首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally thought that most circuits of the adult central nervous system (CNS) are sculpted, in part at least, by selective elimination of some of the neurons present in an initial overabundant set. In this scenario, the birth of neurons precedes the period when brain functions, such as learning, first occur. In contrast to this form of brain assembly, we describe here the delayed development of the high vocal center (HVC) and one of its efferent pathways in canaries. The retrograde tracer Fluoro-Gold (FG) was injected into one of HVC's two efferent targets, the nucleus robustus archistriatalis (RA), to define the boundaries of HVC. The HVC grows markedly between 1 and 4 months, invading neighboring territories of the caudal telencephalon. During this same period, 0.43%-0.64% of the HVC neurons present at 1 year of age are labeled per day of [3H]-thymidine injection. [3H]-Thymidine labeling is a marker of cell birth, and during the first 4 months HVC neuron number increases, probably accounting for part of the HVC growth observed. Thereafter, the number of HVC neurons remains constant, but neuronal birth persists. We infer from this that neuronal replacement starts as early as 4 months after hatching and perhaps before then. About half of the neurons born after posthatching day 10 grow an axon to RA to form the main efferent pathway exiting from HVC. HVC growth, neurogenesis, axogenesis, and the observed replacement of neurons happen during the period of juvenile vocal learning. However, the recruitment of neurons that are still present at 1 year shows no particular inflections corresponding to the various stages in song learning, and continues at essentially the same rate after the more stereotyped adult song has been acquired. We suggest that a combination of neurogenesis and neuronal replacement provides unique advantages for learning.  相似文献   

2.
Neurogenesis continues in the brain of adult birds. These cells are born in the ventricular zone of the lateral ventricles. Young neurons then migrate long distances guided, in part, by radial cell processes and become incorporated throughout most of the telencephalon. In songbirds, the high vocal center (HVC), which is important for the production of learned song, receives many of its neurons after hatching. HVC neurons which project to the robust nucleus of the archistriatum to form part of the efferent pathway for song production, and HVC interneurons continue to be added throughout life. In contrast, Area X-projecting HVC cells, thought to be part of a circuit necessary for song learning but not essential for adult song production, are only born in the embryo. New neurons in HVC of juvenile and adult birds replace older cells that die. There is a correlation between seasonal cell turnover rates (addition and loss) and testosterone levels in adult male canaries. Available evidence suggests that steroid hormones control the recruitment and/or survival of new HVC neurons, but not their production. The functions of neuronal replacement in adult birds remain unclear. However, rates of HVC neuron turnover are highest at times of year when canaries modify their songs. Replaceable HVC neurons may participate in the modification of perceptual memories or motor programs for song production. In contrast, permanent HVC neurons could hold long-lasting song-related information. The unexpected large-scale production of neurons in the adult brain holds important clues about brain function and, in particular, about the neural control of a learned behavior—birdsong. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 585–601, 1997  相似文献   

3.
The higher vocal center (HVC) of adult male canries undergoes a seasonal change in volume that corresponds to seasonal modifications of vocal behavior: HVC is large when birds produce stereotyped song (spring) and is small when birds produce plastic song and add new song syllables into their vocal repertoires (fall). We reported previously that systemic exposure to testosterone (T) produces an increase in the volume of HVC similar to that observed with long-day photoperiods. T-induced growth of HVC occured regardless of wheter the borders of HVC were defined by Nissl-staining, the distribution of androgen-concentrating cells, or the distribution of projection neurons [separate neuronal populations within HVC project to the robust nucleus of the archistriatum (RA) and to Area X of the avian striatum (X)]. In the present study we used steroid autoradiography to determine whether T can influence the distribution of HVC cells that bind estrogen, and we combined estrogen autoradiography with retrograde labeling to determine whether HVC neurons that project to RA versus X differ in their ability to accumulate estrogen. Results showed that T increased the volume of Nissl-defined HVC and although HVC contained a low density of estrogen-concentrating cells, T increased the spatial distribution of these cells to match the Nissl borders of HVC. We also identified a region containing a high density of estrogenconcentrating cells located medial to HVC [we call this region paraHVC (pHVC)], and T also increased the volume of pHVC. pHVC also contained numerous X-projecting neurons, but few if any RA-projecting neurons. Double-labeling analysis revealed the RA-projecting neurons did not accumulate estrogen, a small percentage of X-projecting neurons in HVC accumulated estrogen, and the majority of X-projecting neurons in pHVC showed heavy accumulation of estrogen. The data reported here and in our previous article suggest distinct roles for gonadal steroids within the HVC-pHVC complex: estrogens are concentrated by neurons that project to a striatal region that influences vocal production during song learning (X), whereas androgens are concentrated primarily by neurons that project to a motor region that is involved in vocal production during both song learning and the recitation of already-learned song (RA). © 1995 John Wiley & Sons, Inc.  相似文献   

4.
In some songbirds perturbing auditory feedback can promote changes in song structure well beyond the end of song learning. One factor that may drive vocal change in such deafened birds is the ongoing addition of new vocal-motor neurons into the song system. Without auditory feedback to guide their incorporation, the addition of these new neurons could disrupt the established song pattern. To assess this hypothesis, the authors determined if neuronal recruitment into the vocal motor nucleus HVC is affected by neural signals that influence vocal change in adult deafened birds. Such signals appear to be conveyed via LMAN, a nucleus in the anterior forebrain that is necessary for vocal change after deafening. Here the authors tested whether LMAN lesions might restrict song degradation after deafening by reducing the addition or survival of new HVC neurons that would otherwise corrupt the ongoing song pattern. Using [3H]thymidine autoradiography to identify neurons generated in adult zebra finches, it was shown here that LMAN lesions do not reduce the number or percent of new HVC neurons surviving for either several weeks or months after [3H]thymidine labeling. However, the authors confirmed previous reports that LMAN lesions restrict vocal change after deafening. These data suggest that neurons incorporated into the adult HVC may form behaviorally adaptive connections without requiring auditory feedback, and that any role such neurons may play in promoting vocal change after adult deafening requires anterior forebrain pathway output.  相似文献   

5.
Brain nuclei that control song are larger in male canaries, which sing, than in females, which sing rarely or not at all. Treatment of adult female canaries with testosterone (T) induces song production and causes song-control nuclei to grow, approaching the volumes observed in males. For example, the higher vocal center (HVC) of adult females approximately doubles in size by 1 month following the onset of T treatment. Male HVC projects to a second telencephalic nucleus, RA (the robust nucleus of the archistriatum), which projects in turn to the vocal motor neurons. Whether HVC makes a similar connection in female canaries is not known, although HVC and RA are not functionally connected in female zebra finches, a species in which testosterone does not induce neural or behavioral changes in the adult song system. This experiment investigated whether HVC makes an efferent projection to RA in normal adult female canaries, or if T is necessary to induce the growth of this connection. In addition, we examined whether T-induced changes in adult female canary brain are reversible. Adult female canaries received systemic T implants that were removed after 4 weeks; these birds were killed 4 weeks after T removal (Testosterone-Removal, T-R). Separate groups of control birds received either (a) T implants for 4 weeks which were not removed (Testosterone-Control, T-C) or (b) empty implants (Untreated Control, øO-C). Crystals of the fluorescent tracer DiI were placed in the song-control nucleus HVC in order to anterogradely label both efferent targets of HVC, RA and Area X. Projections from HVC to RA and Area X were present in all treatment groups including untreated controls, and did not appear to differ either qualitatively or quantitatively. Thus, formation of efferent connections from HVC may be prerequisite to hormone-induced expression of song behavior in adult songbirds. The volumes of RA and Area X were measured using the distribution of anterograde label as well as their appearance in Nissl-stained tissue. RA was larger in T-treated control birds than in untreated controls. Experimental birds in which T was given and then removed (T-R) had RA volumes closer in size to untreated controls (ø-C). Because the volume of RA in T-treated controls (T-C) was larger than that of birds that did not receive T (ø-C), we conclude that the volume of RA increased in both T-C and T-R birds but regressed upon removal of T in T-R birds. Surprisingly, the volume of Area X did not increase in T-treated birds. Birds in this study were maintained on short days, suggesting that T-induced growth of Area X reported previously may have resulted from an interaction between T and another seasonal or photoperiodic factor induced by exposure to long daylengths. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
左明雪  陈刚  彭卫民  曾少举 《生命科学》2000,12(2):60-62,56
鸣禽发声学习的控制系统主要由一条直接神经通路和一条辅助神经通路组成,由前脑控制发声学习的最高中枢HVC、旁嗅叶的X区和巨细胞核外侧部(lMAN)组成的辅助通路,对鸟类发声学习行为的发育和调制具有重要作用。发声控制系统中神经元类型、数量及再生与更替、神经组构及其重组、神经介质和受体的分布等差异,决定了鸣禽在发声学习行为表现的差异以及性双态性。本文对近年鸟类控制发声学习行煌神经生物学机制的进展作了较为  相似文献   

7.
In the high vocal center (HVC) of adult songbirds, increases in spontaneous neuronal replacement correlate with song changes and with cell death. We experimentally induced death of specific HVC neuron types in adult male zebra finches using targeted photolysis. Induced death of a projection neuron type that normally turns over resulted in compensatory replacement of the same type. Induced death of the normally nonreplaced type did not stimulate their replacement. In juveniles, death of the latter type increased recruitment of the replaceable kind. We infer that neuronal death regulates the recruitment of replaceable neurons. Song deteriorated in some birds only after elimination of replaceable neurons. Behavioral deficits were transient and followed by variable degrees of recovery. This raises the possibility that induced neuronal replacement can restore a learned behavior.  相似文献   

8.
9.
The songs of adult male zebra finches (Taeniopygia guttata) arise by an integration of activity from two neural pathways that emanate from the telencephalic nucleus HVC (proper name). One pathway descends directly from HVC to the vocal premotor nucleus RA (the robust nucleus of the arcopallium) whereas a second pathway descends from HVC into a basal ganglia circuit (the anterior forebrain pathway, AFP) that also terminates in RA. Although HVC neurons that project directly to RA outnumber those that contribute to the AFP, both populations are distributed throughout HVC. Thus, partial ablation (microlesion) of HVC should damage both pathways in a proportional manner. We report here that bilateral HVC microlesions in adult male zebra finches produce an immediate loss of song stereotypy from which birds recover, in some cases within 3 days. The contribution of the AFP to the onset of song destabilization was tested by ablating the output nucleus of this circuit (LMAN, the lateral magnocellular nucleus of the anterior nidopallium) prior to bilateral HVC microlesions. Song stereotypy was largely unaffected. Together, our findings suggest that adult vocal production involves nonproportional integration of two streams of neural activity with opposing effects on song--HVC's direct projection to RA underlies production of stereotyped song whereas the AFP seems to facilitate vocal variation. However, the rapid recovery of song in birds with HVC microlesions alone suggests the presence of dynamic corrective mechanisms that favor vocal stereotypy.  相似文献   

10.
New neurons are incorporated into the high vocal center (HVC), a nucleus of the adult canary (Serinus canaria) brain that plays a critical role in the acquisition and production of learned song. Recruitment of new neurons in the HVC is seasonally regulated and depends upon testosterone levels. We show here that brain-derived neurotrophic factor (BDNF) is present in the HVC of adult males but is not detectable in that of females, though the HVC of both sexes has BDNF receptors (TrkB). Testosterone treatment increases the levels of BDNF protein in the female HVC, and BDNF infused into the HVC of adult females triples the number of new neurons. Infusion of a neutralizing antibody to BDNF blocks the testosterone-induced increase in new neurons. Our results demonstrate that BDNF is involved in the regulation of neuronal replacement in the adult canary brain and suggest that the effects of testosterone are mediated through BDNF.  相似文献   

11.
白腰文鸟发声行为的神经发育   总被引:5,自引:0,他引:5  
本文研究了 5~ 15 0日龄雄性白腰文鸟 (Lonchurastriataswinhoei)不同年龄段的声谱变化以及这种变化的神经调制机制。结果如下 :(1)HVC、RA和AreaX三个发声核团的神经联系基本接近成年鸟的水平后 ,幼鸟才开始学习鸣叫 (约 45日龄 ) ;(2 )HVC、RA和AreaX达到成年核团体积时 (约 80日龄 ) ,幼鸟才具有成年雄鸟的鸣叫模式 ;(3)发声控制核团的发育与核团间的神经支配有关 ,而基本不受鸣唱行为的影响 ,HVC、RA和AreaX的最快增长时间段各不相同 ,三个核团随年龄增长而呈现体积增长的显著变化 (one wayANOVA ,P <0 0 5 ) ,但各核团在任意两个时间段的体积差异并不都显著。结果提示 :发声行为产生的时间和发展与发声控制核团的发育、核团间的神经联系有关 ,最终的体积发育程度受内在遗传力的作用 ,同时可能还受神经核团建立正常神经联系时间的影响  相似文献   

12.
Forebrain nuclei that control learned vocal behavior in zebra finches are anatomically distinct and interconnected by a simple pattern of axonal pathways. In the present study, we examined afferent regulation of neuronal survival during development of the robust nucleus of the archistriatum (RA). RA projection neurons form the descending motor pathway of cortical vocal-control regions and are believed to be directly involved in vocal production.RA receives afferent inputs from two other cortical regions, the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and the higher vocal center (HVC).However, because the ingrowth of HVC afferent input is delayed, lMAN projection neurons provide the majority of afferent input to RA during early vocal learning. lMAN afferent input to RA is of particular interest because lMAN is necessary for vocal learning only during a restricted period of development. By making lesions of lMAN in male zebra finches at various stages of vocal development (20-60 days of age) and in adults (>90-days old), we asked whether the survival of RA neurons depends on lMAN afferent input, and if so whether such dependence changes over the course of vocal learning. The results showed that removal of lMAN afferent input induced the loss of over 40% of RA neurons among birds in early stages of vocal development(20 days of age). However, lMAN lesions lost the ability to induce RA neuron death among birds in later stages of vocal development (40 days of age and older). These findings indicate that many RA neurons require lMAN afferent input for their survival during early vocal learning, whereas the inability of lMAN lesions to induce RA neuron death in older birds may indicate a reduced requirement for afferent input or perhaps the delayed ingrowth of HVC afferent input (at approx. 35 days of age)provides an alternate source of afferent support. Removal of lMAN afferent input also dramatically increased the incidence of mitotic figures in RA, but only among 20-day-old birds at 2 days post-lesion. The early, acute nature of the mitotic events raises the possibility that cell division in RA may be regulated by lMAN afferent input.  相似文献   

13.
Male zebra finches learn to sing during a restricted phase of juvenile development. Song learning is characterized by the progressive modification of unstable song vocalizations by juvenile birds during development, a process that leads to the production of stereotyped vocal patterns as birds reach adulthood. The medial magnocellular nucleus of the anterior neostriatum (mMAN) is a small cortical region that has been implicated in song behavior based on its neuronal projection to the High Vocal Center (HVC), a nucleus that is critical for adult vocal production and presumably also plays a role in song learning. To assess the function of mMAN in song, ibotenic acid lesions of this brain region were made in juvenile male zebra finches during the period of vocal learning (40-50 days of age) and in adult males that were producing stable song (>90 days of age). Birds lesioned as juveniles produced highly abnormal, poor quality song as adults. Although the overall song quality of birds lesioned as adults was not highly disrupted or abnormal, the postoperative song behavior of these birds was discernibly different due to slight increases in variability of vocal production, particularly at the onset of singing. These results demonstrate that mMAN plays some important role in vocal production during the sensitive period for song learning, and is also important for consistent initiation and stereotyped production of adult song behavior.  相似文献   

14.
In adult songbirds, the telencephalic song nucleus HVC and its efferent target RA undergo pronounced seasonal changes in morphology. In breeding birds, there are increases in HVC volume and total neuron number, and RA neuronal soma area compared to nonbreeding birds. At the end of breeding, HVC neurons die through caspase‐dependent apoptosis and thus, RA neuron size decreases. Changes in HVC and RA are driven by seasonal changes in circulating testosterone (T) levels. Infusing T, or its metabolites 5α‐dihydrotestosterone (DHT) and 17 β‐estradiol (E2), intracerebrally into HVC (but not RA) protects HVC neurons from death, and RA neuron size, in nonbreeding birds. The phosphoinositide 3‐kinase (PI3K)‐Akt (a serine/threonine kinase)‐mechanistic target of rapamycin (mTOR) signaling pathway is a point of convergence for neuroprotective effects of sex steroids and other trophic factors. We asked if mTOR activation is necessary for the protective effect of hormones in HVC and RA of adult male Gambel's white‐crowned sparrows (Zonotrichia leucophrys gambelii). We transferred sparrows from breeding to nonbreeding hormonal and photoperiod conditions to induce regression of HVC neurons by cell death and decrease of RA neuron size. We infused either DHT + E2, DHT + E2 plus the mTOR inhibitor rapamycin, or vehicle alone in HVC. Infusion of DHT + E2 protected both HVC and RA neurons. Coinfusion of rapamycin with DHT + E2, however, blocked the protective effect of hormones on HVC volume and neuron number, and RA neuron size. These results suggest that activation of mTOR is an essential downstream step in the neuroprotective cascade initiated by sex steroid hormones in the forebrain.  相似文献   

15.
《Journal of Physiology》2013,107(3):178-192
Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC’s auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf’s involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans.  相似文献   

16.
Songbirds are an important model system for the study of the neurological bases of song learning, but variation in song learning accuracy and adult song complexity remains poorly understood. Current models of sexual selection predict that signals such as song must be costly to develop or maintain to constitute honest indicators of male quality. It has been proposed that reductions of nestling condition during song development might limit the expression of song learning. Adult song could thus act as an indicator of early stress as only males that enjoy good condition during development could learn accurately and sing long songs or large repertoires. We tested this hypothesis in the zebra finch by modifying early condition through cross-fostering chicks to small, medium, and large broods. Song learning was very accurate and was found to reflect very closely tutor song characteristics and to depend on the number of males in the tutoring group. Although the brood size manipulation strongly affected several measures of nestling condition and adult biometry, we found no relationship between early condition and song learning scores or song characteristics. Similarly, brain mass and high vocal center (HVC), robust nucleus of the arcopallium (RA), and lateral magnocellular nucleus of the anterior nidopallium (LMAN) volumes did not covary with nestling condition and growth measurements. We found no significant relationship between song repertoire size and HVC and RA volumes, although there was a nonsignificant trend for HVC to increase with increasing proportion of learnt elements in a song. In conclusion, the results provide no evidence for song learning to be limited by nestling condition during the period of nutritional dependence from the parents in this species.  相似文献   

17.
Widespread telencephalic neuronal replacement occurs throughout life in birds. We explored the potential relationship between thyroxine (T4) and cell turnover in the adult male zebra finch. We found that many cells in the zebra finch brain, including long‐projection neurons in the high vocal center (HVC), stained positively with an antibody to thyroid hormone receptors (TR). Labeling was generally weak in the ventricular zone (VZ) that gives rise to new neurons but some proliferative VZ cells and/or their progeny, identified by [3H]‐thymidine labeling, co‐labeled with anti‐TR antibody. Acute T4 treatment dramatically increased the number of pyknotic and TUNEL‐positive cells in HVC and other telencephalic regions. In contrast, degenerating cells were never observed in the archistriatum or sub‐telencephalic regions, suggesting that excess T4 augments cell death selectively in regions that show naturally occurring neuronal turnover. VZ mitotic activity was not altered shortly after acute T4 treatment at a dosage that stimulated cell death, although [3H]‐labeling intensity per cell was slightly reduced. Moreover, the incorporation rates for neurons formed shortly before or after acute hormone treatment were no different from control values. Chronic T4 treatment resulted in a reduction in the total number of HVC neurons. Thus, hyperthyroidism augmented neuronal death, which was not compensated for by neuronal replacement. Collectively, these results indicate that excess T4 affects adult neuronal turnover in birds, and raises the possibility that thyroxine plays an important role in the postnatal development of the avian brain and vocal behavior. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 323–341, 2002  相似文献   

18.
Birdsong is a learned vocal behavior used in intraspecific communication. The motor pathway serving learned vocalizations includes the forebrain nuclei NIf, HVC, and RA; RA projects to midbrain and brain stem areas that control the temporal and acoustic features of song. Nucleus Uvaeformis of the thalamus (Uva) sends input to two of these forebrain nuclei (NIf and HVC) but has not been thought to be important for song production. We used three experimental approaches to reexamine Uva's function in adult male zebra finches. (1) Electrical stimulation applied to Uva activated HVC and the vocal motor pathway, including tracheosyringeal motor neurons that innervate the bird's vocal organ. (2) Bilateral lesions of Uva including the dorso-medial portion of the nucleus affected the normal temporal organization of song. (3) Chronic multiunit recordings from Uva during normal song and calls show bursts of premotor activity that lead the onset of some song components, and also larger bursts that mark the end of complete song motifs. These results implicate Uva in the production of learned vocalizations, and further suggest that Uva contributes more to the temporal structure than to the acoustic characteristics of song. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Male zebra finches learn to imitate a tutor's song through auditory and motor learning. The two main song control nuclei in the zebra finch forebrain, the higher vocal center (HVC) and the robust nucleus of the archistriatum (RA), receive cholinergic innervation from the ventral paleostriatum (VP) of the basal forebrain which may play a key role in song learning. By injecting neuroanatomical tracers, we found a topographically segregated pathway from nucleus ovoidalis (Ov) to VP that in turn projects in a topographic fashion to HVC and RA. Ov is a major relay in the main ascending auditory pathway. The results suggest that the cholinergic neurons in the VP responsible for song learning are regulated by auditory information from the Ov.  相似文献   

20.
《Journal of Physiology》2013,107(3):193-202
Songbirds constitute a powerful model system for the investigation of how complex vocal communication sounds are represented and generated, offering a neural system in which the brain areas involved in auditory, motor and auditory–motor integration are well known. One brain area of considerable interest is the nucleus HVC. Neurons in the HVC respond vigorously to the presentation of the bird’s own song and display song-related motor activity. In the present paper, we present a synthesis of neurophysiological studies performed in the HVC of one songbird species, the canary (Serinus canaria). These studies, by taking advantage of the singing behavior and song characteristics of the canary, have examined the neuronal representation of the bird’s own song in the HVC. They suggest that breeding cues influence the degree of auditory selectivity of HVC neurons for the bird’s own song over its time-reversed version, without affecting the contribution of spike timing to the information carried by these two song stimuli. Also, while HVC neurons are collectively more responsive to forward playback of the bird’s own song than to its temporally or spectrally modified versions, some are more broadly tuned, with an auditory responsiveness that extends beyond the bird’s own song. Lastly, because the HVC is also involved in song production, we discuss the peripheral control of song production, and suggest that interspecific variations in song production mechanisms could be exploited to improve our understanding of the functional role of the HVC in respiratory–vocal coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号