首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five different, well-characterized mutants of the R1-6 rhodopsin gene (ninaE), which corresponds to the rod opsin gene of vertebrates, have been examined morphologically as a function of age (up to 9 weeks) to determine whether or not the photoreceptors degenerate and to assess the pattern of degeneration. Structural deterioration of R1-6 photoreceptors with age has been found in all five mutants. The structural pattern of degeneration is similar in the five mutants, but the time course of degeneration is allele dependent and varies greatly among the five, with the strongest alleles causing the fastest degeneration. The degeneration appears to be independent of either the illumination cycle to which the animals are exposed or the presence of screening pigments in the eye. Although the degeneration first appears in R1-6 photoreceptors, eventually R7/8 photoreceptors, which correspond to cones of vertebrates, are also affected. In many of these mutants, striking proliferations of membrane processes have been observed in the subrhabdomeric region of R1-6 photoreceptors. It is hypothesized that (1) this accumulation of membranes may be caused by the failure of newly synthesized membranes that are inserted into the base of microvilli to be assembled into R1-6 rhabdomeres and (2) this failure may be caused by the extremely low concentration of normal R1-6 rhodopsin in the ninaE mutants.  相似文献   

2.
A Drosophila mutant (ninaAP228) that is low in rhodopsin concentration but identical to the wild-type fly in photoreceptor morphology has been isolated. R1-6 photoreceptors of the mutant differ from those of wild type in that (a) the prolonged depolarizing afterpotential (PDA) is absent, (b) concentrations of rhodopsin and opsin are substantially reduced, and (c) intramembrane particle density in the membranes of the rhabdomeres is low. Each of these traits is mimicked by depriving wild- type flies of vitamin A. The ninaAP228 mutation differs from vitamin A deprivation in that in the mutant (a) the rhabdomeric membrane particle density is reduced only in the R1-6 photoreceptors and not in R7 or R8, (b) the PDA can be elicited from the R7 photoreceptors, and (c) photoconversion of R1-6 rhodopsin to metarhodopsin by ultraviolet (UV) light is considerably more efficient than in vitamin A-deprived flies. The absorption properties of the mutant rhodopsin in the R1-6 photoreceptors appear to be identical to those of wild type as judged from rhodopsin difference spectra. The results suggest that the mutation affects the opsin, rather than the chromophore, component of rhodopsin molecules in the R1-6 photoreceptors. The interaction between the chromophore and R1-6 opsin, however, appears to be normal.  相似文献   

3.
Summary ThenorpA H44 phototransduction mutant ofDrosophila melanogaster, an allele that, on eclosion, does not exhibit a receptor potential was found, at later ages, to undergo light and temperature dependent degeneration of its photoreceptors as well as decreases in rhodopsin concentration. Pseudopupil measurements and light and electron microscopy were used to monitor the structure of the photoreceptors. WhennorpA H44 flies were maintained exclusively in the dark, no changes in structure or rhodopsin concentration were observed. When maintained on a 12 h light-12 h dark cycle, structural changes were first observed at 6 days of age for flies maintained at 24 °C or at 12 days of age for flies maintained at 19 °C. When the light-dark cycle was initiated after 10 days in the dark there was a more rapid loss of rhodopsin concentration and pseudopupil. The data suggest that even in the dark, although no obvious changes in structure or rhodopsin concentration were observed, certain processes that support these components had been affected.NorpA P12 , an allele that exhibits small receptor potential amplitudes, also displayed age- and light-dependent photoreceptor degeneration and decreases in rhodopsin concentration, whereas no degeneration or decreases in rhodopsin were observed innorpA P16 , an allele that exhibits receptor potential amplitudes similar to those of wild-type. The data suggest that the processes that affect phototransduction, such as the phosphatidylinositol cycle, have a long-term role in the maintenance of rhodopsin concentration and photoreceptor integrity.Abbreviation PI phosphatidylinositol  相似文献   

4.
The photoreceptor membrane of Drosophila melanogaster (wild type, vitamin A-deprived wild type, and the mutants ninaAP228, ninaBP315, and oraJK84) was studied by freeze-fracture electron microscopy. The three mutations caused a decrease in the number of particles on the protoplasmic face of the rhabdomeric membrane. The ninaAP228 mutation affected only the peripheral photoreceptors (R1-6), while the ninaBP315 mutation affected both the peripheral (R1-6) and the central photoreceptors (R7). The oraJK84 mutation, which essentially eliminates R1-6 rhabdomeres, was found to drastically deplete the membrane particles in the vestigial R1-6 rhabdomeres but not in the normal rhabdomeres of R7 photoreceptors, suggesting that the failure of the oraJK84 mutant to form normal R1-6 rhabdomeres may be due to a defect in a major R1-6 photoreceptor-specific protein in the mutant. In all cases in which both the rhabdomeric particle density and rhodopsin content were studied, the mutations or vitamin A deprivation was found to reduce both these quantities, supporting the idea that at least the majority of the rhabdomeric membrane particles are closely associated with rhodopsin. Vitamin A deprivation and the mutations also reduced the number of particles in the plasma membrane as in the rhabdomeric membrane, suggesting that both classes of membrane contain rhodopsin.  相似文献   

5.
Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates in endosomal compartments in these mutants and leads to light-dependent retinal degeneration. Moreover, we also show that in dying photoreceptors the internalized rhodopsin is not degraded but instead shows characteristics of insoluble proteins. Together these data implicate buildup of rhodopsin in the late endosomal system as a novel trigger of death of photoreceptor neurons.  相似文献   

6.
Electrophysiological study of Drosophila rhodopsin mutants   总被引:6,自引:2,他引:4       下载免费PDF全文
Electrophysiological investigations were carried out on several independently isolated mutants of the ninaE gene, which encodes opsin in R1-6 photoreceptors, and a mutant of the ninaD gene, which is probably important in the formation of the rhodopsin chromophore. In these mutants, the rhodopsin content in R1-6 photoreceptors is reduced by 10(2)-10(6)-fold. Light-induced bumps recorded from even the most severely affected mutants are physiologically normal. Moreover, a detailed noise analysis shows that photoreceptor responses of both a ninaE mutant and a ninaD mutant follow the adapting bump model. Since any extensive rhodopsin-rhodopsin interactions are not likely in these mutants, the above results suggest that such interactions are not needed for the generation and adaptation of light-induced bumps. Mutant bumps are strikingly larger in amplitude than wild-type bumps. This difference is observed both in ninaD and ninaE mutants, which suggests that it is due to severe depletion of rhodopsin content, rather than to any specific alterations in the opsin protein. Lowering or buffering the intracellular calcium concentration by EGTA injection mimics the effects of the mutations on the bump amplitude, but, unlike the mutations, it also affects the latency and kinetics of light responses.  相似文献   

7.
Rhodopsin activation causes retinal degeneration in Drosophila rdgC mutant   总被引:5,自引:0,他引:5  
F Steele  J E O'Tousa 《Neuron》1990,4(6):883-890
Drosophila rdgC (retinal degeneration-C) mutants show normal retinal morphology and photoreceptor physiology at young ages. Dark-reared rdgC flies retain this wild-type phenotype, but light-reared mutants undergo retinal degeneration. rdgC photoreceptors with low levels of rhodopsin as a result of vitamin A deprivation or a mutant rhodopsin (ninaE) gene fail to show rdgC-induced degeneration even after prolonged light treatment, demonstrating that degeneration occurs as a result of light stimulation of rhodopsin. Analysis of norpA; rdgC flies shows that the norpA-encoded phospholipase C, the target enzyme of the G protein activated by rhodopsin, is not required for rdgC-induced degeneration. Thus the rdgC+ gene product is required to prevent retinal degeneration that results from a previously unrecognized consequence of rhodopsin stimulation.  相似文献   

8.
Transgenic mice expressing a dominant mutation in the gene for the phototransduction molecule rhodopsin undergo retinal degeneration similar to that experienced by patients with the retinal degenerative disease, retinitis pigmentosa (RP). Although the mutation is thought to cause photoreceptor degeneration in a cell‐autonomous manner, the fact that rod photoreceptor degeneration is slowed in chimeric wild‐type/mutant mice suggests that cellular interactions are also important for maintaining photoreceptor survival. To more fully characterize the nature of the cellular interactions important for rod degeneration in the RP mutant mice, we have used an in vitro approach. We found that when the retinas of the transgenic mice were isolated from the pigmented epithelium and cultured as explants, the rod photoreceptors underwent selective degeneration with a similar time course to that observed in vivo. This selective rod degeneration also occurred when the cells were dissociated and cultured as monolayers. These data indicate that the mutant rod photoreceptors degenerate when removed from their normal cellular relationships and without contact with the pigmented epithelium, thus confirming the relative cell autonomy of the mutant phenotype. We next tested whether normal retinal cells could rescue the mutant photoreceptors in a coculture paradigm. Coculture of transgenic mouse with wild‐type mouse or rat retinal cells significantly enhanced transgenic rod photoreceptor survival; this survival‐promoting activity was diffusible through a filter, was heat labile, and not present in transgenic retinal cells. Several peptide growth factors known to be present in the retina were tested as the potential survival‐promoting molecule responsible for the effects of the conditioned medium; however, none of them promoted survival of the photoreceptors expressing the Pro23His mutant rhodopsin. Nevertheless, we were able to demonstrate that the mutant photoreceptors could be rescued by an antagonist to a retinoic acid receptor, suggesting that the endogeneous survival‐promoting activity may function through this pathway. These data thus confirm and extend the findings of previous work that local trophic interactions are important in regulating rod photoreceptor degeneration in retinitis pigmentosa. A diffusible factor found in normal but not transgenic retinal cells has a protective effect on the survival of rod photoreceptors from Pro23His mutant rhodopsin mice. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 475–490, 1999  相似文献   

9.
Neutral ceramidase, a key enzyme of sphingolipid metabolism, hydrolyzes ceramide to sphingosine. These sphingolipids are critical structural components of cell membranes and act as second messengers in diverse signal transduction cascades. Here, we have isolated and characterized functional null mutants of Drosophila ceramidase. We show that secreted ceramidase functions in a cell-nonautonomous manner to maintain photoreceptor homeostasis. In the absence of ceramidase, photoreceptors degenerate in a light-dependent manner, are defective in normal endocytic turnover of rhodopsin, and do not respond to light stimulus. Consistent with a cell-nonautonomous function, overexpression of ceramidase in tissues distant from photoreceptors suppresses photoreceptor degeneration in an arrestin mutant and facilitates membrane turnover in a rhodopsin null mutant. Furthermore, our results show that secreted ceramidase is internalized and localizes to endosomes. Our findings establish a role for a secreted sphingolipid enzyme in the regulation of photoreceptor structure and function.  相似文献   

10.
Journal of Comparative Physiology A - Intense short wavelength adaptation converts rhodopsin to a long wavelength absorbing stable metarhodopsin and inactivates R1–6 photoreceptors...  相似文献   

11.
Retinitis pigmentosa (RP) relates to a group of hereditary neurodegenerative diseases of the retina. On the cellular level, RP results in the primary death of rod photoreceptors, caused by rod-specific mutations, followed by a secondary degeneration of genetically normal cones. Different mechanisms may influence the spread of cell death from one photoreceptor type to the other. As one of these mechanisms a gap junction-mediated bystander effect was proposed, i.e., toxic molecules generated in dying rods and propagating through gap junctions induce the death of healthy cone photoreceptors. We investigated whether disruption of rod-cone coupling can prevent secondary cone death and reduce the spread of degeneration. We tested this hypothesis in two different mouse models for retinal degeneration (rhodopsin knockout and rd1) by crossbreeding them with connexin36-deficient mice as connexin36 represents the gap junction protein on the cone side and lack thereof most likely disrupts rod-cone coupling. Using immunohistochemistry, we compared the progress of cone degeneration between connexin36-deficient mouse mutants and their connexin36-expressing littermates at different ages and assessed the accompanied morphological changes during the onset (rhodopsin knockout) and later stages of secondary cone death (rd1 mutants). Connexin36-deficient mouse mutants showed the same time course of cone degeneration and the same morphological changes in second order neurons as their connexin36-expressing littermates. Thus, our results indicate that disruption of connexin36-mediated rod-cone coupling does not stop, delay or spatially restrict secondary cone degeneration and suggest that the gap junction-mediated bystander effect does not contribute to the progression of RP.  相似文献   

12.
Light-induced photoreceptor apoptosis occurs in many forms of inherited retinal degeneration resulting in blindness in both vertebrates and invertebrates. Though mutations in several photoreceptor signaling proteins have been implicated in triggering this process, the molecular events relating light activation of rhodopsin to photoreceptor death are yet unclear. Here, we uncover a pathway by which activation of rhodopsin in Drosophila mediates apoptosis through a G protein-independent mechanism. This process involves the formation of membrane complexes of phosphorylated, activated rhodopsin and its inhibitory protein arrestin, and subsequent clathrin-dependent endocytosis of these complexes into a cytoplasmic compartment. Together, these data define the proapoptotic molecules in Drosophila photoreceptors and indicate a novel signaling pathway for light-activated rhodopsin molecules in control of photoreceptor viability.  相似文献   

13.
14.
Summary The prolonged depolarizing afterpotential (PDA) is a phenomenon which is tightly linked to visual pigment conversion. In order to determine whether processes underlying PDA induction and depression can spread in space, the PDA was recorded intracellularly in white-eyedCalliphora R1-6 photoreceptors and used to examine interactions between processes induced by activating statistically different photopigment molecules (Figs. 3–6). It was found that a PDA induced by converting some fraction of rhodopsin (R) molecules forward into the metarhodopsin (M) state can be completely depressed by equal or smaller amounts of pigment conversion, backward from metarhodopsin to rhodopsin even when largely different sets of pigment molecules were shifted in the respective directions, in agreement with previous experiments conducted on the barnacle. The characteristics of the afterpotentials obtained following the cessation of strong blue and green light stimuli which did not cause a net pigment conversion was examined (Figs. 7, 8). It was found that these afterpotentials, obtained when nonet R to M conversion took place, could not be depressed by an opposite net large M to R pigment conversion. Accordingly we propose to restrict the term PDA to an afterpotential which can be depressed by a net M to R pigment conversion. It is concluded: (a) that some processes underlying PDA induction and depression inCalliphora must interact at a distance which extends at least to the nearest neighboring pigment molecule, and (b) that inCalliphora photoreceptors net pigment conversion is required in order to induce and depress a PDA.Abbreviations R rhodopsin - M metarhodopsin - R to M rhodopsin to metarhodopsin pigment conversion - M to R metarhodopsin to rhodopsin pigment conversion - PDA prolonged depolarizing afterpotential - ERG electroretinogram - M potential metarhodopsin potential - ERP early receptor potential  相似文献   

15.
ABCA4, also known as ABCR or the rim protein, is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters expressed in vertebrate rod and cone photoreceptor cells and localized to outer segment disk membranes. ABCA4 is organized in two tandem halves, each consisting of a transmembrane segment followed successively by a large exocytoplasmic domain, a multispanning membrane domain, and a nucleotide-binding domain. Over 400 mutations in ABCA4 have been linked to Stargardt macular degeneration and related retinal degenerative diseases that cause severe vision loss in affected individuals. Direct binding studies and ATPase activation measurements have identified N-retinylidene-phosphatidylethanolamine, a product generated from the photobleaching of rhodopsin, as the substrate for ABCA4. Mice deficient in ABCA4 accumulate phosphatidylethanolamine, all-trans retinal, and N-retinylidene-phosphatidylethanolamine in photoreceptors and the diretinal pyridinium compound A2E in retinal pigment epithelial cells. On the basis of these studies, ABCA4 is proposed to actively transport or flip N-retinylidene-phosphatidylethanolamine from the lumen to the cytoplasmic side of disc membranes following the photobleaching of rhodopsin. This transport activity insures that retinoids do not accumulate in disc membranes. Disease-linked mutations in ABCA4 that result in diminished transport activity lead to an accumulation of all-trans retinal and N-retinylidene-PE in disc membranes which react to produce A2E precursors. A2E progressively accumulates as lipofuscin deposits in retinal pigment epithelial cells as a result of phagocytosis of outer segment discs. A2E and photo-oxidation products cause RPE cell death and consequently photoreceptor degeneration resulting in a loss in vision in individuals with Stargardt macular degeneration and other retinal degenerative diseases associated with mutations in ABCA4.  相似文献   

16.
The prolonged depolarizing after potential (PDA) in the R1–6 receptors of the fly was used to isolate intermediate processes in phototransduction which are not manifested directly in the voltage response. It is first demonstrated that a pigment shift by light from metarhodopsin to rhodopsin in four species of the flies: Drosophila, Calliphora, Chrysomya and Musca induces an independent antagonistic process to the PDA, which is manifested in a strong inhibitory effect on PDA induction and is called the anti-PDA.By using mutants of Drosophila the existence of processes underlying the PDA were examined. The norpA H52and the trp mutant were used in which the voltage response of the photoreceptors could be reversibly abolished by elavated temperature and long intense light respectively. It is shown that the excitatory process underlying the PDA could be induced and depressed in conditions that block the voltage response of the photoreceptors, thus indicating the existance of intermediate processes which link the pigment activation by light to the PDA voltage response.Based on material presented at the European Neurosciences Meeting, Florence, September 1978  相似文献   

17.
Small GTP binding proteins regulate diverse biological processes including gene expression, cytoskeleton reorganization, and protein and vesicular transport. While small GTPases have been investigated in a wide variety of cells, few studies have addressed their role in photoreceptors. In vertebrate retinal rods, the light stimulus is transmitted from rhodopsin via the pathway mediated by the heterotrimeric G protein transducin. To increase their sensitivity to light, photoreceptors accumulate remarkably high concentrations of rhodopsin and transducin in specialized cellular compartments, the outer segments (OS). Transport of these proteins from the inner segments is regulated by the small GTPases Rab6 and Rab8, which do not enter OS. Here, we asked if small G proteins have other functions in photoreceptors. We show that OS contain the small GTPase Rac-1, a member of the Rho family. In contrast to other cells, Rac-1 in OS is exclusively associated with the membranes and resides in lipid rafts. Most importantly, Rac-1 is activated by light. This activation is specifically blocked by a synthetic peptide corresponding to the Asn-Pro-X-X-Tyr motif found in rhodopsin, and Rac-1 coprecipitates with rhodopsin on Concanavalin A Sepharose. These data provide the first direct evidence for the existence of a novel pathway activated by rhodopsin.  相似文献   

18.
Visual pigment extracts prepared from rhabdomeric membranes of vitamin A deficient blowflies contain a 5–10 times lower concentration of rhodopsin than extracts from flies which were raised on a vitamin A rich diet. Spectrophotometry showed that digitonin-solubilized rhodopsin from blowfly photoreceptors R1–6 has an absorbance maximum at about 490 nm, but no unusually enhanced β-band in the ultraviolet. The extracts did not contain detectable concentrations of other visual pigments nor was there any evidence for the presence of photostable vitamin A derivatives.Sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that the concentration of opsin in the rhabdomeric membrane is significantly reduced in vitamin A deficient flies compared to normal flies. The results indicate that the synthesis of opsin or its incorporation into the photoreceptor membrane is regulated by the chromophore concentration in the receptor cell. Furthermore, our findings open up the possibility that differences in the spectral absorption and excitability of photoreceptors from normal and vitamin A deficient flies result from the differing opsin content of the rhabdomeres.  相似文献   

19.
The effects of activating mutations associated with night blindness on the stoichiometry of rhodopsin interactions with G protein-coupled receptor kinase 1 (GRK1) and arrestin-1 have not been reported. Here we show that the monomeric form of WT rhodopsin and its constitutively active mutants M257Y, G90D, and T94I, reconstituted into HDL particles are effectively phosphorylated by GRK1, as well as two more ubiquitously expressed subtypes, GRK2 and GRK5. All versions of arrestin-1 tested (WT, pre-activated, and constitutively monomeric mutants) bind to monomeric rhodopsin and show the same selectivity for different functional forms of rhodopsin as in native disc membranes. Rhodopsin phosphorylation by GRK1 and GRK2 promotes arrestin-1 binding to a comparable extent, whereas similar phosphorylation by GRK5 is less effective, suggesting that not all phosphorylation sites on rhodopsin are equivalent in promoting arrestin-1 binding. The binding of WT arrestin-1 to phospho-opsin is comparable to the binding to its preferred target, P-Rh*, suggesting that in photoreceptors arrestin-1 only dissociates after opsin regeneration with 11-cis-retinal, which converts phospho-opsin into inactive phospho-rhodopsin that has lower affinity for arrestin-1. Reduced binding of arrestin-1 to the phospho-opsin form of G90D mutant likely contributes to night blindness caused by this mutation in humans.  相似文献   

20.
Two genes in Drosophila, rdgA and rdgB, which when defective cause retinal degeneration, were discovered by Hotta and Benzer (Hotta, Y., and S. Benzer. 1970. Proc. Natl, Acad. Sci. U. S, A. 67:1156-1163). These mutants have photoreceptor cells that are histologically normal upon eclosion but subsequently degenerate. The defects in the rdgA and rdgB mutants were localized by the study of genetic mosaics to the photoreceptor cells. In rdgB mutants retinal degeneration is light induced. It can be prevented by rearing the flies in the dark or by blocking the receptor potential with a no-receptor-potential mutation, norpA. Vitamin A deprivation and genetic elimination of the lysosomal enzyme acid phosphatase alsoprotect the photoreceptors of rdgB flies against light-induced damage. The photopigment kinetics of dark-reared rdgB flies appear normal in vitro by spectrophotometric measurements, and in vivo by measurements of the M potential. In normal Drosophila, a 1-s exposure to intense 470-nm light produces a prolonged depolarizing afterpotential (PDA) which can last for several hours. In dark-reared rdgB mutants the PDA lasts less than 2 min;; it appears to initiate the degeneration process, since the photoreceptors become permanently unresponsive after a single such exposure. Another mutant was isolated which prevents degeneration in rdgB flies but which has a normal receptor potential. This suppressor of degeneration is an allele of norpA. It is proposed that the normal norpA gene codes for a product which, when activated, leads to the receptor potential, and which is inactivated by the product of the normal rdgB gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号