspended in three-dimensional gels containing (i) collagen (0.4 to 2 mg/mL), (ii) collagen (1 mg/mL) with added fibronectin or laminin (1 to 100 mug/mL), and (iii) agarose (7 mg/mL) with added collagen (0.001 to 1 mg/mL). Neurite outgrwoth was stimulated with nerve growth factor (NGF) and both the extent of neurite outgrowth ad cell aggregation were quantitated over 10 to 12 days in culture. The extent of neurite outgrowth was greatest at the lowest collagen concentration tested (0.4 mg/mL) and decreased with increasing concentration. The addition of laminin or fibronectin altered the extent of neurite outgrowth in collagen gels, but the differences were small. Although no neurite growth was observed in pure agarose gels, considerable neurite outgrowth occurred with the addition of small amounts (>/=0.01 mg/mL) of collagen. Mean aggregate size increased more quickly in gels with lower concentrations of collagen. For cells in 1.0 mg/mL collagen, a four- to fivefold increase in aggregate volume was seen between days 2 and 10 o the culture period, whereas the increase in DNA content during this same period was less than twofold, suggesting that the cells were aggregating, not multiplying. These results suggest that the composition of the matrix supporting nerve cells has a significant effect on both neurite outgrowth and cell motility. (c) 1994 John Wiley & Sons, Inc.  相似文献   

17.
The effect of ethanol on insulin-like growth factor-1 (IGF-I)-mediated signal transduction and functional activation in neuronal cells was examined. In human SH-SY5Y neuroblastoma cells, ethanol inhibited tyrosine autophosphorylation of the IGF-I receptor. This corresponded to the inhibition of IGF-I-induced phosphorylation of p42/p44 mitogen-activated/extracellular signal-regulated protein kinase (MAPK) by ethanol. Insulin-related substrate-2 (IRS-2) and focal adhesion kinase phosphorylation were reduced in the presence of ethanol, which corresponded to the prevention of lamellipodia formation (30 min). By contrast, ethanol had no effect on Shc phosphorylation when measured up to 1 h, and did not affect the association of Grb-2 with Shc. Neurite formation at 24 h was similarly unaffected by ethanol. The data indicate that the IGF-I receptor is a target for ethanol in SH-SY5Y cells However, there is diversity in the sensitivity of signaling elements within the IGF-I receptor tyrosine kinase signaling cascades to ethanol, which can be related to the inhibition of specific functional events in neuronal activation.  相似文献   

18.
19.
Desmogleins are desmosomal cadherins that mediate cell-cell adhesion. In stratified squamous epithelia there are two major isoforms of desmoglein, 1 and 3, with different distributions in epidermis and mucous membrane. Since either desmoglein isoform alone can mediate adhesion, the reason for their differential distribution is not known. To address this issue, we engineered transgenic mice with desmoglein 3 under the control of the involucrin promoter. These mice expressed desmoglein 3 with the same distribution in epidermis as found in normal oral mucous membranes, while expression of other major differentiation molecules was unchanged. Although the nucleated epidermis appeared normal, the epidermal stratum corneum was abnormal with gross scaling, and a lamellar histology resembling that of normal mucous membrane. The mice died shortly after birth with severe dehydration, suggesting excessive transepidermal water loss, which was confirmed by in vitro and in vivo measurement. Ultrastructure of the stratum corneum showed premature loss of cohesion of corneocytes. This dysadhesion of corneocytes and its contribution to increased transepidermal water loss was confirmed by tape stripping. These data demonstrate that differential expression of desmoglein isoforms affects the major function of epidermis, the permeability barrier, by altering the structure of the stratum corneum.  相似文献   

20.
The CDC42 regulated non-receptor tyrosine kinase ACK-2 has been associated with integrin signaling. In this report, the effect of ACK-2 on the modulation of cell spreading and motility was examined. HeLa cells expressing epitope-tagged wild type ACK-2 showed a slower rate of spreading on fibronectin when compared with untransfected cells. An ACK-2 protein lacking its SH3 domain was still capable of modulating HeLa cell spreading suggesting that its tyrosine kinase activity is sufficient to induce the observed phenotype. The ACK-2 effect on the rate of cell spreading did not involve inhibition of integrin-mediated activation of PI-3K signaling, since it did not alter membrane translocation of a GFP-PH-AKT domain (AKT pleckstrin homology domain) used as a reporter for PI-3K products induced by cell adhesion. The ACK-2 effect appears to be upstream from the adapter protein CrkII, since co-expression of CrkII and ACK-2 results in a neutralization of ACK-2 mediated effects on HeLa cell spreading. Similarly, co-expression of p130Cas, which interacts with the adapter protein CrkII, with ACK-2, also results in a partial reversion of the ACK-2 effects on cell spreading. CrkII mediated reversal of the ACK-2 induced phenotype requires the activity of the small GTPase, Rap1. Co-expression of ACK-2 and CrkII with a dominant negative form of Rap1 reverses the neutralization by CrkII suggesting that CrkII mediated activation of Rap1 is required. However, an active form of Rap1 is not sufficient to reverse the ACK-2 phenotype by itself. A role for Rac1 in ACK-2 effects was also established. An activated Rac1 protein neutralized the ACK-2 mediated inhibition of cell spreading. A direct measurement of cell motility by either a modified Boyden chamber or wounding assay demonstrates that ACK-2 overexpression increases the motility of the cells. These results suggest that ACK-2 modulates HeLa cells spreading upstream of pathways regulated by CrkII and that ACK-2 may regulate cell motility by controlling the activation of small GTPases such as Rap1 and Rac1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号