首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction in rat liver of a specific variant(s) of cytochrome P450 (PB-P450) by phenobarbital and its repression by β-naphthoflavone occur through corresponding changes in the levels of mRNA coding for the protein(s). The level of translatable mRNA coding for NADPH-cytochrome P450 reductase in rat liver increases on treatment with phenobarbital but not β-naphthoflavone.  相似文献   

2.
The induction in rat liver of a specific variant(s) of cytochrome P450 (PB-P450) by phenobarbital and its repression by β-naphthoflavone occur through corresponding changes in the levels of mRNA coding for the protein(s). The level of translatable mRNA coding for NADPH-cytochrome P450 reductase in rat liver increases on treatment with phenobarbital but not β-naphthoflavone.  相似文献   

3.
We recently reported that antibody against purified P450 3A1 (P450p) recognizes two electrophoretically distinct proteins (50 and 51 kDa) in liver microsomes from male and female rats, as determined by Western immunoblotting. Depending on the source of the liver microsomes, the 51-kDa protein corresponded to 3A1 and/or 3A2 which could not be resolved by sodium dodecyl sulfate (SDS)polyacrylamide gel electrophoresis. The other protein (50 kDa) appears to be another member of the P450 IIIA gene family. Both proteins were markedly intensified in liver microsomes from male or female rats treated with pregnenolone-16α-carbonitrile, dexamethasone, troleandomycin, or chlordane. In contrast, treatment of male or female rats with phenobarbital intensified only the 51-kDa protein. Treatment of male rats with Aroclor 1254 induced the 51-kDa protein, but suppressed the 50-kDa form. In addition to their changes in response to inducers, the 50- and 51-kDa proteins also differed in their developmental expression. For example, the 50-kDa protein was not expressed until weaning (3 weeks), whereas the 51-kDa protein was expressed even in 1-week-old rats. At puberty (between weeks 5 and 6), the levels of the 50-kDa and 51-kDa proteins markedly declined in female but not in male rats, which introduced a large sex difference (male > female) in the levels of both proteins. Changes in the level of the 51-kDa protein were paralleled by changes in the rate of testosterone 2β, 6β-, and 15β-hydroxylation. In male rats, the marked increase in the levels of the 50-kDa protein between weeks 2 and 3 coincided with a three- to four fold increase in the rate of testosterone 2β-, 6β-, and 15β-hydroxylation, which suggests that the 50-kDa protein catalyzes the same pathways of testosterone oxidation as the 51-kDa protein. However, this developmental increase in testosterone oxidation may have resulted from an activation of the 51-kDa 3A protein. These results indicate that the two electrophoretically distinct proteins recognized by antibody against P450 3A1 are regulated in a similar but not identical manner, and suggest that the 51-kDa 3A protein is the major microsomal enzyme responsible for catalyzing the 2β-, 6β-, and 15β-hydroxylation of testosterone.  相似文献   

4.
The ALK2 gene, encoding one of the n-alkane-hydroxylating cytochromes P450 in Candida maltosa, is induced by n-alkanes and a peroxisome proliferator, clofibrate. Deletion analysis of this gene's promoter revealed two cis-acting elements-an n-alkane-responsive element (ARE2) and a clofibrate-responsive element (CRE2)-that partly overlap in sequence but have distinct functions. ARE2-mediated activation responded to n-alkanes but not to clofibrate and was repressed by glucose. CRE2-mediated activation responded to polyunsaturated fatty acids and steroid hormones as well as to peroxisome proliferators but not to n-alkanes, and it was not repressed by glucose. Both elements mediated activation by oleic acid. Mutational analysis demonstrated that three CCG sequences in CRE2 were critical to the activation by clofibrate as well as to the in vitro binding of a specific protein to this element. These findings suggest that ALK2 is induced by peroxisome proliferators and steroid hormones through a specific CRE2-mediated regulatory mechanism.  相似文献   

5.
We report quantitative estimates of the parameters for metabolism of bromodichloromethane (BDCM) by recombinant preparations of hepatic cytochrome P450s (CYPs) from rat and human. Earlier work identified CYP2E1, CYP2B1/2 and CYP1A2 as activating enzymes necessary for hepatotoxicity in rat. In order to extend an existing PBPK model for rat to include a capability for extrapolation to humans, it is necessary to evaluate quantitatively the principal metabolic pathways in both species. We have conducted in vitro experiments using recombinant preparations of the three rat CYP isoenzymes mentioned above and for CYP2C11 and CYP3A1 as well. Similar experiments have been performed with human recombinant isoenzymes for CYP2E1, CYP1A2, CYP2A6, CYP2B6, CYP2D6 and CYP3A4. Results indicate that the principal metabolizing enzymes in rat are those identified previously, CYP2E1, CYP2B1/2 and CYP1A2. CYP3A1 may also have some activity. In human, CYP2E1, CYP1A2 and CYP3A4 show substantial activity, and CYP2A6 also measurably metabolizes BDCM. In both species, CYP2E1 is the low K(m) isoenzyme, with K(m) approximately 27-fold lower than those for the isoenzymes with the next lowest K(m). In addition, the metabolic parameters, K(m) and k(cat), for rat and human CYP2E1 were nearly identical. The metabolic parameters for CYP1A2, the only other isoenzyme active in both species, were not similar across species. In addition, calculations based on the kinetic constants obtained are compared to results from two in vivo experiments to show that the in vitro kinetic data is relevant to in vivo exposures. We conclude that although several CYPs metabolize BDCM, at low concentration/exposure, BDCM metabolism is dominated by CYP2E1 in both rat and human, but that other isoenzymes can be important at higher concentrations. We further conclude that the kinetic data are consistent with existing in vivo results.  相似文献   

6.
The abilities of structural congeners of phenobarbital to induce immunoreactive hepatic cytochrome P450 2B (CYP2B) protein and associated catalytic activity (benzyloxyresorufin O-dealkylation) in the male B6C3F1 mouse were examined. Interspecies differences in inducing ability were examined through comparison of the results with induction data obtained previously with the male F344/NCr rat. The congeners were administered in the diet for 2 weeks at concentrations equimolar to 500 ppm of the prototype CYP2B inducer, phenobarbital. Of the series of compounds tested, phenobarbital was the most effective inducer of benzyloxyresorufin O,-dealkylation and immunoreactive CYP2B protein, with 2-ethyl-2-phenylsuccinimide, 5-ethyl-5-phenylhydantoin, primidone, and glutethimide being only 19–42% as effective. 5-Ethyl-5-phenyloxazolidinedione and the ring-opened and decarboxylated congeners, N-(2-ethyl-2-phenylacetyl)urea and 2-ethyl-2-phenyl-malonamide, displayed minimal induction of these catalytic activities. Dose-response experiments performed with 5-ethyl-5-phenylhydantoin indicated that the intrinsic CYP2B-inducing activity of this congener was as great as that of phenobarbital in the mouse, although a fourfold greater dietary concentration of this hydantoin (2000 ppm) was required to elicit a response equivalent to that caused by 500 ppm phenobarbital. When extent of induction was related to serum total xenobiotic concentration rather than to administered dietary concentration, the potencies of the two congeners were determined to be more similar (58 vs. ≥78 μ M for phenobarbital and 5-ethyl-5-phenylhydantoin, respectively).  相似文献   

7.
The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have been measured in human liver microsomes. The three CYP isoenzymes, CYP2E1, CYP1A2 and CYP3A4, have been identified previously as important in the metabolism of this compound. To measure the constants for each isoenzyme, enzyme-specific inhibitory antibodies were used to block the activities for two of the three isoenzymes. CYP2E1 was found to have the lowest K(m), 2.9 microM, and the highest catalytic activity, k(cat). The K(m) for the other isoenzymes, CYP1A2 and CYP3A4, were about 60 microM with lower values of k(cat). Apparent kinetic constants obtained from two microsomal samples that were not inhibited were consistent with these results. In addition, 11 human microsome samples characterized for 10 CYP activities were correlated with the metabolism of 9.7 microM BDCM by each sample; statistical analysis showed a correlation with CYP2E1 activity only. This result is consistent with the finding that CYP2E1 is the only isoenzyme with a K(m) lower than the BDCM concentration used. The kinetic constants obtained from the inhibited microsomes were compared to similar results from recombinant human isoenzyme preparations containing only one CYP isoenzyme. The results for CYP2E1 were very similar, while the results for CYP1A2 were somewhat less similar and there was a substantial divergence for CYP3A4 in the two systems. Possible reasons for these differences are differing levels of CYP reductase and/or differing makeup of the membrane lipid environment for the CYPs. Because of the low levels of BDCM exposure from drinking water, it appears likely that CYP2E1 will dominate hepatic CYP-mediated BDCM metabolism in humans.  相似文献   

8.
The mechanism of impairment of cytochrome P450 (P450)-dependent metabolism in hamster liver during leishmaniasis is reported. A significant decrease in the level of P450 was observed on the 20th day of infection when the parasite load in the liver was maximum. The decrease in P450 level was accompanied by a significant increase in the level of marker enzymes of liver and degeneration of liver tissue. The impairment was isozyme-specific and concomitant with the induction of nitric oxide synthase. The results of in vitro experiments with generated nitric oxide and with scavengers demonstrated that the impairment is mediated by NO. Treatment of the infected animals with a combination therapy showed reduction in parasite load, reversal of P450 impairment, and recovery of liver enzymes and tissue close to normal.  相似文献   

9.
Previous studies have established that chlorpyrifos (CPS), fipronil, and nonane can all be metabolized by human liver microsomes (HLM) and a number of cytochrome P450 (CYP) isoforms. However, metabolic interactions between these three substrates have not been described. In this study the effect of either coincubation or preincubation of CPS with HLM or CYP isoforms with either fipronil or nonane as substrate was investigated. In both co- and preincubation experiments, CPS significantly inhibited the metabolism of fipronil or nonane by HLM although CPS inhibited the metabolism of fipronil more effectively than that of nonane. CPS significantly inhibited the metabolism of fipronil by CYP3A4 as well as the metabolism of nonane by CYP2B6. In both cases, preincubation with CPS caused greater inhibition than coincubation, suggesting that the inhibition is mechanism based.  相似文献   

10.
Some characteristics of the liver monooxygenase system were investigated in near-term, newborn and adult rats. When cytochromes P 450 were separated by chromatography on DEAE cellulose, the fraction eluted by NaCl was not significantly increased by transplacental phenobarbital treatment as it is in adult treated animals, but exhibited reconstituted enzyme activities and immunological characteristics qualitatively similar to those of phenobarbital-treated adults. This inductive effect was more acute in 5-d-old newborns and finally in adults. Thus, the mechanism responsible for the induction of cytochrome P 450 by phenobarbital is present but not very active in rat fetuses, and exhibits a rapid development after birth.  相似文献   

11.
Based on the X-ray crystal structures of 4-(4-chlorophenyl)imidazole (4-CPI)- and bifonazole (BIF)-bound P450 2B4, eight active site mutants at six positions were created in an N-terminal modified construct termed 2B4dH and characterized for enzyme inhibition and catalysis. I363A showed a >4-fold decrease in differential inhibition by BIF and 4-CPI (IC(50,BIF)/IC(50,4-CPI)). F296A, T302A, I363A, V367A, and V477A showed a 2-fold decreased k(cat) for 7-ethoxy-4-trifluoromethylcoumarin O-deethylation, whereas V367A and V477F showed an altered K(m). T302A, V367L, and V477A showed >4-fold decrease in total testosterone hydroxylation, whereas I363A, V367A, and V477F showed altered stereo- and regioselectivity. Interestingly, I363A showed a 150-fold enhanced k(cat)/K(m) with testosterone, and yielded a new metabolite. Furthermore, testosterone docking into three-dimensional models of selected mutants based on the 4-CPI-bound structure suggested a re-positioning of residues 363 and 477 to yield products. In conclusion, our results suggest that the 4-CPI-bound 2B4dH/H226Y crystal structure is an appropriate model for predicting enzyme catalysis.  相似文献   

12.
The equilibrium dissociation constants KD, the complex association / dissociation rate constants (k on /k off) and lifetimes of the complexes of redox partners were measured for three cytochrome P450-containing monooxygenase systems (P450cam, P450scc, and P450 2B4) under hydroxylation conditions. The Q parameter representing the ratio of protein-protein complex lifetime (τ lT ) to time required for a single hydroxylation cycle (τturnover) was introduced for estimation of productivity of complexes formed within the systems studied. The Q parameter was insignificantly changed upon transition from the oxidation to hydroxylation conditions. Lifetimes (τ lT ) for the binary complexes formed within the P450cam and the P450scc systems obligatory requiring an intermediate electron transfer protein between the reductase and cytochrome P450 could not realize hydroxylation reactions for substrates with known τturnover and so they were non-productive while the binary complexes formed within the P450 2B4 system, not requiring such intermediate electron-transfer protein, appeared to be productive. Formation of ternary complexes was demonstrated under hydroxylation conditions in all three systems. Analysis of Q values led to the conclusion that the ternary complexes formed within the P450cam and the P450scc systems were productive. In the case of the P450 2B4 system, more than half (about 60%) ternary complexes were also found to be productive.  相似文献   

13.
Based on recent directed evolution of P450 2B1, six P450 2B11 mutants at three positions were created in an N-terminal modified construct termed P450 2B11dH and characterized for enzyme catalysis using five substrates. Mutant I209A demonstrated a 3.2-fold enhanced k(cat)/K(m) for 7-ethoxy-4-trifluoromethylcourmarin O-deethylation, largely due to a dramatic decrease in K(m) (0.72 microM vs. 18 microM). I209A also demonstrated enhanced selectivity for testosterone 16beta-hydroxylation over 16alpha-hydroxylation. In contrast, V183L showed a 4-fold increased k(cat) for 7-benzyloxyresorufin debenzylation and a 4.7-fold increased k(cat)/K(m) for testosterone 16alpha-hydroxylation. V183L also displayed a 1.7-fold higher k(cat)/K(m) than P450 2B11dH with the anti-cancer prodrugs cyclophosphamide and ifosfamide, resulting from a approximately 4-fold decrease in K(m). Introduction of the V183L mutation into full-length P450 2B11 did not enhance the k(cat)/K(m). Overall, the re-engineered P450 2B11dH enzymes exhibited enhanced catalytic efficiency with several substrates including the anti-cancer prodrugs.  相似文献   

14.
A sensitive method for the determination of cytochrome P450 (P450 or CYP) 1A activities such as ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) in liver microsomes from human, monkey, rat and mouse by high-performance liquid chromatography with fluorescence detection is reported. The newly developed method was found to be more sensitive than previous methods using a spectrofluorimeter and fluorescence plate reader. The detection limit for resorufin (signal-to-noise ratio of 3) was 0.80 pmol/assay. Intra-day and inter-day precisions (expressed as relative standard deviation) were less than 6% for both enzyme activities. With this improved sensitivity, the kinetics of EROD and MROD activities in mammalian liver microsomes could be determined more precisely. EROD activities in human and monkey liver microsomes, and MROD activities in liver microsomes from all animal species exhibited a monophasic kinetic pattern, whereas the pattern of EROD activities in rat and mouse liver microsomes was biphasic. In addition, the method could determine the non-inducible and 3-methylcholanthrene-inducible activities of EROD and MROD in rat and mouse liver microsomes under the same assay conditions. Therefore, this method is applicable to in vivo and in vitro studies on the interaction of xenobiotic chemicals with cytochrome CYP1A isoforms in mammals.  相似文献   

15.
The preceding paper (B. Gemzik, D. Greenway, C. Nevins, and A. Parkinson (1992). Regulation of two electrophoretically distinct proteins recognized by antibody against rat liver cytochrome P450 3A1. J. Biochem. Toxicol, 7 (43–52).) described the regulation of two rat liver microsomal proteins (50- and 51-kDa) recognized by antibody against P450 3A1. It was also shown that changes in the levels of the 51-kDa 3A protein were usually paralleled by changes in the rate of testosterone 2β-, 6β-, and 15β-hydroxylation. The present study demonstrates that age- and sex-dependent changes in the 50-kDa protein were paralleled by changes in the rate of digitoxin oxidation to digitoxigenin bisdigitoxoside. Induction or suppression of the 50-kDa protein by treatment of rats with various xenobiotics were also paralleled by changes in the rate of digitoxin oxidation. These results suggest that, contrary to previous assumptions, the conversion of digitoxin to digitoxigenin bisdigitoxoside and the conversion of testosterone to 2β-, 6β- and 15β-hydroxytestosterone are primarily catalyzed by different forms of P450 3A. Further evidence for this coclusion was obtained from studies in which the suicide inhibitor, chloramphenicol, was administered to mature female rats previously treated with pregnenolone-16α-carbonitrile (PCN), which induces both the 50-kDa and the 51-kDa protein. Treatment of mature female rats with PCN alone caused a marked increase (16- to 18-fold) in the 6β-hydroxylation of testosterone and the rate of digitoxin oxidation. Treatment of PCN-induced rats with chloramphenicol caused a ~70% decrease in liver microsomal testosterone 6β-hydroxylation, but had no effect on the rate of conversion of digitoxin to digitoxigenin bisdigitoxoside. The oxidation of testosterone by purified 3A1 (a 51-kDa protein) was also inhibited by chloramphenicol in a time- and reduced nicotinamite adenine dinucleotide phosphate (NADPH)-dependent manner. In addition to testosterone and chloramphenicol, purified 3A1 also metabolized trole-andomycin, but it was unable to convert digitoxin to digitoxigenin bisdigitoxoside. Testosterone inhibited the microsomal oxidation of digitoxin, but digitoxin did not inhibit testosterone oxidation. This suggests that testosterone is a substrate for the 3A enzyme that metabolizes digitoxin, but that this form of P450 3A does not contribute significantly to testosterone oxidation by rat liver microsomes. We propose that the 2SbT-, 6β-, and 15β-hydroxylation of testosterone by rat liver microsomes is primarily catalyzed by the 51-kDa 3A proteins (either 3A1 or 3A2 depending on the source of microsomes), whereas digitoxin oxidation is primarily catalyzed by the 50-kDa protein.  相似文献   

16.
Cytochrome P450s (CYPs) hold a balance in studying pharmacokinetics, toxico-kinetics, drug metabolism, and drug-drug interactions, which require association with cytochrome P450 reductase (CPR) to achieve optimal activity. A novel system of Saccharomyces cerevisiae useful for expression studies of mammalian microsomal CYPs was established. Human CPR (hCPR) was co-expressed with human CYP3A4 (hCYP3A4) in this system, and two expression plasmids pTpLC and pYeplac195-3A4 containing the cDNA of hCPR and hCYP3A4 were constructed, respectively. The two plasmids were applied first and controlled by phosphoglycerate kinase (PGK) promoter. S. cerevisiae BWG1-7alpha transformed with the expression plasmids produced the respective proteins in the expected molecular sizes reactive with both anti-hCYP3A4 immunoglobulin (Ig) and anti-hCPR Ig. The activity of hCPR in yeast BWG-CPR was 443.2 nmol reduced cytochrome c/min/mg, which was about three times the CPR activity of the microsome prepared from the parental yeast. The protein amount of hCYP3A4 in BWG-CPR/3A4 was 35.53 pmol/mg, and the 6beta-hydroxylation testosterone formation activity of hCYP3A4 expressed was 7.5 nmol/min/nmol CYP, 30 times higher than the activity of hCYP3A4 expressed in the parental yeast, and almost two times the activity of hCYP3A4 from homologous human liver microsome. Meanwhile, BWG-CPR/3A4 retained 100 generations under nonselective culture conditions, indicating this yeast was a mitotically stable transformant. BWG-CPR was further tested daily by the PCR amplification of hCPR of yeast genome, Western blot analysis, and the activity assay of hCPR of yeast microsome. This special expression host for CYPs was validated to be stable and efficient for the expression of CYPs, applying as an effective selection model for the drug metabolism in vitro.  相似文献   

17.
Induction of P450 3A1 and P450 3A2 was studied in adult rat liver following treatment with a single high dose of dexamethasone (DEX). The increase of both P450 3A1 and 3A2 occurred at the level of mRNA as well as protein. P450 3A isozymes thus induced were catalytically active. No constitutive expression of P450 3A1 mRNA or protein was observed in males or females. Constitutive expression of P450 3A2 mRNA and protein was observed in males but not in females. Additionally, in females, P450 3A2 was almost nondetectable compared to that in males, at any dose of DEX. A time course study following DEX treatment showed that P450 3A1 mRNA and protein were detectable in both sexes at 12 hours, increased until 48 hours, and then declined. The decline was more rapid in males. P450 3A2 mRNA and protein increased as early as 3 hours, increased further up to 48 hours, and slowly declined thereafter. A dose-response study indicated that P450 3A1 mRNA and protein progressively increased in both sexes from a dose of 30 mg/kg. In contrast, P450 3A2 mRNA and protein in males did not increase up to a dose of 30 mg/kg but increased at higher doses. Total P450 content and P450 3A catalytic activity were also found to increase with time and dose. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Methoxychlor, a currently used pesticide, is demethylated and hydroxylated by several hepatic microsomal cytochrome P450 enzymes. Also, methoxychlor undergoes metabolic activation, yielding a reactive intermediate (M*) that binds irreversibly and apparently covalently to microsomal proteins. The study investigated whether methoxychlor could inhibit or inactivate certain liver microsomal P450 enzymes. The regioselective and stereoselective hydrox-ylation of testosterone and the 2-hydroxylation of estradiol (E2) were utilized as markers of the P450 enzymes inhibited by methoxychlor. Both reversible and time-dependent inhibition were examined. Coincubation of methoxychlor and testosterone with liver microsomes from phenobarbital treated (PB-microsomes) male rats, yielded marked diminution of 2α- and 16α-testosterone hydroxylation, indicating strong inhibition of P4502C11 (P450h). Methoxychlor moderately inhibited 2β-, 7α-, 15α-, 15β-, and 16β-hydroxylation and androstenedi-one formation. There was only a weak inhibition of 6β-ydroxylation of testosterone. The methox-ychlor-mediated inhibition of 6β-hydroxylation was competitive. By contrast, when methoxychlor was permitted to be metabolized by PB-microsomes or by liver microsomes from pregnenolone-16α-car-bonitrile treated rats (PCN-microsomes) prior to addition of testosterone, a pronounced time-dependent inhibition of 6β-hydroxylation was observed, suggesting that methoxychlor inactivates the P450 3A isozyme(s). The di-demethylated methoxychlor (bis-OH-M) and the tris-hydroxy (ca-techol) methoxychlor metabolite (tris-OH-M) inhibited 6β-hydroxylation in PB-microsomes competitively and noncompetitively, respectively; however, these methoxychlor metabolites did not exhibit a time-dependent inhibition. Methoxychlor inhibited competitively the formation of 7α-hydroxytestosterone (7α-OH-T) and 16α-hydroxy-testosterone (16α-OH-T) but exhibited little or no time-dependent inhibition of generation of these metabolites, indicating that P450s 2A1, 2B1/B2, and 2C11 were inhibited but not inactivated. Methoxychlor inhibited in a time-dependent fashion the 2-hydroxylation of E2 in PB-microsomes. However, bis-OH-M exhibited solely reversible inhibition of the 2-hydroxylation, supporting our conclusion that the inactivation of P450s does not involve participation of the demethylated metabolites. Both competitive inhibition and time-dependent inactivation of human liver P450 3A (6β-hydroxylase) by methoxychlor, was observed. As with rat liver microsomes, the human 6β-hydroxylase was inhibited by bis-OH-M and tris-OH-M competitively and noncompetitively, respectively. Testosterone and estradiol strongly inhibited the irreversible binding of methoxychlor to microsomal proteins. This might explain the “clean” competitive inhibition by methoxychlor of the 6β-OH-T formation when the compounds were coin-cubated. Glutathione (GSH) has been shown to interfere with the irreversible binding of methoxychlor to PB-microsomal proteins. The finding that the coincubation of GSH with methoxychlor partially diminishes the time-dependent inhibition of 6β-hydroxylation provides supportive evidence that the inactivation of P450 3A isozymes by methoxychlor is related to the formation of M*.  相似文献   

19.
Kim KA  Lee JS  Park HJ  Kim JW  Kim CJ  Shim IS  Kim NJ  Han SM  Lim S 《Life sciences》2004,74(22):2769-2779
Oleanolic acid (OA) and ursolic acid (UA), triterpene acids having numerous pharmacological activities including anti-inflammatory, anti-cancer, and hepato-protective effects, were tested for their ability to modulate the activities of several cytochrome P450 (CYP) enzymes using human liver microsomes. OA competitively inhibited CYP1A2-catalyzed phenacetin O-deethylation and CYP3A4-catalyzed midazolam 1-hydroxylation, the major human drug metabolizing CYPs, with IC50 (Ki) values of 143.5 (74.2) microM and 78.9 (41.0) microM, respectively. UA competitively inhibited CYP2C19-catalyzed S-mephenytoin 4'-hydroxylation with an IC50 (Ki) value of 119.7 (80.3) microM. However, other CYPs tested showed no or weak inhibition by both OA and UA. The present study demonstrates that OA and UA have inhibitory effects on CYP isoforms using human liver microsomes. It is thus likely that consumption of herbal medicines containing OA or UA, or administration of OA or UA, can cause drug interactions in humans when used concomitantly with drugs that are metabolized primarily by CYP isoforms. In addition, it appears that the inhibitory effect of OA on CYP1A2 is, in part, related to its anti-inflammatory and anticancer activities.  相似文献   

20.
The effects of a newly-developed ketolide antibiotic, telithromycin, on the metabolism of theophylline and the expression of hepatic cytochrome P450 (CYP) 1A2 and CYP3A2 were investigated in rats. Telithromycin at a high dose (100 mg/kg of body weight) was injected intraperitoneally once a day for 3 days. Twenty-four hours (day 4) after the final administration of telithromycin, theophylline (10 mg/kg) was administered intravenously. The presence of telithromycin significantly delayed the disappearance of theophylline from plasma. Parameters related to the pharmacokinetic interaction between theophylline and telithromycin were examined by noncompartmental methods. A significant decrease in the systemic clearance of theophylline was observed in the presence of telithromycin. Pretreatment with telithromycin significantly decreased the metabolic clearance of the major metabolites, 1-methyluric acid and 1,3-dimethyluric acid, with no change in the renal clearance of theophylline, suggesting that the decreased systemic clearance of theophylline by telithromycin is due to reduction of their metabolic clearance. Pretreatment with telithromycin significantly decreased the activity of 7-ethoxyresorufin O-deethylation and testosterone 6 beta-hydroxylation, suggesting that telithromycin decreases the activity of hepatic CYP1A2 and CYP3A2. Western blot analysis revealed that telithromycin significantly decreased the protein levels of CYP1A2 and CYP3A2 in the liver, which could explain the observed decreases in the systemic clearance of theophylline and metabolic clearance of 1-methyluric acid and 1,3-dimethyluric acid. The present study suggests that telithromycin at the dose used in this study alters the pharmacokinetics and metabolism of theophylline, due to reductions in the activity and expression of hepatic CYP1A2 and CYP3A2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号