首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured Schwann cells divide in response to a limited repertoire of mitogens. In addition to cyclic AMP analogs and reagents that raise intracellular cyclic AMP, the only purified mitogens for Schwann cells are transforming growth factor beta (TGF beta), acidic (a) and basic (b) fibroblast growth factor (FGF), and the BB and AB dimers of platelet-derived growth factor (PDGF). Although individually each one of these growth factors is only weakly mitogenic, it is shown here that when TGF beta and bFGF are added to Schwann cell cultures together, they interact to produce a mitogenic response that is much greater than that produced by either growth factor alone. Both the absolute concentration of each protein and the molar ratio of TGF beta to bFGF determines the magnitude of the Schwann cell response.  相似文献   

2.
Basic fibroblast growth factor (bFGF) and transforming growth factor-alpha (TGF alpha) have been identified as potent hepatotrophic mitogens. bFGF and TGF alpha induce DNA synthesis in fetal and adult rat hepatocytes in primary culture and support fetal rat hepatocyte multiplication in chemically defined medium. No additional exogenous growth or progression factors are required by the cells for traversing the cell cycle or for cell division. These mitogenic polypeptides, previously identified in various cell types including liver and endothelial cells, platelets, and macrophages may act locally in a paracrine mode in controlling hepatocyte multiplication in the liver during development and regeneration.  相似文献   

3.
Schwann cell growth factors.   总被引:24,自引:0,他引:24  
Purified rat Schwann cells were found to proliferate very slowly in normal growth medium containing 10% fetal calf serum (FCS). Crude extracts of bovine pituitary or brain markedly enhanced Schwann cell growth, while similar extracts of nerve roots, liver and kidney did not. Pituitary extracts were more potent than brain extracts, and extracts from both anterior and posterior pituitary were active. The mitogenic activity of pituitary extracts was reduced by treatment with trypsin, and abolished by pronase and by boiling. A variety of known anterior and posterior pituitary hormones, as well as fibroblast, epidermal and nerve growth factors, were not mitogenic. FCS (greater than 1%) was required for Schwann cell proliferation, but even high concentrations of FCS did not substitute for pituitary or brain extracts, and serum from various other species did not support Schwann cell growth. Although various agents that increase cyclic AMP levels (such as cholera toxin) had been shown to be Schwann cell mitogens, extracts of pituitary or brain did not increase cyclic AMP levels. Extracts of various bovine tissues, including pituitary, brain, liver and kidney, acted synergistically with cholera toxin in stimulating Schwann cell proliferation, although the increase in cyclic AMP induced by the mixture was not greater than that seen with cholera toxin alone. We conclude that there are at least two separate pathways for stimulating Schwann cell division, only one of which involves an increase in intracellular cyclic AMP.  相似文献   

4.
Transforming growth factor beta-1 (TGF beta-1), known as an inhibitor of vascular endothelial cell proliferation in vitro, stimulates bovine corneal endothelial cells (BCE) proliferation. It also positively modulates the response of BCE cells to fibroblast growth factor (FGF) and epidermal growth factor (EGF). This effect is concentration dependent within a physiological range of TGF beta-1, but it is blocked if cells are cultured on extracellular-matrix-coated dishes instead of plastic. TGF beta-1 does not modify the number or the affinity of bFGF receptors on BCE cell surface but increases the bFGF content of these cells. This suggests that TGF beta-1 might act through regulation of bFGF synthesis in BCE cells.  相似文献   

5.
Rat sciatic nerve Schwann cells in culture respond to a limited range of mitogens, including glial growth factor, transforming growth factors beta-1 and beta-2 (TGF-beta 1, TGF-beta 2), some cell membrane-associated factors, and to agents such as cholera toxin and forskolin which raise intracellular levels of cAMP. These responses require the presence of FCS, which exhibits little or no mitogenic activity in the absence of other factors. However, we recently found that forskolin greatly potentiates the mitogenic signal from TGFs-beta 1 and beta 2, raising the possibility that cAMP might couple other factors to mitogenesis. We have therefore screened a range of candidate mitogens using DNA synthesis assays. Other than TGFs-beta and glial growth factor, none of the factors tested were mitogenic in the presence of 10% serum alone. With the addition of forskolin, however, porcine PDGF, human PDGF, acidic and basic FGF were potent mitogens for rat Schwann cells, stimulating DNA synthesis and increasing cell number. Cholera toxin and dibutyrylcyclicAMP, but not 1,9-dideoxyforskolin, can substitute for forskolin indicating that the mitogenic effect is mediated via adenylyl cyclase activation. Porcine PDGF gave half-maximal stimulation at 15 pM, and human PGDF an equivalent response at 1 nM. Basic FGF was half maximal at 5 pM, acidic FGF at 1 nM. The recognition of PDGFs and FGFs as mitogens for Schwann cells has many implications for the study of Schwann cell proliferation in the development and regeneration of nerves, and in Schwann cell tumorigenesis.  相似文献   

6.
The transforming growth factor beta (TGF beta) is a weak mitogen for rat oligodendrocytes grown in serum-free chemically defined medium. When these cells were treated by basic fibroblast growth factor (bFGF), which is the most potent known mitogen for cultured oligodendrocytes, together with TGF beta we observed that at low doses TGF beta potentiates the mitogenic effect of bFGF while at higher concentrations it partly inhibits this effect.  相似文献   

7.
Protein phosphorylation was studied in primary cultures of thyroid epithelial cells after the addition of different mitogens: thyrotropin (TSH) acting through cyclic AMP, epidermal growth factor (EGF), or 12-O-tetradecanoylphorbol-13-acetate (TPA). EGF or TPA increased the phosphorylation of five common polypeptides. Among these, two 42-kilodalton proteins contained phosphotyrosine and phosphoserine with or without phosphothreonine. Their characteristics suggested that they are similar to the two 42-kilodalton target proteins for tyrosine protein phosphorylation demonstrated in fibroblasts in response to mitogens. No common phosphorylated proteins were detected in TSH-treated cells and in EGF- or TPA-treated cells. The differences in the protein phosphorylation patterns in response to TSH, EGF, and TPA suggested that the newly emerging cyclic AMP-mediated mitogenic pathway is distinct from the better known growth factor- and tumor promoter-induced pathways.  相似文献   

8.
《The Journal of cell biology》1989,109(4):1877-1884
Basic fibroblast growth factor (bFGF) induces cell proliferation and plasminogen activator (PA) activity in transformed fetal bovine aortic endothelial (FBAE) GM 7373 cells. A similar response is observed after treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA). In these cells, bFGF and TPA cause activation of protein kinase C (PKC), as demonstrated by the induction of the phosphorylation of an 87-kD PKC substrate in intact cells and by the increase in membrane-associated PKC activity. Activation of PKC by bFGF or TPA is inhibited in cells made PKC-deficient by pretreatment with high concentrations of TPA. The mitogenic activity of bFGF or of TPA is completely inhibited in PKC- deficient cells or in naive cells treated with the PKC inhibitor H-7. However, these cells proliferate in response to serum, epidermal growth factor, and dibutyryl cyclic AMP. Similar results are obtained in normal FBAE AG 7680 cells. These data indicate that activation of PKC is responsible for the mitogenic activity of bFGF in FBAE cells. On the contrary, the PA-inducing activity of bFGF is unaffected by down- regulation of PKC or by treatment with the PKC inhibitor H-7 in both transformed GM 7373 and normal AG 7680 cells. bFGF induces a rapid 45Ca influx in naive and in PKC-deprived GM 7373 cells. In these cells, addition of EGTA to the incubation medium prevents both the 45Ca influx and the increase in PA activity induced by bFGF, without affecting its mitogenic activity. Even though the involvement of PKC in the increase of cell-associated PA activity induced by bFGF can not be completely dismissed, the present results suggest a role of calcium entry in the modulation of the PA-inducing activity of bFGF.  相似文献   

9.
Basic fibroblast growth factor (bFGF), but not acidic fibroblast growth factor (aFGF), was found to be mitogenic for cultured mouse keratinocytes. A six-to-nine fold increase in 3H-thymidine (3H-dT) incorporation into the acid insoluble pool and a similar increase of the labeling index can be measured when bFGF, at a concentration between 1 and 10 ng/ml, is added to keratinocytes arrested in serum-free and growth factor-free medium with a Ca++-concentration below 0.1 mM. The half-maximal response is observed between 0.2 and 0.7 ng/ml. In the same culture system, insulin-like growth factor I/somatomedin C (IGF-I) and insulin act as mitogens. IGF-I shows half-maximal stimulation with 2-3 ng/ml, insulin with 100-500 ng/ml. Basic FGF, IGF-I and insulin can be classified as strong stimulators of DNA synthesis in mouse keratinocytes. In this regard they are comparable to epidermal growth factor, which shows a half-maximal stimulation at a concentration between 1.5-2 ng/ml. These results show that in addition to mesenchymal cells, FGF is a growth factor not only for neuroectodermal cells, but ectodermal cells in general. They further support the idea that the growth promoting effect of insulin on keratinocytes may be mediated by the IGF-I receptor.  相似文献   

10.
In a search of the growth factors possibly involved in brain ontogenesis we have examined the effects of transforming growth factor beta 1 (TGF-beta 1) on the growth and phenotypic expression of rat astroblasts in primary culture. Along TGF-beta 1 elicited only a slight negative effect on the growth of these cells. However, this factor was found to modulate the mitogenic effects of other growth factors. On quiescent cells it potentiates the mitogenic effect of basic fibroblast growth factor (bFGF) but not that of other growth factors, namely, epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and thrombin. TGF-beta 1 did not modulate significantly the stimulatory effect of these growth factors on the activity of the enzyme glutamine synthetase (GS); but kinetic studies showed that TGF-beta 1 delays the stimulation of GS activity. DNA synthesis monitored by the incorporation of [125I]iododeoxyuridine (125I-dUrd) was maximum after 24-30 h of treatment with bFGF. With bFGF plus TGF-beta 1 the maximum was shifted to 30-36 h. This shift is compatible with the idea that TGF-beta 1 induces responsiveness in some cells which are otherwise unresponsive to the mitogenic action of bFGF, and that this induction requires some time. This hypothesis is sustained by the observation that in cells treated for only 12 h with bFGF, the treatment with TGF-beta 1 for the same 12 h or for longer time did not stimulate significantly the cell growth. Stimulation occurred only when the bFGF treatment was continued after 12 h. Potentiation of the mitogenic effect of bFGF and shift of the maximum 125I-dUrd incorporation towards 24 h was seen with cells pretreated with TGF-beta 1. This potentiation effect decreased with increasing time between the two treatments. The potentiation effect of TGF-beta 1 is not mediated by an induction of new bFGF membrane receptors as seen by binding studies.  相似文献   

11.
Amphiregulin (AR) and heparin-binding EGF-like growth factor (HB-EGF) are two recently identified members of the EGF family. Both AR and HB-EGF share with EGF the ability to interact with the type-1 EGF receptor; however, AR and HB-EGF differ from EGF in that both of these mitogens bind to heparin while EGF does not. To determine whether interactions with heparin-like molecules on the cell surface influence binding of AR and HB-EGF with EGF receptors and the subsequent mitogenic activity exerted by these growth factors, murine AKR-2B and Balb/MK-2 cells were treated with either an inhibitor of proteoglycan sulfation (chlorate) or a heparin antagonist (hexadimethrine). As expected, neither treatment significantly altered the specific binding of 125I-EGF on AKR-2B cells. Interestingly, treatment with either chlorate or hexadimethrine inhibited the ability of AR to compete with 125I-EGF for cell surface binding and also attenuated AR-mediated DNA synthesis. Thus, as has been suggested for other heparin-binding growth factors such as basic fibroblast growth factor (bFGF), the interaction of AR with an EGF-binding receptor appears to be facilitated by interaction with cell-associated sulfated glycosami-noglycans or proteoglycans. Unexpectedly, however, neither chlorate nor hexadimethrine treatment caused an inhibition of HB-EGF-induced mitogenic activity. Chlorate treatment did not significantly alter the ability of HB-EGF to compete with 125I-EGF for cell surface binding sites, however, heparin and hexadimethrine reduced the ability of HB-EGF to compete for 125I-EGF binding. These results suggest that, in AKR-2B cells, HB-EGF may mediate its mitogenic response at least in part through a receptor which appears to be selective for HB-EGF and permits HB-EGF-mediated mitogenic responses in the presence of hexadimethrine or heparin. Finally, hexadimethrine inhibited the specific binding and mitogenic activity of bFGF, suggesting that this cationic polymer can function as an antagonist of heparin-binding mitogens other than AR. © 1995 Wiley-Liss, Inc.  相似文献   

12.
The effect of various growth factors on the synthesis of hyaluronan in human fibroblasts was investigated. When tested in medium containing 0.5% fetal calf serum, platelet-derived growth factor (PDGF)-BB was found to stimulate hyaluronan synthesis; the maximal response was equal to or higher than that obtained with 10% fetal calf serum. PDGF-AA gave only a limited effect, indicating that the stimulatory effect of PDGF on hyaluronan synthesis was mainly transduced via the B-type PDGF receptor. Epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta 1 also stimulated hyaluronan synthesis; their effects were less than that of PDGF-BB, but combinations of factors produced potent stimulatory effects on hyaluronan synthesis. All factors stimulated hyaluronan synthesis in sparse as well as dense cultures. The effects of the factors on hyaluronan synthesis did not correlate with their mitogenic activities; PDGF-BB, EGF and bFGF are equipotent mitogens, but PDGF-BB had a much more potent effect on hyaluronan synthesis, and TGF-beta actually inhibits the growth of fibroblasts under the conditions of the assay.  相似文献   

13.
Normal rat kidney (NRK) fibroblasts are immortalized cells that are strictly dependent on externally added growth factors for proliferation. When cultured in the presence of epidermal growth factor (EGF) as the only growth stimulating hormone, these cells have a normal phenotype and undergo density-dependent growth inhibition. It has been postulated that this density-arrest results from a decrease of EGF receptor levels below a threshold level which makes these cells unresponsive to stimulation by EGF. In the present study, we show that NRK cells, made quiescent by serum-deprivation at submaximum density, are mitogenically still responsive to EGF, but show enhanced mitogenic stimulation after 8 hr pre-treatment with either transforming growth factor β (TGFβ) or retinoic acid (RA), while prostaglandin F (PGF) and bradykinin (BK) enhance the mitogenic stimulation by EGF only slightly under these conditions. Addition of TGFβ or RA results in an increase of both 125I-EGF-binding capacity and EGF receptor mRNA levels. Using flow cytometric analysis, we show that pre-treatment with TGFβ or RA increases the percentage of cells entering the cell cycle as a function of time. Furthermore, pre-treatment of the cells with TGFβ or RA increases the rate of mitogen-activated protein kinase (MAPK) phosphorylation by EGF. PGF and BK also increase EGF receptor levels, but only with delayed kinetics. These results show that already in serum-deprived quiescent NRK cells, EGF receptor levels limit EGF-induced mitogenic stimulation. This observation provides further evidence for the regulating role of the EGF receptor in density-dependent growth control of NRK cells. J. Cell. Physiol. 174:9–17, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
We have examined the possible involvements of pertussis toxin (PT)-sensitive guanosine triphosphate (GTP)-binding protein (Gp) and protein kinase C (PKC) in the mitogenic signaling pathways of various growth factors by the use of PT-pretreated and/or 12-O-tetradecanoyl phorbol-13-acetate (TPA)-pretreated mouse fibroblasts. Effects of PT pretreatment (inactivation of PT-sensitive Gp) and TPA pretreatment (depletion of PKC) on mitogen-induced DNA synthesis varied significantly and systematically in response to growth factors: mitogenic responses of cells to thrombin, bombesin, and bradykinin were almost completely abolished both in PT- and TPA-pretreated cells; responses to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and vanadate were reduced to approximately 50% both in PT- and TPA-pretreated cells compared with native cells; response to basic fibroblast growth factor (bFGF) was not affected in PT-pretreated cells but was inhibited to some extent in TPA-pretreated cells. Thus, growth factors examined have been classified into three groups with regard to the involvements of PT-sensitive Gp and PKC in their signal transduction pathways. Binding of each growth factor to its receptor was not affected significantly by pretreatment of cells with PT or TPA. Inhibitory effects of PT and TPA pretreatment on each mitogen-induced DNA synthesis were not additive, suggesting that the functions of PT-sensitive Gp and PKC lie on an identical signal transduction pathway. Although all three groups of mitogens activated PKC, signaling of each growth factor depends to a varying extent on the function of PKC. Our results indicate that a single peptide growth factor such as EGF, PDGF, or bFGF acts through multiple signaling pathways to induce cell proliferation.  相似文献   

15.
Two different mitogenic activities were identified from extracts of porcine pituitary by using COMMA-D mouse mammary epithelial cells in a serum-free 3H-thymidine incorporation assay. Porcine pituitaries were extracted in phosphate-buffered saline (pH 7.4) and 25-80% (NH4)2SO4 pellets were dialyzed and chromatographed by using DEAE-Sepharose chromatography (pH 8.0), resulting in two peaks (I and II) of mitogenic activity. Peak I represented a recovery of 73% of the units of mitogenic activity present in crude extract of pituitary while only 1.25% of the activity was recovered in peak II. Peak I was further purified by using CM-Sephadex and heparin-Sepharose chromatographies and yielded a mitogen that was able to elicit one-half-maximal stimulation of 3H-thymidine incorporation by COMMA-D cells at 48 pg/ml. As expected with pituitary as the tissue source, peak I was confirmed to be basic fibroblast growth factor (bFGF) by using specific antibodies in enzyme-linked immunosorbent assay and Western immunoblotting procedures. Peak II was further purified by using chromatofocusing (pH 7.3-5.0), reverse-phase, and cation-exchange HPLCs. The mitogenic activity eluted at pH 6.3 from chromatofocusing, migrated as a 13-kDa molecule on gel filtration HPLC, and did not bind to heparin-Sepharose under conditions which bound fibroblast growth factors. The material purified from peak II and rat synthetic transforming growth factor alpha (TGF alpha) competed in a parallel fashion with 125I-epidermal growth factor for receptor binding with A431 human epidermal carcinoma cells. In addition, the mitogen purified from peak II showed a single immunoreactive band migrating at 15 kDa when specific antiserum against TGF alpha was used in a Western immunoblotting procedure. The data suggest that in addition to the well-documented presence of bFGF, normal adult porcine pituitaries contain a 15-kDa form of immunoreactive TGF alpha that binds to EGF receptors and is mitogenic for mammary epithelial cells.  相似文献   

16.
NG2 is a transmembrane chondroitin sulfate proteoglycan that is expressed by immature progenitor cells in several developmental lineages and by some types of malignant cells. In vitro studies have suggested that NG2 participates in growth factor activation of the platelet-derived growth factor-alpha receptor. In this study the ability of recombinant NG2 core protein to interact with several different growth factors (epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF)-AA, PDGF-BB, vascular endothelial growth factor (VEGF)165 and transforming growth factor (TGF)-beta1) was investigated using two different assay systems: enzyme-linked immunosorbent assay-type solid-phase binding and an optical biosensor (BIAcore) system. High-affinity binding of bFGF and PDGF-AA to the core protein of NG2 could be demonstrated with both types of assays. Using both the BIAcore software analysis program and nonlinear regression analysis of the solid phase binding data, KD values in the low nanomolar range were obtained for binding of each of these growth factors to NG2. The results further indicate that NG2 contains at least two binding sites for each of these two growth factors. PDGF-BB, TGF-beta1, VEGF, and EGF exhibited little or no binding to NG2 in either type of assay. These data suggest that NG2 can have an important role in organizing and presenting some types of mitogenic growth factors at the cell surface.  相似文献   

17.
The differential sensitivity of various cell lines to the mitogenic effects of epidermal growth factor (EGF) was investigated. Two lines of evidence suggest that cellular capacity to respond proliferatively to EGF is related to intracellular cyclic AMP concentration. First, the ability of three density-arrested cell lines to synthesize DNA in response to EGF was directly proportional to the basal cyclic AMP level of the cells at quiescence. Second, treatment of cultures with various agents known to promote intracellular cyclic AMP accumulation increased the sensitivity of all three cell lines to EGF. The mechanism whereby cyclic AMP modulates EGF responsiveness is not known; cholera toxin did not affect the cellular capacity to bind or internalize and process EGF. Although platelet-derived growth factor (PDGF) had no effect on cyclic AMP levels, transient treatment of quiescent cultures with this polypeptide also enhanced EGF sensitivity. In agreement with previous data and in contrast to cholera toxin, PDGF induced the down-regulation of EGF receptors in the three cell lines. These data suggest that the capacity of various cell types to respond to EGF is subject to both intracellular regulation by cyclic AMP and extracellular modulation by factors such as PDGF which can affect EGF receptor activity.  相似文献   

18.
In this study we have investigated the ability of epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and transforming growth factor-beta (TGF beta) together with retinoic acid (RA) at saturating concentrations to induce phenotypic transformation of normal rat kidney (NRK) cells in a growth factor-defined medium. This medium contains serum in which all growth factor activity has been chemically inactivated, thereby eliminating the effects of growth factors from serum in the assay. It is shown that neither TGF eta nor a ligand binding to the EGF receptor is essential for phenotypic transformation of NRK cells, since anchorage-independent growth is also induced by EGF in combination with RA and by PDGF in combination with RA and TGF beta. Our data indicate strong similarities between TGF beta and RA in their ability to act as modulators for phenotypic transformation. In addition, both agents enhance the number of EGF receptors in NRK cells, without affecting the number of PDGF receptors. On the other hand, TGF beta has mitogenic effects on a number of non-transformed cell lines, such as Swiss 3T3 fibroblasts, particularly when assayed in the absence of insulin, whereas RA is mitogenic for these cells only in the presence of insulin. These data demonstrate that phenotypic transformation of NRK cells requires specific combinations of polypeptide growth factors and modulating agents, but that this process can be induced under many more conditions than previously described. Moreover, our data point toward both parallels and differences in the activities of TGF beta and RA.  相似文献   

19.
20.
Basic fibroblast growth factor (bFGF), a potent inducer of angiogenesis in vivo, stimulates the production of both urokinase- and tissue-type plasminogen activators (PAs) in cultured bovine capillary endothelial cells. The observed increase in proteolytic activity induced by bFGF was effectively diminished by picogram amounts of transforming growth factor beta (TGF beta), but could not be abolished by increasing the amount of TGF beta. However, the inhibition by TGF beta was greatly enhanced if the cells were pretreated with TGF beta before addition of bFGF. After prolonged incubation of cultures treated simultaneously with bFGF and TGF beta, the inhibitory effect of TGF beta diminished and the stimulatory effect of the added bFGF dominated as assayed by PA levels. TGF beta did not alter the receptor binding of labeled bFGF, nor did a 6-h pretreatment with TGF beta reduce the amount of bFGF bound. The major difference between the effects of bFGF and TGF beta was that while bFGF effectively enhanced PA activity expressed by the cells, TGF beta decreased the amounts of both cell-associated and secreted PA activity by decreasing enzyme production. Both bFGF and TGF beta increased the secretion of the endothelial-type plasminogen activator inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号