首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proposed Mbaéré-Bodingué National Park (872km2) is located in the southwestern part of the Central African Republic and consists of terra firma rain forests and seasonally flooded forests. We assessed the conservation significance of this site using data on wildlife and habitat conditions collected during a comprehensive primate survey. Scores were attributed to a system of variables and sub-variables to assess the conservation value of the proposed park at the national level. We identified a total of 10 diurnal primate species (eight monkeys, two apes) and flooded forests were considered as a key habitat for primates as they hold a greater number of species than terra firma forests. We recorded the presence of 12 mammal species listed under the 2000 IUCN Red List of Threatened Species, including four classified as Endangered (two Primates, one Proboscidae and one Insectivora). We found that the conservation value of the proposed park ranked second out of the 15 existing protected areas of the country. Primate abundance was found to be generally higher than in the nearby Dzanga-Ndoki National Park (the sole other park located in the same vegetation unit), in particular for the species occurring in flooded forests. This highlights the fact that the proposed Mbaéré-Bodingué National Park is an important area for the conservation of species associated with flooded forests, a habitat which is currently under-represented in the national protected area system. Poaching pressure was identified as the main current threat to the integrity of the proposed park.  相似文献   

2.
Given that 90% of nonhuman primates depend on tropical forests, the most effective way to conserve them must emphasize the conservation of tropical forest habitats. To achieve this effectively, we need to address root causes of forest disturbance in developing nations: poverty, high population growth rates, crippling foreign debts, and the overdependence on tree and land resources. Moreover, it is now generally accepted that most primate populations will in future live in modified forest habitats. Studies of how primate populations respond to forest habitat modifications are therefore critical to future primate conservation. Currently most studies of primate responses to forest habitat alterations are difficult to interpret owing to differences in research methods and lack of information on the past histories of the modified forests. We review potential factors that may have to be considered while evaluating primate responses to forest habitat changes such as degradation and fragmentation.  相似文献   

3.
The geological history of Madagascar contains events that may have given rise to unusual factors that molded the primate communities of the island. In order to understand the impact of the factors we reviewed the elevational distribution of extant primate species in the humid forests. The elevational structuring of primates in the humid forests of Madagascar shows considerable differences from other tropical areas in the New World and Asia, which is correlated with the lack of large tracts of humid lowland habitat on Madagascar since it split from India.  相似文献   

4.
Estimates of population density and abundance are essential for the assessment of nonhuman primate conservation status, especially in view of increasing threats. We undertook the most extensive systematic primate survey yet of the Udzungwa Mountains of Tanzania, an outstanding region for primate endemism and conservation in Africa. We used distance sampling to survey three arboreal monkey species, including the endangered and endemic Udzungwa red colobus (Procolobus gordonorum). Overall, we encountered 306 primate clusters over 287 km walked along 162 line transects. We found the lowest cluster densities for both red colobus and Angolan colobus (Colobus angolensis; 0.8 clusters/km2) in the least protected forest (Uzungwa Scarp Forest Reserve, US), while we found the highest densities (3.2 and 2.6 clusters/km2 for red colobus; 3.2 and 2.7 clusters/km2for Angolan colobus) in two large and protected forests in the national park. Unexpectedly, Magombera, a small forest surrounded by plantations, had the highest densities of red colobus (5.0 clusters/km2), most likely a saturation effect due to the rapid shrinking of the forest. In contrast, Sykes’ monkey (Cercopithecus mitis monoides/moloneyi) had more similar densities across forests (3.1–6.6 clusters/km2), including US, suggesting greater resilience to disturbance in this species. For the endemic red colobus monkey, we estimated an abundance of 45–50,000 individuals across all forests, representing ca. 80% of the global population. Though this is a relatively high abundance, the increasing threats in some of the Udzungwa forests are of continued concern for the long-term survival of red colobus and other primates in the area.  相似文献   

5.
Anthropogenic disturbances have resulted in declines of seed-dispersing primate frugivores in tropical forests. Previous work has suggested that loss of seed dispersal by large frugivores may have a negative impact on ecosystem carbon storage by reducing tree biomass. However, we know little about the potential impacts of losing frugivores in Madagascar’s diverse rainforest ecosystem. Understanding the effects of frugivore extinction on carbon loss is relevant in Madagascar, where threatened lemur taxa are the only dispersers of many large-seeded plant species. Using a dataset of tree species composition and traits from the southeastern rainforests of Ranomafana National Park, we examined whether seed size and lemur-dependent dispersal are positively associated with above-ground tree biomass. We then simulated different scenarios of population declines of large-seeded trees (>10 mm seed length) dependent on lemur-mediated seed dispersal, to examine potential directional changes in carbon storage capacity of Malagasy forests under lemur loss. Lemur-dispersed tree species, which have large seeds, had higher above-ground biomass than other species. Our simulations showed that the loss of large frugivorous primates in Madagascar may decrease the forest’s potential to store carbon. These results demonstrate the importance of primate conservation for maintaining functioning ecosystems and forest carbon stocks in one of the world’s hottest hotspots of biodiversity.  相似文献   

6.
The distribution of most recently discovered or described lemur species remains poorly known, but many appear to have small geographical ranges, making them vulnerable to extinction. Research can contribute to future conservation actions on behalf of these species by providing accurate information on local distribution and abundance. The distribution of the world’s smallest primate, the endangered Madame Berthe’s mouse lemur (Microcebus berthae), is limited to the Menabe Central region of western Madagascar. This species was discovered in the 1990s, but many fundamental aspects of its ecology remain unknown. The aims of our study were therefore to determine the actual distribution of Microcebus berthae across the forests of this region, to estimate population density, and to examine the species’ response to anthropogenic activities. We established 35 1-km line transects across Menabe Central, on which we surveyed mouse lemurs by distance sampling and live trapping. Microcebus berthae does not occur in all remaining forests of this small region and its population density is highly heterogeneous, both across its geographic range and locally. Within its area of occupancy, the population of Microcebus berthae not only was distributed according to spatial heterogeneities of the habitat, but also responded to anthropogenic disturbances and varied seasonally. Our results indicate that Microcebus berthae is susceptible to habitat degradation and avoids human environments spatially. As none of the forest remnants in which the species still occurs were officially protected until recently, immediate conservation actions should focus on effectively protecting Kirindy and Ambadira forests.  相似文献   

7.
The inter-Andean tropical rainforests and dry forests of the Magdalena river basin (Tumbes-Choco-Magdalena biodiversity hotspot) in northern Colombia have undergone significant forest loss and degradation in recent decades. Six primate species inhabit this region, five of which are currently threatened with extinction and one of which—the brown spider monkey, Ateles hybridus—is considered critically endangered. Accurate and recent information on the distribution and conservation status of these threatened primate populations is scarce or nonexistent, even though such data are needed to implement successful conservation actions and management plans. Between 2006 and 2016, we evaluated the status and distribution of primates across inter-Andean lowland forests in northern Colombia. We visited 30 sites to evaluate the presence/absence of brown spider monkeys and other primate taxa in the region. We also carried out surveys at 10 of these sites to obtain estimates of primate population densities and demographic information from forests with different levels of anthropogenic disturbance. Novel data on primate presence/absence were obtained for 27 sites, and 136 records were collected in total. Only 33% of the sites visited were large forest fragments (>?500 Ha). This study confirms that at least six primate species are still present in the Rio Magdalena region, which represents the highest platyrrhine diversity west of the Andes. This study also confirms the persistence of a wild population of Colombian woolly monkeys (Lagothrix lagotricha lugens) in the Serranía de San Lucas. Assigning formal protected status to this region is an urgent priority for the conservation of primates in the Rio Magdalena region.  相似文献   

8.
A universal airborne LiDAR approach for tropical forest carbon mapping   总被引:3,自引:0,他引:3  
Airborne light detection and ranging (LiDAR) is fast turning the corner from demonstration technology to a key tool for assessing carbon stocks in tropical forests. With its ability to penetrate tropical forest canopies and detect three-dimensional forest structure, LiDAR may prove to be a major component of international strategies to measure and account for carbon emissions from and uptake by tropical forests. To date, however, basic ecological information such as height–diameter allometry and stand-level wood density have not been mechanistically incorporated into methods for mapping forest carbon at regional and global scales. A better incorporation of these structural patterns in forests may reduce the considerable time needed to calibrate airborne data with ground-based forest inventory plots, which presently necessitate exhaustive measurements of tree diameters and heights, as well as tree identifications for wood density estimation. Here, we develop a new approach that can facilitate rapid LiDAR calibration with minimal field data. Throughout four tropical regions (Panama, Peru, Madagascar, and Hawaii), we were able to predict aboveground carbon density estimated in field inventory plots using a single universal LiDAR model (r 2  = 0.80, RMSE = 27.6 Mg C ha−1). This model is comparable in predictive power to locally calibrated models, but relies on limited inputs of basal area and wood density information for a given region, rather than on traditional plot inventories. With this approach, we propose to radically decrease the time required to calibrate airborne LiDAR data and thus increase the output of high-resolution carbon maps, supporting tropical forest conservation and climate mitigation policy.  相似文献   

9.
The littoral forests of Madagascar are relatively unexplored ecosystems that are considered seriously threatened by deforestation and habitat fragmentation. We set out to describe the bird communities inhabiting the littoral forest remnants in three different sub-regions of southeastern Madagascar to determine the national importance of these forests for bird conservation. In total, 77 bird species were found inhabiting 14 littoral forest remnants. Of these species, 40 are endemic to Madagascar and a further 21 are endemic to the Indian Ocean sub-region, consisting of Madagascar, the Comoros and the Mascarenes. The matrix habitats (Melaleuca forests, marécage swamp forest, Eucalyptus plantations and Erica grassland) that immediately surround the littoral forests were depauperate of bird species and contained few species that were found within the littoral forests. The geographic location of littoral forest remnants had an important role in determining what bird species occurred within them, with the northern remnants having similar bird communities to nearby humid forest whilst the most southern remnant had a bird community that resembled those of nearby spiny forest habitats. Eleven bird species that have been previously described as being habitat-restricted endemics to either spiny forests or humid forests, were found in littoral forest remnants. These results suggest that these littoral forests may play an important transitional role between the two other major natural habitats (spiny forest and humid forest) of southeastern Madagascar. On this basis we advocate that the littoral forest remnants of southeastern Madagascar should be afforded continuing conservation priority.  相似文献   

10.
Old‐growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human‐modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs. Such critical roles are controversial, however, as they depend on successional, landscape and socio‐economic dynamics, which can vary widely within and across landscapes and regions. Understanding the main drivers of successional pathways of disturbed tropical forests is critically needed for improving management, conservation, and restoration strategies. Here, we combine emerging knowledge from tropical forest succession, forest fragmentation and landscape ecology research to identify the main driving forces shaping successional pathways at different spatial scales. We also explore causal connections between land‐use dynamics and the level of predictability of successional pathways, and examine potential implications of such connections to determine the importance of secondary forests for biodiversity conservation in HMTLs. We show that secondary succession (SS) in tropical landscapes is a multifactorial phenomenon affected by a myriad of forces operating at multiple spatio‐temporal scales. SS is relatively fast and more predictable in recently modified landscapes and where well‐preserved biodiversity‐rich native forests are still present in the landscape. Yet the increasing variation in landscape spatial configuration and matrix heterogeneity in landscapes with intermediate levels of disturbance increases the uncertainty of successional pathways. In landscapes that have suffered extensive and intensive human disturbances, however, succession can be slow or arrested, with impoverished assemblages and reduced potential to deliver ecosystem functions and services. We conclude that: (i) succession must be examined using more comprehensive explanatory models, providing information about the forces affecting not only the presence but also the persistence of species and ecological groups, particularly of those taxa expected to be extirpated from HMTLs; (ii) SS research should integrate new aspects from forest fragmentation and landscape ecology research to address accurately the potential of secondary forests to serve as biodiversity repositories; and (iii) secondary forest stands, as a dynamic component of HMTLs, must be incorporated as key elements of conservation planning; i.e. secondary forest stands must be actively managed (e.g. using assisted forest restoration) according to conservation goals at broad spatial scales.  相似文献   

11.
Aims We have compared local (alpha) and regional (beta) species diversities of dung beetles in wet forests in the main tropical regions including Madagascar. Madagascar is exceptional in lacking native large herbivorous mammals which produce the key resource for dung beetles elsewhere. Location Central and South America, mainland Africa, Madagascar and Southeast Asia. Methods Trapping data on dung beetles and data on mammalian faunas were obtained from published and unpublished studies. We used our original data for Madagascar. Results Species richness of dung beetles and that of large‐bodied (> 15 mm length) species in particular were highly significantly explained by the regional number of large‐bodied (> 10 kg) mammals (R2 from 50 to 80%). For a given pairwise spatial distance between two communities, beta diversity was significantly higher in Madagascar than elsewhere, explaining the very high total species richness in Madagascar in spite of low local diversity. Main conclusion The presence and numbers of large herbivorous mammals greatly influence the species richness of dung beetles in tropical wet forests. The lack of native large herbivores rather than a limited species pool explains the low local diversity in Madagascar. Exceptionally high beta diversity in Madagascar suggests a pattern of old radiation involving extensive allopatric speciation.  相似文献   

12.
J. Stafford 《Bird Study》2013,60(1):29-33
Capsule Eleonora's Falcons wintering in Madagascar selected degraded humid forests and cultivated areas close to pristine humid forest.

Aims To identify the habitat preferences of Eleonora's Falcon Falco eleonorae on their wintering grounds in Madagascar, and to use this information to gain insights into the conservation priorities of this species.

Methods A total of 11 Eleonora's Falcons were captured in Spain in 2007 and 2008 and equipped with solar-powered satellite transmitters. We obtained information on five complete wintering events for three birds, two of them tracked for two consecutive years. Data were analyzed using geographic information system-based cartography.

Results The analyses showed a preference for degraded humid forests and cultivated lands within areas where pristine humid forests were the most abundant habitat type.

Conclusions Eleonora's Falcons could be taking advantage from a spill-over edge effect of their insect prey into cultivated and more open areas close to humid forests. However, the importance of humid forests for Eleonora's Falcons seems to be high. The current loss of this habitat in Madagascar is a cause for concern with respect to the conservation of this long-distance migratory falcon species.  相似文献   

13.
云南西双版纳自然保护区建设的展望   总被引:1,自引:0,他引:1  
王献溥  张建侯   《广西植物》1987,(3):245-249
<正> 西双版纳是我国仅有的几个热带区域之一,天然热带森林覆盖面积较大,野生生物种类丰富。这是西双版纳的一个资源优势,如何在加强保护的基础上合理开发利用这些资源,不仅是本地经济建设的一个重要部分,而且是全国甚至全世界人们所关心的事情。因为,全球热带森林由于过分的开发,正以惊人的速度消失,对于热带陆地区域面积不大的中国来说,西双版纳热带森林的重要意义是可想而知的。1979年以前各个自然保护区遭到严重的破坏已成过去,不必再提,关键在于对1979年以后总结了过去的经验教训重新划  相似文献   

14.

Background

The ecological factors contributing to the evolution of tropical vertebrate communities are still poorly understood. Primate communities of the tropical Americas have fewer folivorous but more frugivorous genera than tropical regions of the Old World and especially many more frugivorous genera than Madagascar. Reasons for this phenomenon are largely unexplored. We developed the hypothesis that Neotropical fruits have higher protein concentrations than fruits from Madagascar and that the higher representation of frugivorous genera in the Neotropics is linked to high protein concentrations in fruits. Low fruit protein concentrations in Madagascar would restrict the evolution of frugivores in Malagasy communities.

Methodology/Principal Findings

We reviewed the literature for nitrogen concentrations in fruits from the Neotropics and from Madagascar, and analyzed fruits from an additional six sites in the Neotropics and six sites in Madagascar. Fruits from the Neotropical sites contain significantly more nitrogen than fruits from the Madagascar sites. Nitrogen concentrations in New World fruits are above the concentrations to satisfy nitrogen requirements of primates, while they are at the lower end or below the concentrations to cover primate protein needs in Madagascar.

Conclusions/Significance

Fruits at most sites in the Neotropics contain enough protein to satisfy the protein needs of primates. Thus, selection pressure to develop new adaptations for foods that are difficult to digest (such as leaves) may have been lower in the Neotropics than in Madagascar. The low nitrogen concentrations in fruits from Madagascar may contribute to the almost complete absence of frugivorous primate species on this island.  相似文献   

15.
Brown-headed spider monkeys (Ateles fusciceps), endemic to the Choco-Darien forests and lower Andean forests of NW Ecuador, are considered critically endangered. Unfortunately, scientific data regarding the actual status of populations is lacking. We combined satellite image analysis, species-specific habitat assessment, and a field survey technique using playback to focus conservation efforts for this species. First, we identified remaining forest via a LANDSAT mosaic and then applied species-specific criteria to delineate remaining forest with potential to hold populations. By combining this with the historical distribution from ecological niche modeling and predicted hunting intensity we generated a species-specific landscape map. Within our study area, forest capable of sustaining Ateles fusciceps covers 5872 km2, of which 2172 km2 (40%) is protected. Unprotected forest considered suitable for Ateles fusciceps extends to 3700 km2 but within this only 989 km2 (23%) is under low hunting pressure and likely to maintain healthy populations of Ateles fusciceps. To overcome problems of sampling at low primate density and in difficult mountain terrain we developed a field survey technique to determine presence and estimate abundance using acoustic sampling. For sites under low hunting pressure density of primates varied with altitude. Densities decreased from 7.49 individuals/km2 at 332 masl to 0.9 individuals/km2 at 1570 masl. Based on combining data sets in a gap analysis, we recommend conservation action focus on unprotected lowland forest to the south and west of the Cotacachi-Cayapas Ecological Reserve where hunting pressure is low and population densities of Ateles fusciceps are greatest.  相似文献   

16.
A global overview of the conservation status of tropical dry forests   总被引:9,自引:0,他引:9  
Aim To analyse the conservation status of tropical dry forests at the global scale, by combining a newly developed global distribution map with spatial data describing different threats, and to identify the relative exposure of different forest areas to such threats. Location Global assessment. Methods We present a new global distribution map of tropical dry forest derived from the recently developed MODIS Vegetation Continuous Fields (VCF) product, which depicts percentage tree cover at a resolution of 500 m, combined with previously defined maps of biomes. This distribution map was overlaid with spatial data to estimate the exposure of tropical dry forests to a number of different threats: climate change, habitat fragmentation, fire, human population density and conversion to cropland. The extent of tropical dry forest currently protected was estimated by overlaying the forest map with a global data set of the distribution of protected areas. Results It is estimated that 1,048,700 km2 of tropical dry forest remains, distributed throughout the three tropical regions. More than half of the forest area (54.2%) is located within South America, the remaining area being almost equally divided between North and Central America, Africa and Eurasia, with a relatively small proportion (3.8%) occurring within Australasia and Southeast Asia. Overall, c. 97% of the remaining area of tropical dry forest is at risk from one or more of the threats considered, with highest percentages recorded for Eurasia. The relative exposure to different threats differed between regions: while climate change is relatively significant in the Americas, habitat fragmentation and fire affect a higher proportion of African forests, whereas agricultural conversion and human population density are most influential in Eurasia. Evidence suggests that c. 300,000 km2 of tropical dry forest now coincide with some form of protected area, with 71.8% of this total being located within South America. Main conclusions Virtually all of the tropical dry forests that remain are currently exposed to a variety of different threats, largely resulting from human activity. Taking their high biodiversity value into consideration, this indicates that tropical dry forests should be accorded high conservation priority. The results presented here could be used to identify which forest areas should be accorded highest priority for conservation action. In particular, the expansion of the global protected area network, particularly in Mesoamerica, should be given urgent consideration.  相似文献   

17.
Anthropogenic activities driving tropical forests' loss imperil global biodiversity and provision of ecosystem services. In this context, systematic monitoring programs evaluating wildlife trends are essential. Non-human primates are relevant conservation targets since they represent vital components of tropical forests by serving as pollinators and seed dispersers. Here, we present primate group counts data collected over 19 years in a primate hotspot in Tanzania. We analyzed data with a hierarchical dynamic model accounting for imperfect detection that estimates local group abundance and temporal rates of change, to assess whether habitat protection explained trends of the arboreal and diurnal Peters' Angola colobus (Colobus angolensis palliatus), Udzungwa red colobus (Piliocolobus gordonorum), and Tanzania Sykes' monkey (Cercopithecus mitis subsp. moloneyi). We targeted populations occurring in two forest blocks with contrasting protection regimes, with one block impacted by targeted poaching of the two Colobus species. We found that these latter species were much less abundant in the more human impacted forest, underwent a rapid decline, and subsequently remained at low abundance and without signs of recovery once this forest was granted greater protection. Instead, Sykes' abundance did not differ between forests, and improved protection was associated with a slight increase in abundance. Age class composition for social groups of both Colobus species differed between forests, indicating altered births and survivorship rates in the impacted forest. Results suggest that targeted hunting can prevent recovery for several years and even after increased habitat protection. Our approach appears valuable to monitor population dynamics over the long term, highlighting species-specific variations in both vulnerability to anthropogenic disturbance and recovery patterns in primate populations.  相似文献   

18.
Primate populations, including Madagascar’s lemurs, are threatened worldwide and conservationists need accurate population estimates to develop targeted conservation plans. We sought to fill knowledge gaps for three lemur taxa —white-fronted brown lemur (Eulemur albifrons); eastern woolly lemur (Avahi laniger); and Allocebus/Microcebus, a category combining observations of hairy-eared dwarf lemurs (Allocebus trichotis) and mouse lemurs (Microcebus spp.)— in northeastern Madagascar by estimating their density, examining how their encounter rates and densities vary across three different forest types, and monitoring trends in encounter rates and densities at resurveyed sites, using data from surveys at six forest sites over a 4-year period (2010–2013). Landscape density for white-fronted brown lemur, eastern woolly lemur, and Allocebus/Microcebus was 21.5 (SE 3.67), 57.7 (SE 9.17), and 39.1 (SE 9.55) individuals/km2, respectively. There was no difference in density estimates at intact and intermediately degraded forest sites; however, we encountered white-fronted brown lemurs more often in intact forest (1.64 ± SE 0.40 individuals/km) than in intermediately degraded and degraded forest (0.15 ± SE 0.06 and 0.16 ± SE 0.06 individuals/km). In addition, we encountered white-fronted brown lemurs at lower rates in 2013 (0.15 ± SE 0.06 individuals/km) compared to 2010 (0.82 ± SE 0.12 individuals/km) at a resurveyed site. Our findings emphasize that primate researchers must account for variation in how lemur encounter rates and densities differ between intact and degraded forests, and although we observed a decline in white-fronted brown lemur encounter rate at our resurveyed site, we caution that changes in lemur encounter rates may simply reflect lower detection rates rather than lower density. Future research should focus on using conventional distance sampling techniques, which are infrequently used in primate studies, to provide more robust density estimates as a way to accurately assess trends and the effects of anthropogenic pressures on lemur populations.  相似文献   

19.
We compared the structure of 12 Central African primate communities, 6 in riparian forests and 6 in adjacent terra firma forests and discussed the implications for primate conservation. The communities in riparian forests included on average 1.5 times more primate species than those in terra firma forests due to the fact that riparian forests shelter 4 specialist species and 6–7 generalist species. The results differ from findings in Amazonia where riparian forests consistently have fewer primate species than terra firma forests accommodate. This may be partly explained by the water level amplitude in Amazonian riparian forests, which deterred the radiation of semiterrestrial species. In Africa, most riparian-specialist primates are terrestrially-adapted and have access to an enlarged food niche. In terms of African primate conservation, we recommend protecting riparian forests and adjacent terra firma forests so that most of the lowland forest diversity is captured. The linear shape of riparian forests (which allows gene flow over long distance) and their persistence in anthropic landscape (because they represent lands of lesser value for agriculture and logging than mainland forests) predispose them to act as biodiversity sanctuaries.  相似文献   

20.
Savannas are defined based on vegetation structure, the central concept being a discontinuous tree cover in a continuous grass understorey. However, at the high‐rainfall end of the tropical savanna biome, where heavily wooded mesic savannas begin to structurally resemble forests, or where tropical forests are degraded such that they open out to structurally resemble savannas, vegetation structure alone may be inadequate to distinguish mesic savanna from forest. Additional knowledge of the functional differences between these ecosystems which contrast sharply in their evolutionary and ecological history is required. Specifically, we suggest that tropical mesic savannas are predominantly mixed tree–C4 grass systems defined by fire tolerance and shade intolerance of their species, while forests, from which C4 grasses are largely absent, have species that are mostly fire intolerant and shade tolerant. Using this framework, we identify a suite of morphological, physiological and life‐history traits that are likely to differ between tropical mesic savanna and forest species. We suggest that these traits can be used to distinguish between these ecosystems and thereby aid their appropriate management and conservation. We also suggest that many areas in South Asia classified as tropical dry forests, but characterized by fire‐resistant tree species in a C4 grass‐dominated understorey, would be better classified as mesic savannas requiring fire and light to maintain the unique mix of species that characterize them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号